ДЕЯКI АСПЕКТИ ЕРГОДИЧНИХ ДЕФОРМАЦIЙ НЕЛIНIЙНИХ ГАМIЛЬТОНОВИХ СИСТЕМ ТА АСОЦIЙОВАНИХ З НИМИ ЛОКАЛЬНО ГОМЕОМОРФНИХ МЕТРИЧНИХ ПРОСТОРIВ
Анотація
Дослiджуються орбiти повiльно збурених гамiльтонових систем та асоцiйованi з ними ергодичнi деформацiї лагранжевих многовидiв. Основнi результати базуються на пiдходi Дж. Мазера [18,19] до побудови гомологiй iнварiантних ймовiрнiсних мiр, що мiнiмiзують деякi лагранжевi функцiонали, а також на елiптичнiй теорiї Громова-Саламона-Зендера-Флоєра [7,9,12,20,26] побудови iнварiантних многовидiв. В працi конструюються iнварiантнi пiдмноговиди, котрi є носiями iнварiантних ергодичних мiр та мають структуру метричних просторiв, що допускають локально гомеоморфнi вiдображення. Дослiджується проблема конструювання ефективних критерiїв їх глобальної гомеоморфностi, сформульованої проф. А.М. Самойленком при дослiдженнi ергодичних деформацiй нелiнiйних гамiльтонових систем та їх адiабатичних iнварiантiв. Доведено, що вiдображення f : X → Y з лiнiйно зв’язного гаусдорфового простору X в однозв’язний (зокрема, стягуваний) простiр Y є гомеоморфiзмом тодi i лише тодi, коли f локальним гомеоморфним i прообраз f−1(y) кожної точки y ∈ Y є непорожньою компактною пiдмножиною в X.
Завантаження
Посилання
СПИСОК ЛIТЕРАТУРИ
Abraham R., J. Marsden J. Foundations of Mechanics. Commings, USA, 1978, 806p.
Aebischer B., Borer M. et al. Symplectic geometry: Introductory course. - Basel: Birkhauses Verlag, Basel, 1992. - P.79-165.
Arnold V.I. A note on Weierstrass' auxiliary theorem // Functional Analysis and Its Applications. -1967. -1, N3. -P. 173-179.
https://doi.org/10.1007/BF01076901
Арнольд В.И. Математические методы классической механики. - М: Наука, 1989. - 408 C.
Banakh I., Banakh T., Plichko A., Prykarpatsky A., On local convexity of nonlinear mappings between Banach spaces // Cent. Eur. J. Math. - 2012. -10, N6. - P. 2264-2271.
https://doi.org/10.2478/s11533-012-0101-z
R.E. Edwards R.E., Functional analysis . - New York: Holt, Rinehart and Winston Publ., 1965. - 1071 P.
Eliashberg Y., Givental A., Hofer H.. Introduction to Symplectic Field Theory, In: Alon N., Bourgain J., Connes A., Gromov M., Milman V. (eds) Visions in Mathematics. Modern Birkhauser Classics. - Basel: Birkhauser, 2000. - P.560-673.
https://doi.org/10.1007/978-3-0346-0425-3_4
Эрве M. Функции многих переменных. - М.: Мир, 1985. - 164 C.
Floer A. Morse theory for Lagrangian intersections // J. Diff. Geom. - 1988. - 28 - P.513-547.
https://doi.org/10.4310/jdg/1214442477
Halmosh P.R. Lectures on the ergodic theory. - Tokio: Math. Soc. of Japan Publ., 1956. - 147 P.
A. Hatcher, Algebraic Topology, Cambdidge Univ. Press, 2002.
Hofer H. Lusternik-Schnirelman theory for Lagrangian intersections // Ann. Inst. Henri Poincare. -1968. - 5. - P. 456-499.
https://doi.org/10.1016/S0294-1449(16)30339-0
Канторович Л.В., Акилов Г.П. Функциональный анализ. -М.: Наука, 1977. -740 C.
Каток А.Б., Хассельблат Б. Введение в современную теорию динамических систем. - М.: Факториал, 1999. - 767 C.
Корнфельд И.П., Синай Я.Г., Фомин С.В. Эргодическая теория. - М.: Наука, 1980. - 383 C.
Kryloff N.M., Bogoliubov N.N. La theorie generale de la mesure et son application 'a l'etude des systemes dynamiques de la mechanique nonlineaire.-Ann.Math.-1937.-II,N38.-P.65-113.
https://doi.org/10.2307/1968511
Mane R. On the minimizing measures of Lagrangian dynamical systems. -1992. - Nonlinearity. -5. - P. 623-638.
https://doi.org/10.1088/0951-7715/5/3/001
Mather J.N., Action minimizing measures for positive definite Lagrangian systems. - Math.Zeitschr.. -1991. -207. -P. 169-207.
https://doi.org/10.1007/BF02571383
Mather J. Variational construction of connecting orbits. -Ann.Inst.Fourier, Grenoble. -1993. -43, N5. -P. 1349-1386.
https://doi.org/10.5802/aif.1377
McDuff D., Elliptic methods in symplectic geometry. -Bull. AMS. -1990. -23. - P. 311-358.
https://doi.org/10.1090/S0273-0979-1990-15928-2
Немыцкий В.В. Степанов В.В. Качественная теория дифференциальных уравнений. - М.: Гостехиздат, 1949. - 550 C.
Prykarpatsky A.K. Symplectic field theory approach to studing ergodic measures related with nonautonomous Hamiltonian systems. -Univ. Iagellonicae Acta Math. -2004. - P. 123-138.
Palais R.S. Natural operations on differential forms. - Trans. Amer. Math. Soc.. -1959. -92. - P. 125-141.
https://doi.org/10.2307/1993171
Prykarpats'kyi Ya.A. Symplectic approach to constructing ergodic measures. - Ukrainian MathematicalJournal.-2006.-58,N5.-P.763- -778.
https://doi.org/10.1007/s11253-006-0100-y
Prykarpats'kyi Ya.A. Mel'nikov-Samoilenko adiabatic stability problem. - Ukrainian Mathematical Journal. -2006. -58, N6. - P. 887-903.
https://doi.org/10.1007/s11253-006-0111-8
Salamon D., Zehnder E. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. - Comm. Pure Appl. Math. - 1992. -45. -P. 1303-1360.
https://doi.org/10.1002/cpa.3160451004
Samoilenko A.M. Elements of the Mathematical Theory of Multi-Frequency Oscillations, (Mathematics and its Applications). - Amsterdam: Kluwer Publisher, 1991. -325 P.
https://doi.org/10.1007/978-94-011-3520-7
Samoilenko A.M., Prykarpats'kyi A.K., Samoilenko V.H. Lyapunov-Schmidt approach to studying homoclinic splitting in weakly perturbed Lagrangian and Hamiltonian systems. - Ukrainian Mathematical Journal. -2003. -55, N1. - P. 82-92.
https://doi.org/10.1023/A:1025072619144
REFERENCES
Abraham R., J. Marsden J. Foundations of Mechanics. Commings, USA, 1978, 806p.
Aebischer B., Borer M. et al. Symplectic geometry: Introductory course. - Basel: Birkhauses Verlag, Basel, 1992. - P.79-165.
Arnold V.I. A note on Weierstrass' auxiliary theorem // Functional Analysis and Its Applications. -1967. -1, N3. -P. 173-179.
https://doi.org/10.1007/BF01076901
Arnold V.I. Mathematical methods of classical mechanics. - M: Science, 1989. - 408 C.
https://doi.org/10.1007/978-1-4757-2063-1
Banakh I., Banakh T., Plichko A., Prykarpatsky A., On local convexity of nonlinear mappings between Banach spaces // Cent. Eur. J. Math. - 2012. -10, N6. - P. 2264-2271.
https://doi.org/10.2478/s11533-012-0101-z
R.E. Edwards R.E., Functional analysis . - New York: Holt, Rinehart and Winston Publ., 1965. - 1071 P.
Eliashberg Y., Givental A., Hofer H.. Introduction to Symplectic Field Theory, In: Alon N., Bourgain J., Connes A., Gromov M., Milman V. (eds) Visions in Mathematics. Modern Birkhauser Classics. - Basel: Birkhauser, 2000. - P.560-673.
https://doi.org/10.1007/978-3-0346-0425-3_4
Erve M. Functions of many variables. - M .: Mir, 1985. - 164 C.
Floer A. Morse theory for Lagrangian intersections // J. Diff. Geom. - 1988. - 28 - P.513-547.
https://doi.org/10.4310/jdg/1214442477
Halmosh P.R. Lectures on the ergodic theory. - Tokio: Math. Soc. of Japan Publ., 1956. - 147 P.
A. Hatcher, Algebraic Topology, Cambdidge Univ. Press, 2002.
Hofer H. Lusternik-Schnirelman theory for Lagrangian intersections // Ann. Inst. Henri Poincare. -1968. - 5. - P. 456-499.
https://doi.org/10.1016/S0294-1449(16)30339-0
Kantorovich L.V., Akilov G.P. Functional analysis. -M.: Nauka, 1977. -740 C.
Katok A.B., Hasselblat B. Introduction to the modern theory of dynamical systems. - M .: Factorial, 1999. - 767 C.
Kornfeld I.P., Sinai Ya.G., Fomin S.V. Ergodic theory. - M .: Science, 1980. - 383 C.
Kryloff N.M., Bogoliubov N.N. La theorie generale de la mesure et son application 'a l'etude des systemes dynamiques de la mechanique nonlineaire.-Ann.Math.-1937.-II,N38.-P.65-113.
https://doi.org/10.2307/1968511
Mane R. On the minimizing measures of Lagrangian dynamical systems. -1992. - Nonlinearity. -5. - P. 623-638.
https://doi.org/10.1088/0951-7715/5/3/001
Mather J.N., Action minimizing measures for positive definite Lagrangian systems. - Math.Zeitschr.. -1991. -207. -P. 169-207.
https://doi.org/10.1007/BF02571383
Mather J. Variational construction of connecting orbits. -Ann.Inst.Fourier, Grenoble. -1993. -43, N5. -P. 1349-1386.
https://doi.org/10.5802/aif.1377
McDuff D., Elliptic methods in symplectic geometry. -Bull. AMS. -1990. -23. - P. 311-358.
https://doi.org/10.1090/S0273-0979-1990-15928-2
Nemytskii V.V., Stepanov V.V. Qualitative theory of differential equations. - M .: Gostekhizdat, 1949. - 550 C.
Prykarpatsky A.K. Symplectic field theory approach to studing ergodic measures related with nonautonomous Hamiltonian systems. -Univ. Iagellonicae Acta Math. -2004. - P. 123-138.
Palais R.S. Natural operations on differential forms. - Trans. Amer. Math. Soc.. -1959. -92. - P. 125-141.
https://doi.org/10.2307/1993171
Prykarpats'kyi Ya.A. Symplectic approach to constructing ergodic measures. - Ukrainian MathematicalJournal.-2006.-58,N5.-P.763- -778.
https://doi.org/10.1007/s11253-006-0100-y
Prykarpats'kyi Ya.A. Mel'nikov-Samoilenko adiabatic stability problem. - Ukrainian Mathematical Journal. -2006. -58, N6. - P. 887-903.
https://doi.org/10.1007/s11253-006-0111-8
Salamon D., Zehnder E. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. - Comm. Pure Appl. Math. - 1992. -45. -P. 1303-1360.
https://doi.org/10.1002/cpa.3160451004
Samoilenko A.M. Elements of the Mathematical Theory of Multi-Frequency Oscillations, (Mathematics and its Applications). - Amsterdam: Kluwer Publisher, 1991. -325 P.
https://doi.org/10.1007/978-94-011-3520-7
Samoilenko A.M., Prykarpats'kyi A.K., Samoilenko V.H. Lyapunov-Schmidt approach to studying homoclinic splitting in weakly perturbed Lagrangian and Hamiltonian systems. - Ukrainian Mathematical Journal. -2003. -55, N1. - P. 82-92.
https://doi.org/10.1023/A:1025072619144
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
2. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
3. Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).