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Kusik L.1I.

EXISTENCE CONDITIONS AND ASYMPTOTICS FOR SOLUTIONS OF
ONE CLASS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

For a differential equation of the second order of the form y” = aop(t)po(y)|y’|°t, where
ag € {—1,1}, p : [a,w[—]0, +0o0] is continuous function, ¢ : Ay, —]0,+00[ is continuous
regularly varying as y — Y{ the function of o order, and g +01 =1, Ay, (i € {0,1}) is a one-
side neighborhood of ¥; and Y; € {0; +o0} (i € {0,1}), the question of the existence of solutions
for which 1t1TrL1 yD(t) =Y; (i € {0,1}) is considered. Involvement in the 1980s in V.Mari¢, M.

Tomi¢’s works in the study of two-term second-order differential equations y” = p(t)e(y)
with regularly varying nonlinearities in zero made it possible to find two-sides estimates of
solutions tending to zero as t — +oo. Further study of two-term second-order differential
equations with regularly varying nonlinearities, the right side of which preserves the sign in the
neighborhood of singular point (both finite or equals +o0) is carried out by Evtukhov V.M.
on P,(\g)—solutions, which arises in the study of generalized n—th order Emden - Fowler
equations. Among the set of such solutions of equation under study we distinguish a fairly
wide class of so-called P, (Yp, Y1, Ag)-solutions (generalization of P, (A\g)—solutions). The set
of all P,(Yp, Y1, \g)—solutions by its asymptotic properties separate into 4 disjoint classes of
solutions corresponding to the values of A\g: A9 € R\ {0, 1} is nonsingular case, \g = 0, Ao = 1,
Ao = too are particular cases. This type of solution was previously introduced in the study
of the two-term equation y” = agp(t)wo(y)e1(y'), where, ap € {—1,1}, p : [a,w[—>]0, 400 is
continuous function, ¢; : Ay, —]0,+o0[ (¢ = 0,1) are regularly varying asz — ¥; (i = 0,1)
functions of o; (¢ = 0,1) orders, and og + 01 # 1. The case og + 01 = 1 corresponds to the
so-called semilinear differential equations, which have a number of properties of both linear
|1—>\|y/|>\

and nonlinear differential equations. Thus, for an equation y” = p(t)|y sgn y with

some constraints on a function p (in particular, if the function preserves the sign, it is locally
w .
absolutely continuous and fp‘ziA (t) dt = +o0, tlim p’(t)pg—j (t) =lo (Jlo] £ +0), asymptotic
—w

representations are found as(,1 t — w for all types of proper solutions of this equation by Evtukhov
V.M.. Here, for the equation we are studying, the necessary as well as sufficient conditions for
the existence of P, (Y, Y1, Ag)- solutions are found, asymptotic representations of such solutions
and their first-order derivatives are established, and the number of parametric families of such
solutions is indicated.

Key words and phrases: two-term equation, P, (Yp, Y1, Ag)-solutions, regularly varying
function, asymptotic representations of solutions, one-, two-parameter family of solutions.
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INTRODUCTION

Consider the differential equation

y" = aop(t)o()ly'|™, (1)

where ag € {—1,1}, p : [a,w][—]0, 400] is a continuous function, —0o < a < w < 400,
o : Ay, —>]0,+o0o[ is continuous and regular varying as y — Yy function of orders oy ,
Ay. (i € {0,1}) is a one-side neighborhood of Y; and Y; € {0; +00} (i € {0,1}). We assume
that the numbers y; (i = 0,1) given by the formula

1 if eigher Y; = 400 or
Y, =0 and Ay, isright neighborhood of the point 0,

—1 if eigher Y; = —0c0 or
;=0 and Ay, isleft neighborhood of the point 0,

Wi =

satisfy the relations
popy >0 for Yy=4oo and pouy <0 for Yy =0. (2)

Conditions (2) are necessary for the existence of solutions of equation (1) defined in a
left neighborhood of w and satisfying the conditions

yD(t) € Ay, for t € [to,w[ , ltiTrn yOt) =Y, (i=0,1). (3)

We study equation (1) on class P, (Yp, Y1, Ag)- solutions, that defined as follows.

Definition 1. A solution y of equation (1) on interval [ty,w[C [a,w][ is called P,(Yy, Y1, \o)-
solution, where —oo < \g < 400, it, in addition to (3), it satisfies the condition

/If 2
o O
ttw y(t)y" (1)
Depending on ), these solutions have different asymptotic properties. For \g € R\ {1}

in [2]| such ratios

OV O _ Xm0y 1 "

tTw y(t) - )\0 - 17 tTw y/(t) )\0 — ]_7

where

rolt) = t if w=+4o0,
U t—w if w< 4o,

are established.Let us emphasize that for A\j = 0 the existence of lim YO (t)

i "o (finite or equal

to +00) is assumed.
Note that the numbers pg, p; determine the signs of any P, (Yy, Y1, Ag)- solution of equa-
tion (1) and its derivative in a left neighborhood of w. In addition, the sign of the second
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derivative of any P, (Y, Y1, Ag)-solution of equation (1) in a left neighborhood w coincides
with ag. Then taking into account (2), we have

agpy >0 as Yy =400 and aou; <0 as Y;=0. (5)

By the definition of a regularly varying function ( [1], Chap. 1, Sec. 1.1 9-10 of the
Russian translation), each of the functions ¢y admits a representation of the form

wo(2) = |27 Lo(2),

where Lo : Ay, —]0, 400[ is a continuous function slowly varying as y — Y, and satisfying

L)
yli}rr;o T 1 forany X >0, (6)
and the condition is satisfied uniformly for A on any interval [c, d] C]0, +o0[ . Moreover, there

exist continuously differentiable functions (see [1], Chap. 1, Sec. 1.1 10-15 of the Russian

the condition

translation]) Lo : Ay, —]0, +-00[ slowly varying as y — Y; and satisfying the conditions

i 2W) gy, YW (7)
yg—’AYgO Loo(y) ’ yg_’ggo Loo(y)

Asymptotic representations and conditions of the existence of P, (Yp, Y1, \g)- solutions in
case og + 01 # 1 are obtained in [6] for differential equation in general view. In each of
the cases \g € R\ {0,1}, A\g = 0, = 1, \¢g = £o0 a condition (RN),, is imposed on the
right-hand side of the equation under which the equation becomes close in a sense to the
two-term as ¢t T w.

Here we study the behavior of P, (Yy, Y1, Ag)- solutions in case og+07 = 1 and \g € R\ {1},
when it becomes close in some sense to the linear, which is studied in detail in the monograph
[5]. The purpose of this article is to generalize the results from work [3] on equation (1).

We choose a number b € Ay, such that the inequality

bl <1 for Yo=0, b>1(b<—1) for Yy=+oo (Yy=—00)
is respected and put

Ay, (b) = [b,Yo[ if Ay, is a left neighborhood of Y,
Ay, (b) =]Yo,b] if Ay, is a right neighborhood of Yj.

Now we introduce auxiliary functions and notation as follows:

Yo
: ds
Y ds b if { m = :tOO,
D: Ay, (b)) — R, Py = / , B= Yo
SLO(S) : ds  __

% Yo if [ To(s = const,

b

0 if B=Y,
. . ! 1 if B=b,
Z—yll)r%(l)(y)— +o0o if B=b and pou; >0, ,ug—{ i B=Y, (8)

—o0 if B=b and pou <0,
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Io(t) = / p(P)lma(r)|7 dr,  L(t) = / p(r)|mo(r) [~ dr,

where the integration limits A; € {a;w} (i = 0, 1) are chosen so as to ensure that the integrals
I; (i =0,1) tend either to zero or to oo as t T w.
Note that due to the choice pg, p1, 2

sign®(y) = popupe  as Yy € Ay, () \ {b}. (9)

Since the function @ is strictly monotonic on the interval Ay, (b) and the range of its

value is the interval
le, Z] if po >0,

Azle) = { 1Z,¢] if o <0,

where ¢ = ®(b), then for it there is a continuously differentiable inverse function ®~1 :
Agz(c) = Ay, (b), for which }1_{% ! =Y.

It is easy to check that the function ®(y) is slowly varying at y — Y. Consequently, the
inverse to it ®1(2) at 2 — Z is a rapidly varying function. The question remains what the
function L (®7!(z)) will be like at 2 — Z. In some cases (for example, for functions with a
finite limit at y — Y{, or for functions of the form |In|y||**, In*2|In|y||, k1 € R\ {1}, ky € R,
exp (|ln|y||k3), 0 < k3 < 1) it is regularly varying at y — Y.

In addition, by virtue of the choice pg, i1, po we have sign®(y) = popipz at y € Ay, (b) \

{b}-
1 SECTION WITH RESULTS

Theorem. Let \g € R\ {1} and let the function Lo (®7Y(2)) is regular varying of
~v-th order as z — Z, moreover, let the order oy of the function oy regularly varying as
y — Yy satisfy the condition oo + o1 = 1. Besides for \g = 0 exists (finite or equal to £00)

liTm W. Then, for the existence of P, (Yo, Y1, Ao)- solutions of the differential equation
tTw

(1), it is necessary and, if the condition

(00 + o) ((00 + Ao)(L +7) =) #0 (10)
is satisfied, sufficient that, along with inequality (2), (5) the conditions

L @)

— li Mol% Ao = 1|70 (t) = Z 11
im 1) B, tlTTLIU1M0M1| o7 Ao — 1|7 Lo (t) ; (11)

. — o o Ao|7
lisn 1y ()7, (8) Lo (€~ (ops Mol Ao — L™ Iy(1))) = — 2

ttw _’)\0 o 1|1+00’ (12)

and the sign conditions

palo(t) >0, aopi(No — 1)m,(t) >0 for t€la,w] (13)
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hold. Moreover, each solution of this kind admits the asymptotic representations

D(y(t)) = pora| Ao [Ao = 1|7 Lo(2)[L + o(1)], (14)

y'(t)
y(t)
and if B(oo + Xo) (Ao — 1) < 0 such solutions form a one-parameter family if
(00 + Xo) ((00 + Xo) (L + ) — ) ha(t) > 0 for t €]a,w] and two-parameter family if
(00 + o) ((00 + Xo) (L +7) — ) ha(t) <O fort €]a,w].

— — o Bl o — 17 L (1) Lo (© (piogus | Aol ™ Ao — 117 1o(1)))) as ¢+ w, (15)

Proof.  Necessity. Let \o € R\ {0,1} and u y : [to, w[— Ay, be an arbitrary P,(Yy, Y1, Ao)—
solution of equation(1). Then there is a number ¢; € [to,w[ such that y® () # 0 (k =0, 1,2),
signy® () = pu (k = 0,1) at t € [t;,w]. In addition, the definition of the P, (Y, Y1, Ao)—

solution for Ay € R\ {0,1} (for Ay = 0 B in the case of existence ltiTm y”(;,)g?(t)) immediately

implies the fulfillment of limit equalities (4), using which, taking into account oy + oy = 1,
from equation (1) we have

Ao 7
"(t) = Hlyt)| | ———| L t)|1 1 t .

0 = O | Lo+ o] as e

From the last equality we have
y”(t) )\0 o1 B

— = apo | ———| pt)|m, ()71 + o(1 as tTw, 16
whence, taking into account the second of relations (4), we obtain the equality

—y’(t) = tot1| Aol Ao — 1|7°p(t) |7, (8)|7°[1 + o(1)] as ¢ 7T w. (17)

y(t)Lo(y(t))

Integrating the last relation on a segment [Ag,t|, we obtain (14). In addition, by virtue of
(8), (9) from (14) implies the first of the sign conditions (13) and the second of the limit
equalities (11).

For Ay € R\ {1} it is also obvious in view of (4) that the second of the sign conditions
(13) is satisfied.

Given the equality

0\ L WOP W0 L))
(y(t) ) 0 (1 )

Loo(y(t)) Loo(y(1)) y'(Oyt) v (Oy(t)  Leo(y(t))

by virtue of the definition of a slowly varying function and the definition of a , P, (Y5, Y1, Ao)—

solution we have

Yo Ny ) o
(y(t) ) Y0 (1—=X) (1+0(1)) ttw,

Loo(y(t)) Loo(y(t))
from which in view of (16), (7) it follows
PO ouBPol™ o — 1 L)1+ o(1)] as ¢t w. (18)

y(t)Lo(y(t))
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Comparing relations (17) u (18), we obtain the first of conditions (11). Also from (18) by
virtue of (1) we have the condition

y'(t)mu(t) _ Bpt)|m.(t)|”
= — 1+o0(1)] as tTw,
yO - e-nn@ oW
which in the case A\g = 0 , due to the existence of the limit %, guarantees the
fulfillment of the asymptotic representations (4) for all A\g € R\ {1}. Further, we note that
condition (14) since the function Lo (®(z)) as z — Z is of a regularly varying order v, implies

that

Lo (1)) = Lo (@ (oMol o — 1 o(0) [L + (1] as ¢ 1
Due to the last equality, taking into account (18) we obtain (15), and also, multiplying both
sides of (18) by m,(t), taking into account(4), we get condition (12).

Sufficiency. Suppose, along with (2), (5), (11) - (13), condition (10) is satisfied. Let us
show that in this case the differential equation (1) has P, (Y0, Y1, Ao)- solutions admitting
representations (14), (15) and clarify the question of the number of such solutions.

Applying to the differential equation (1) the transformation

V) _ 501 (1) Lo (@ (CL))L +01(7)], ®(u(t) = CLy(E)[1 + va(r)],

y(t) (19)
7= BIn|m,()], C= popBlAol™ Ao — 1|7,
we obtain the system of differential equations
(0= Bha(r) (Z59L g1 ()| H (7, 02) 1+ 01|71+
+6hg1—(T>(1 +o)? = (1+v)(1+ 91(7)92(7))) )
1(7) (20)

= halr) (~ e - )+ w),

\

where

Lo (27 (CIo(t) (1 + v2))

() = M0, HG0), ) = 2 G

L(t)

g1(7(t)) = Cmy(t) 11 (t) Lo (71 (Co(t))),

ha(7 (1)) = —11(22?{‘3(75)7 ga(r(t) = = (Cngst();)L—é()(éq;;(tg?O(t))

Since the function 7(t) = S ln|m,(t)| is such that

7 : lag, w[— [0, +o0] (10 =B In|m,(a)]), 7(t) >0 as t € [ag,w] ltiTmT(t) = 400,

then by virtue of the first of conditions (11)
lim hy(7) = }1_{2 h(7(t)) = —1, TETOO ho(7) = lim h(7(t)) = 0,

T—+00 t—w

+oo B o RL(r) (21)
7{ |h2(7—)| dT B +OO7 TEIPOO hQ(T) - ’
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where 7 is any number from the interval |7, +o0.

In view of the second of conditions (11), (13) and (8), (9) there exists a number t; €]a,w]
such, that popi|Xo|7[Ao — 1]70Io(¢) (14 v9) € Ay for t € [t1,w[ u [vo] < 5. Consider system
(19) on the set |11, +oo[xR%, where 7, = BIn|m,(t1)], R2 = {(vi,v9) € R?: |5 < 1/2,i =
1,2}, on which the right—harid sides of the system are deéned and continuous.

Since the function Lo (®7'(2)) is regularly varying as z — Z of the order v, it admits
the representation Ly (®7!(z)) = |2|7L(z), where L is the slowly varying function as z — Z.
Therefore, according to (6)

Lo (27 (CIo(t) (1 4 v2)) = |CIo(t) (1 + v2)["L(CILo(t) (1 4 v2)) =

= [CIo(t)]"|(1 + v2)|"L(CIo(£))[1 + R(t,v2)] = Lo (@~ (CLo(t)) |(1 + v2)["[1 + R(Z, v)],

where

DO | —

ltiTm (t,v2) =0 uniformly over |vg| <
w

Therefore, taking into account (7) we have

1

H(rvg) = |+ 0P L4 ntw] g

= [(1 4+ v)["[1 + r2(t, v2)],

where functions r;(t,ve) (i = 1,2) are continuous on the set |11, +00[xR3 and such that
2

N | —

hrf ri(t,v9) =0 (i =1,2) uniformly over |vy| <
T—r+00

Obviously, that lim ®~1(C'Iy(t)) = Y, therefore, by virtue of (7), (11), (12)

tTw

| BN -
im gi(7) = — py—" img(7) = 0.

Now we rewrite system (20) in the form

v= p (fl(ﬂ V1, 0) + FER Y — gy + Vl(vl,vz)) ;
(22)

vy = ho(7T) (fa(T,v1,v2) — v1 + (1 + y)vg + Va(v1,09)) ,

where

h? fi(r,v1,v09) =0 (i =1,2) uniformly over (vy,vs)R3,
T—r+00 2

a‘/’i(vla UQ)

1im
|v1|+]v2|—0 a'Uj

=0 (i,j=1,2),

whence it follows that ~ lim “0%2) — g (j =1, 2). In addition, conditions (21) are sat-
|v1|+|v2|—0 [v1|+|vz]

isfied. Thus, for system (20) the conditions of Theorem 2.6 from [4] are satisfied. Therefore,
this system has at least one solution (vy,vs) : [11, +oo[— R2 (12 > 71), tending to zero
2

as T — 400. Due to transformation (20) each such solution corresponds to a solution y of
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differential equation (1), admitting asymptotic representations (14), (15). It is easy to check
that the indicated solution is a P, (Yp, Y1, \g)- solution of equation (1).

Also, based on Theorem 2.6 in [4], it is easy to find the number of families of solutions
to system (20). By virtue of (10), for Ay € R\ {1}, the determinant

go+Xo -
Ao—1 Ao—1
—1 v+1

gotAa =%

is nonzero. Therefore, for B%_Alo < 0 and hg(T)"/\OO;_’\IO ’\01*1 AO:l < 0 system (20) has
- Y

a two-parameter family of solutions tending to zero as 7 — —+oo. System (20) has a one-

parameter family of solutions vanishing at infinity either for g % < 0 and

gotde =7 oot _—¥

ho(7) B2 | 2 ;0:1 >0 or B > 0 and hy(7) 20 | X! 30:1 <o.

The theorem is completely proved. O

In what follows, equation (1) should be studied at oq + 07 = 1 for values \g = 1,
Ao = *oo. It is also possible to extend the results of this work to an equation of the form
y" = aop(t)po(y)e1(y'), ao € {—1,1}, p : a,w[—>]0, +-00[ where, p : [a, w[—]0, +o0] is a
continuous function @; : Ay, —]0, +00[ (i = 0, 1) and are a continuous regularly varying as

z —Y; (1 =0,1) functions of o; (i =0, 1) orders.
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Hast nudepeniiianbHOro piBHAHHS npyroro nopsaky suny y” = aop(t)eo(y)|y’'|7t, ne ap €
{-1,1},p : [a,w[—>]0, +oc[-HenepepBHa byHKIisg, @o @ Ay, —]0,+00[ -HemepepBHa mpa-
BIJIBHO 3MiHHA IpH Yy — Y( GYHKIS DOPSAKy 0, npudaoMy oo + o1 = 1, Ay,- oqHOCTOpOHHI
okin Y;, Y; € {0,£o0} (i € {0,1}) posrisiHyro nuraHHs icHyBaHHSI PO3B’A3KiB, JJis AKHUX
limy () =Y (i € {0,1}).

Bamxyuenns y 80-x pp. XX cr. B mpargx V.Mari¢, M. Tomi¢ npu BUBYEHH] JBOUIEHHUX
nudepeHIianbHIX PiBHAHD JAPYTOr0 MOPAAKY 3 MPABUILHO 3MIHHAMHU B HYJi HemiHIfTHOCTIMUI
y" = p(t)p(y) mano 3mory BkazaTm NByOiUHI OIIHKEM PO3B’A3KIB, IO NPAMYIOTH 10 HYJs IIDH
t — +oo. Iloganbire BUBYaHHS ABOUIEHHUX Mu(EPEHIIAIHHUX PIBHAHBb IPYTOr0 MOPSIKY 3
MPABUIBHO 3MIHHUMY HEJTIHIHHOCTSMU, TPABA YaCTUHA TKUX 30epira€ B OKOJIi OCOOIMBii TOYKHN
(sk ckinuenniii, Tak u piBHil +00) 3HAK, npoBeseHO Ha Builienomy B.M.€pryxoBum Kiaci
P, (M\o)— po3B’si3KiB, 110 BUHUKAE IPU JOCJILKEHH] y3arajbHeHux piBHsaHuax Emzaena - @ay-
Jepa n—ro nopsjaky. Cepejll MHOXKUHEM PO3B’S3KiB BUBYAEMOrO PIBHSSHS BIJIOKPEMJIIOEMO J10-
cratHbO MUpoKWil kiac T. 3. P, (Y, Y1, Ag)- po3w’si3kie (y3aranbuenusi P, (A\g)— po3B’si3KiB).
Muoxuna ycix P, (Yp, Y1, \o)— po3B’43KiB 3a CBOIMH ACUMITOTHYHMMHU BJIACTUBOCTAMU DPO3-
MaAEThCs Ha 4 HEMePTHHAIYUXCS KJIACiB PO3B’S3KiB, IO BiAMOBIIAIOTH HACTYITHUM 3HAYUEH-
HiM Ag: A9 € R\ {0,1}— neocobmusuii Bunamok, Ao = 0, \g = 1, A\g = £oo— ocobuusi
BUMAAKU. Takoro Tuiy po3B’si3ku paHinie OyJ0 yBeJeHO MPW BUBYEHHI JBOYUIEHHOTO DiBHSI-
us ¥’ = aop(t)o(y)e1(y'), ne ap € {—1,1}, p : [a,w][—>]0, +oo[-HenepepBHa byHKIIisA,
@i+ Ay, —]0,+o00[ (i = 0,1) —nenepepsui npaBuiabHO 3MiHHI pu z — Y; (i = 0, 1) dyskmii
nopszakis o; (i = 0,1), upuuomy og + o1 # 1. Bunanok o¢ + o1 = 1 Bianosigae t.3. nouy-
niHifianM gudepeHiaTbHUM PIBHAHHSAM, SIKAM MPUTAMAHHI BJIACTUBOCTI SK JIHIHHUX, TakK U
|*=y'|*sgn y mpu me-
AKX 0OMeXKeHHsX Ha BYHKIio p (30Kpema, Ko GyHKINA p : [a, w[—]0, +-00[ 36epirae 3uak,

HemiHifHNX qudepennianbaux pisHsHb. Tak, aus pisusauuas y’ = p(t)|y

A . -3
JIOKAJIbHO abCOMIOTHO HemepepsHa i [ pF=7 (t) dt = +o0, thm P (t)p2=>(t) = lp (Jlo| < +00),
—w

B.M.€BryxoBum 3HailIEHO aCI/IMHTO;I/I‘{Hi 300parkeHHst P ¢ — W YCiX THUIB NPABUILHIX
PO3B’A3KiB 1bOro piBHAHHA. TyT [/ PiBHAHHS, II0 BUBYAEMO, 3HANIEHO HEOOXiTHI, a TAKOXK
nocrarai ymosu icaysanus P, (Yy, Y1, Ag)- O3B a3KiB, BCTAHOBIEHO aCUMITOTUYHI 300DazKeHHST
TaKUX PO3B’SA3KIB Ta X MOXIIHUX MEPIIOrO MOPSIKY, BKA3aHO KiJbKICTh MapaMeTPpUIHuX Cimeit
TaKUX PO3B’A3KiB.



