ЗНАХОДЖЕННЯ ДВОХ МОЛОДШИХ КОЕФIЦIЄНТIВ У ТЕЛЕГРАФНОМУ РIВНЯННI З ДРОБОВИМИ ПОХIДНИМИ

  • Г. П. Лопушанська Львiвський нацiональний унiверситет iменi Iвана Франка
  • В. Р. Шумська Львiвський нацiональний унiверситет iменi Iвана Франка

Анотація

Встановлюємо однозначну розв'язнiсть оберненої задачi Кошi для рiвняння utα-rtutβ+a2-γ/2u-btu=F0(x), x,tn×(0,T], з дробовими похiдними, заданими узагальненими функцiями F0 та у правих частинах початкових умов. Задача полягає у знаходженнi трiйки функцiй: узагальненого розв'язку u (неперервного й iнтегровного за часом в узагальненому сенсi) та невiдомих неперервних та iнтегровних коефiцiєнтiв b(t), r(t).

We establish the unique solvability of an inverse Cauchy problem for the equation utα-rtutβ+a2-γ/2u-btu=F0(x), x,tn×(0,T], with fractional derivatives, given distributions F0 and in right-hand sides of the initial conditions. The problem is to find the generalized solution u (continuous and integrable in time in generalized sense) and unknown continuous and integrable coefficients b(t), r(t).

Завантаження

Дані завантаження ще не доступні.
Опубліковано
2017-02-19
Як цитувати
[1]
Лопушанська, Г. і Шумська, В. 2017. ЗНАХОДЖЕННЯ ДВОХ МОЛОДШИХ КОЕФIЦIЄНТIВ У ТЕЛЕГРАФНОМУ РIВНЯННI З ДРОБОВИМИ ПОХIДНИМИ. Буковинський математичний журнал. 4, 3-4 (Лют 2017).
Розділ
Статті