ОДНЕ ЗАСТОСУВАННЯ ДИФЕРЕНЦIАЛЬНИХ РIВНЯНЬ IЗ ВIДХИЛЮВАЛЬНИМ АРГУМЕНТОМ

  • V. Yu. Slyusarchuk National University of Water Management and Nature Resources

Анотація

Побудовано математичну модель Сонячної системи, що враховує скiнченну швидкiсть гравiтацiї.

Ключовi слова: математична модель Сонячної системи зi скiнченною швидкiстю гравiтацiї.

 

Завантаження

Дані завантаження ще не доступні.

Посилання

Myshkis, A.D. (1951). Linear differential equations lagging behind the marble. ML: Gostekhizdat.

Myshkis, A. D., Elsgolz, L. E. (1967). The state and problems of the theory of differential equations with a deflection argument: UMN, 22 (2), 21-57.

Myshkis, A.D. (1977). Some problems in the theory of differential equations with a deflection argument: UMN, 32 (2), 173-202.

Pinnie, E. (1961). Ordinary differential-difference equations. M: IL

Rubanik, V.P. (1971). Oscillations of quasilinear systems with delay. M .: Science. Elsgolz, L. E., Norkin, S. B. (1971). An Introduction to the Theory of Differential Equations with a Deviating Argument. M .: Science. Hale, J. (1984). Theory of functionally differential equations. M .: World. 1984

Tsarkov, E.F. (1986). Random perturbations of differential-functional equations. Riga: Zinatne. Azbelev, N.V., Maksimov, V.P., Rakhmatullina, L.F. (1991). An Introduction to the Functional-Differential Equations Theory. M .: Science.

Slyusarchuk, V. Yu. (2003). Absolute stability of the dynamical systems of the past. Equal: National Vt. un-th water households and nature use.

Fomalont, E. B., Kopeikin, S. V. (2003). The measurement of the light deflection from Jupiter: experimentalresults: AstrophysJournal, 598, 704–711.

https://doi.org/10.1086/378785

Kopeikin, SM, Fomalont, E. (2004). The fundamental limit of gravity speed and its measurement: Earth and Universe, 3.

Multon, F. (1935). Introduction to celestial mechanics. M.-L .: ONTI NKTP of the USSR.

Poincare, A. (1965). Lectures on celestial mechanics. M .: Science.

Shazi, J. (2011). The theory of relativity and celestial mechanics. T. 1. M.-Izhevsk: Institute of Computer Studies.

Duboshin, G.N. (1978). Heavenly mechanics. Analytical and qualitative methods. M .: Science.

Arnold, VI (1963). Small denominators and problems of the stability of motion in classical and celestial mechanics: UMN, 18 (6), 91-192.

https://doi.org/10.1070/RM1963v018n06ABEH001143

Brumberg, VA (1972). Relativistic celestial mechanics. M .: Science.

Marcheev, A.P. (1978). Points of libration in celestial mechanics and cosmodynamics. M .: Science. Arnold, V.I., Kozlov, V.V., Neistadt, A.N. (2002). Mathematical aspects of classical and celestial mechanics. M .: URSS

Zel'dovich, Ya.B., Novikov, I.D. (1971). The theory of gravitation and the evolution of stars. M .: Science.

Ryabushko, A.P. (1979). Movement of bodies in the general theory of relativity. Minsk: The high school.

Tsesevich, V.P. (1984). What and how to observe in the sky. M .: Science.

Опубліковано
2018-11-08
Як цитувати
[1]
Slyusarchuk, V. 2018. ОДНЕ ЗАСТОСУВАННЯ ДИФЕРЕНЦIАЛЬНИХ РIВНЯНЬ IЗ ВIДХИЛЮВАЛЬНИМ АРГУМЕНТОМ. Буковинський математичний журнал. 6, 1-2 (Лис 2018). DOI:https://doi.org/10.31861/bmj2018.01.104.
Розділ
Статті