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ABSTRACT SECOND ORDER DIFFERENTIAL EQUATIONS WITH TWO
SMALL PARAMETERS AND LIPSCHITZIAN NONLINEARITIES

In a real Hilbert space H we consider the following singularly perturbed Cauchy problem
euls(t) + 0uls(t) + Aues(t) + B(ues(t)) = f(t), t € (0,T), ues(0) = ug, uls(0) = ug, where
ug,u1 € H, f:[0,T] — H, g, § are two small parameters, A is a linear self-adjoint operator and
B is a nonlinear lipschitzian operator. We study the behavior of solutions u.s in two different
cases: ¢ > 0and § > §y > 0; ¢ = 0 and § — 0, relative to solution to the corresponding
unperturbed problem.
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1 INTRODUCTION

Let H be a real Hilbert space endowed with the scalar product (-,-) and the norm | - |.
Let A: D(A) C H — H, be a linear self-adjoint operator and B is nonlinear lipschitzian
opeartor. Consider the following Cauchy problem:

{ euly(t) + uls(t) + Aucs(t) + B(ues(t)) = f(t), t€(0,T), (Puy)

uss(0) = up,  uls(0) = uy,

where ug, uy, f : [0,7] — H and €,0 are two small parameters. We investigate the behavior
of solutions u.s to the problem (P.s) in two different cases:
(1) e = 0 and § > &y > 0, relative to the solutions to the following unperturbed system:

oU5(t) + Als(t) + B(ls(t)) = f(t), te€(0,T),

(£s)
l5(0) = wo;
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(17) € — 0 and 0 — 0, relative to the solutions to the following unperturbed system:
Av(t) + B(v(t)) = f(t), t€[0,T), (Fo)

The problem (P.s) is the abstract model of singularly perturbed problems of hyperbolic-
parabolic type in the case (i) and of the hyperbolic-parabolic-elliptic type in the case (ii).
Such kind of problems arise in various fields of science and technology, for example, in the
mathematical modeling of elasto-plasticity phenomena.

In many works, under various restrictions singularly perturbed Cauchy problems for
linear or nonlinear differential equations of second order of type (F.s) were studied. Without
pretending to a complete analysis, we will mention the works [2, 3, 4, 5, 8, 9], in which the
reader can find an extensive bibliography.

In most of the mentioned cases the results were obtained by using the theory of semigroups
of linear operators. Different to other methods, our approach is based on two key points.
The first one is the relationship between solutions to the Cauchy problem for the abstract
linear second order differential equation and the corresponding problem for the first order
equation. The second key point are a priori estimates of solutions, which are uniform with
respect to the small parameter. Moreover, we study the problem (FP.s) for a larger class of
functions, i. e. f € WbP(0,T; H). Also we obtain the convergence rate, as ¢ — 0, which
depends on p.

The organization of this paper is as follows. At the beginning of the next section we
present the theorems of existence and uniqueness of solutions to the problems (P.s), (Ps)
and some a prior: estimates of these solutions. Then we present a relationship between
solutions to the problem for the abstract linear second order differential equation and the
corresponding solution to the problem for the first order equation. In the section 3 we
present the main result of the paper. More precisely, we prove the convergence estimates of
the difference of solutions to the problems (P.s) and (Ps) for e — 0, 6 > dy > 0 and also to
the problems (P.s) and (F) for e — 0, 6 — 0.

In what follows we will need some notations. Let £ € N*, 1 < p < 400, (a,b) C
(—00, +00) and X be a Banach space. By W*P(a, b; X) denote the Banach space of vectorial
distributions u € D'(a, b; X), u¥) € LP(a,b; X), 7 =0,1,..., k, endowed with the norm

1
(Zho 4 ) for p € [1,0),

HUHW"OOabX):Orgaé’%cuu])HLooabx) for p= 0.

HUHW’W(a,b;X) =

If X is a Hilbert space, then W*2(a,b; X) is also a Hilbert space with the scalar product

(U, ) gk (a,pix) = Z/ j)(t))th.

The framework of our paper will be determined by the following conditions:

(HA) The operator A : D(A) C H — H s linear, self-adjoint and positive definite,
i.e. there exists w > 0 such that (Au,u) > wl|u|?, Yu € D(A);

(HB) The operator B : D(B) C H — H is lipschitzian, i. e. D(A) C D(B) and there
exists L > 0 such that |B(u) — B(v)| < L|u—wv|, Vu,v € D(B).
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2 PRELIMINARIES

In this section we remind results about the solvability of problems (FP.s), (Ps) and (F).
Since these results do not depend on the positive values of the parameters € and 3, we will
put € = = 1. In this case

the problem (P.5) takes the form:

u(t) + o/ (t) + Au(t) + B(u(t)) = f(t), te(0,T), )
u(0) =up €V, u'(0)=u €H,
the problem (Pj) takes the form:
U(t) + Al(t) + B(I(t)) = f(t), t€(0,T), o)
l(O) = 1Ug € ‘/,
and the problem (Fp) takes the form:
Av+ B(v) = f(t), te (0,T). (3)

The following theorems were inspired by the work [1] and are completely proved in the work
[6].

Theorem 1. Let T' > 0. Assume that conditions (HA) and (HB) are fulfilled. Ifuy € D(A),
u; € D(AY?) and f € WY(0,T; H), then there exists a unique function u € W2*>(0,T; H),
AV € L*(0,T; H) and Au € L>(0,T; H) such that u satisfies the equation (1) in the
sence of distributions on (0,T) and the initial conditions from (1). This function is called
the strong solution to the problem (1).

Theorem 2. Let T' > 0. Assume that conditions (HA) and (HB) are fulfilled. If up € H
and f € L*(0,T; H), then there exists a unique function | € C([0,T]; H), AY?l € L*(0,T; H)
such that | satisfies the equation (2) in the sence of distributions on (0,7") and the initial
condition from (2). This function is called the strong solution to the problem (2).

Theorem 3. Let T' > 0 and p > 1. Suppose that conditions (HA) and (HB) are fulfilled
and w > L. If f € W'(0,T; H), then the equation Av + B(v) = f has a unique strong
solution v € W'?(0,T; H) and

1

[|vllwo.r:m) < 7 I fllwrrrm, @ =w— L. (4)
0

For the further consideration we rewrite the problems (P.s) and (FPj) in the form:

pU.(s) +U(s) + AUL(s) + B(Uu(s)) = F(s), s€(0,T/0), P.)
U, (0) = ug,  U(0) = bu, 8

and
L'(s) + AL(s) + B(L(s)) = F(s), se(0,T/5), .

E(O) = U,
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where U, (s) = uss(0 s), L(s) = 15(sd), F(s) = f(sd) and p = £/
In what follows we will prove some a priori estimates for solutions to the problems (P,)
and (730)

Lemma 1. Suppose that ¢qo = w — L > 0 and conditions (HA) and (HB) are fulfilled.
If ug € D(A), wy € D(AY?), F € W"(0,00; H) then for any strong solution U, to the
problem (P,,) the following estimate

||U;L||C([0,s}:H) < C(qO) MO(S)u sz 07 o€ (07 1]7 ne (Ouu()]a (5)

~L
QLQ and Mo(s) = [Auo| + [A2ui| + |BO)| + |E(0)] + || F|w1 (0,05

Proof. Let U,(s) = U,(s + h) — U,(s) and denote by
E(Upun, s) = [Uu(s } + | Uun(s) + 20U, \ + 411 (AU (5), Unn(s)) +

s

+4u/ ‘ULh(T)‘2dT+4/ (AU, (1), Uy(7)) dr.

0

holds with py =

If U, is a strong solution to the problem (P,), then

d%E(Uuh, s) =4 (Fh(s) - (B(U“(s)))h, Uun(s) + 24 U;h(s)), s> 0. (6)
Since
<B(UM(3))>h, Un(s) +2 4 U;h<s)) ‘ < p|UL)] + Lw™ (1 + L) (AU(s), Upn(s)) <

< U (s) + 5

(AUp,h( ) U,u,h(s))a M € (0,,&0]
then integrating (6) on (0, s), we get

s

’U,Lh(s)‘z + |Uun(s) + 20U ’ +2qw™ / (AU (7), U, (7)) dr <

0

s

< E(Uu,0) + / | Fu (7| U (7) + 2 1 ’h(T)}dT, s>0, for pue(0,pul
0
Applying Gronwall-Bellman’s Lemma to the last inequality, we obtain

S

Uals)| < € [P Un0)+ [ 1B dr]. 520, we Ol 7)

Under the conditions of Lemma, due to the Theorem 1, we have that the following
relations

W= U (s)| = (UL ()], h—0, in C([0,T]),

W Uun(s) +2ph UL = |UL(s) +2uU)(s)], h]0, ae se(0,7),

|ht AY2 (U, (s))’2 |A1/2(U’ (s))’2, hl0, ae s€(0,7),

h=2E(Uyn, 0) = [du|? + [2(F(0) — Aug — B(ug)) — dus |* + 4p 82| AYV2u, |2, b L0,
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hold. Taking into account the relations (8), we divide (7) by h and then pass to the limit in
the obtained inequality, to get the estimate (5).

To establish the relationship between solutions to the problems (P,) and (Pp) in the
linear case we will define the kernel of transformation realizing this relationship.

For > 0 denote by

1
K(t,7,n) = N (Kl(t,T,/L) + 3Ks(t, 7, 1) — 2K5(t, T, ,u)), Y >0,
where
3t — 271 2t — T 3t + 67 2047
Kt 7 0) = exp { (G ). Kottmm =exp {ZL2T (500,
(170 = exp { = 2 s ) Kt =ew { = A(Mﬂ

t+7

Ks(t, 7, 1) = exp{ }/\(2\/_> A(s) = /:o e dn.

In the following lemma we present some properties of kernel K (¢, 7, 1), used in the proof of
the following results.

Lemma 2. |7] The function K (t, 1, p) is solution to the problem

Kt(taTv :u) = IUKTT(taTa :u) - KT(t7T7 ,LL), vt > 07 VT > 07
K- (t,0,p) — K(t,0,u) =0, Vt>0

1 T
_ — —_— >
K(0,7, 1) 2Iuexp{ 2u}, V1 >0,
from C([0,00) x [0,00)) N C?((0,00) X (0,00)) and possesses the following properties:

(i) K(t,7,u) >0, Vt>0, ¥Yr>0, and / K(t,r,p)dr=1, Vt>0;
0

(ii) Let q € [0,1]. Then / K(t,m,p) |t —7|%dr < C (p+ \/ut)q, Yu >0, Vt>O0;
(111) Let p € (1,00] and f: [0, 00) = H, f(t) € WP(0,00; H). Then
p—1
/ K(t, 7, ) (T)dT) < CW) f Neroomy (1 +Vit) =, Yu>0, Vt>0;

Lemma 3. [7| Let B = 0. Assume that A : D(A) C H — H is a linear, self-adjoint,
positive definite operator and F' € L*(0,00; H). If U, is a strong solution to the problem
(P,) with U, € W*>(0,00; H), AU, € L*>(0,00; H), then the function W, defined by

W,(s) = / K (s, 7, ) U,(T) dr is the strong solution to the problem
0

{Wé(s) + AW, (s) = Fo(s, i), ae. s>0, in H,
WN(O) = QOM,

where

Fo(s,p) = T[2exp{38}/\< 2) —x\(%\/gﬂ u1+/000 K(s,7,p) F(r)dr,

QOM:/ e " U,(2uT)dr.
0
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3 BEHAVIOUR OF SOLUTIONS TO THE PROBLEM (P.s)

In this section we will prove the main result concerning the behavior of the solutions to
the problem (P.s), in both cases: ¢ — 0 and 6 > dy > 0; ¢ — 0 and § — 0, relative to
solution to the corresponding unperturbed problem.

Theorem 4. Let T > 0 and p € (1, 00]. Assume that qo = w — L > 0 and conditions (HA)
and (HB) are fulfilled. If ug € D(A), AY?u; € H and f € W'P(0,T; H), then there exists
constant C' = C(T,p,w, L) > 0 such that

\[tes — lsl| ooy < CMeP™2, §€(0,1], &€ (0,p6%, (9)

where u.s and ls are strong solutions to the problems (P.s) and (Pj), respectively, pg is
defined in (5), M = |Aug| + |A1/2u1‘ + |BO)| + || fllwr10,7:m) and

12 it f=o,
5_{(1?—1)/(229) if f#0. (10)

Proof. During this proof we will agree to denote by C' all constants C(T, p,w, L). For
any f € WHP(0,T; H) let us define the function f : [0,00) — H as follows:

ft), 0<t<T;

f(t) = QTT_tf(TL T <t <2T;

0, t>2T.

Then f(t) € WY(0,T; H) and, since WP(0,T; H) — C([0,T]; H) continuously, we get

1

1l < C0) max {T, = b 1 llwrooirsm. (11)

If we denote by U, the unique strong solution to the problem (P,), defined on (0, o)
instead of (0,5) with S =T/ and finstead of f, then, from Theorem 1 and Lemma, 1, it
follows that U, € W*(0,00; H), AY2U, € L*(0,00; H), AU, € L*(0, 00; H).

Moreover, the estimate (11) implies

|l lwir @00y < C0,T) 677 || fllwroozmy, p € (1,00), V6 € (0,1]. (12)

Due to the estimates (12) and Lemma 1, we obtain the following estimates
r7/
10

eqoun SCOM, 520, 6€(0,1], € (0, pl. (13)

holds with M from(9), po from (5) and

0 if f=0,
_ 14
K {—1/p if f+#0. 14
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By Lemma 3, the function W, defined by W, ( / K(s,1,p) ( )dr, is a strong

solution to the problem

{W’(8)+AWu(3)—FO(57N)= ae s>0, m H, (15)

W, (0) = ¢,

where

F(s,u)—(Sfo(s,uul—l—/ K(s,7,p) F dT—/ K(s,7, ) (U())d

fo(s, 1) = \/% [26Xp {i;}/\( 2) — /\(% 2)}, Oy = /000 e U, (2uT) dr. (16)

Denote by R(s, ) = L(s) — W,(s), where L is the strong solution to the problem (Py) with
F instead of F, T' = oo and W, is the strong solution to the problem (15). Then, due to
Theorem 2, R(-, 1) € W.;°(0, 00; H) and R is a strong solution in H to the problem

loc

R'(s,pu) + AR(s, ) + B(E(s)) — B(Wyu(s)) = F(s,p), a.e. s>0, (a7)
R(07 M) = Uo — WM<O)’
where -
Floun) = Fo) = [ Kls.r) F(r)dr =6 fls.p)
+B(Uu(s)) — B(Wu(s)) + /0 T Ksm ) [B(ﬁu(f)) - B(ﬁ#(s))} dr. (18)

In what follows we need the following two Lemmas, which will be proved after the proof
of the Theorem 4.

Lemma 4. Assume the conditions of Theorem 4 are fulfilled. Then the following estimates:
are valid with M from (9), ~ from (14) and p, from (5).

Lemma 5. Assume the conditions of Theorem 4 are fulfilled. Then for the strong solution
to the problem (17) the following estimate

HRHC([O,SLH) SCMuﬁ(;W <1+\/§) 57 5207 66 (071]7 /JJG (Onu()]u (20)
is true with M from(9), § and ~ from(14) and pg from (5).

Finally, from these lemmas we deduce that
10, = Llleqo.san < 10u = Walloqo.sya + 1 Rlleo.gm <

SC’Muﬁ57(l+s3/2), s>0, 6€(0,1], pue(0,puol,
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Since U,(s) = U,(s), L(s) = L(s), for all s € [0,T/5], Uu(s) = us(ds) and L(s) = I5(6 s),
then we have

[ucs(t) = Us()] = [uss(3s) — Us(ds)| = |Un(s) — L(s)| <

<CMpPO32 tel0,T), 6€(0,1], ue(0,m) (21)

Concequently, from (21) follows the estimate (9). Theorem 4 is proved. [
Proof of Lemma 4. Using properties (i) and (ii) from Lemma 2 and the estimate
(13), we get

T(5) — Wis)] < / " K(simp) |T(s) — B ()] dr <

< [ K| [ 10U de]ar < cmar [T KGsmple—sldr <
0 T 0

<SCMp?87(1++s), s>0, 6€(0,1], pe(0,pu)

Thus, Lemma 4 is proved. [
Proof of Lemma 5. Multiplying scalarly in H the equation (17) by R and then
integrating on (0, s) the obtained equality, we deduce

|R(8,u)\2+2q()/0 |R(&, )| dE < |R(0>M)|2+2/0 [F(& ) [R(E, )| dE, Vs =0,

where F (&, ) is defined by (18). Applying Gronwall-Bellman’s Lemma to the last inequality,
we have that

IR(s, )] < |R(0, )| + / IR W) e, Vs > 0. (22)

In what follows, we will estimate the right side of (22). Using (13), we get

00 5 ) 2pr
|R(0, )| g/o e Uu(zm)—uo‘mg/() e—T/O \UL(&)| dé dr <

o0

SCMué”’/Te_TdT:CMuW, 5 €(0,1], e (0,pu0] (23)
0

Let us estimate |F(, u)|. Using the property (iii) from Lemma 2 and (12), we have
)= [ KB dr] < C I s (e VD7 <
0

<O o (6 (n+vEs) """, s>0, 6€(0,1, p>0, (24)
Since 65)\(\/5) < C, V& >0, then the following estimates

/oseXp{%}A(\/%dfgCufome_mdfé0#: 520, u>0,
/USA(%\/%)dgsu/OMAG\@deC“’ = honet



ABSTRACT SECOND ORDER DIFFERENTIAL EQUATIONS... 37

hold. Consequently

)(5/ fo(f,u)uldf‘gCéMul], s>0, >0, 6>0. (25)
0

Using the estimates (19), we get the following estimates

|B(U(s)) = BW,(s))| < L|Ua(s) = Wu(s)| <
SCMp?67(1++s) s>0, 6€(0,1], pe(0,pul, (26)

/OOO K(s,T, 1) ‘B(ﬁM(T)) — B(ﬁu(s))‘ dr <

SOMp?7 (A ++s) >0, 6€(0,1], pe€(0,u (27)
Using (24), (25), (26) and (27), from (18) we obtain

| F(r, )| SCM PP (1++/s), s>0,6€ (0,1, pe(0,p.

Consequently,
/ [F(rp)]dr <CM @ s (1++5), 520, 6€(0,1), pe (0,m]. (28
0

From (22), using (23) and (28) we get the estimate (20). Lemma 5 is proved. [
Corollary 1. If the conditions of Theorem 4 are fulfilled and § > dy > 0, then
\|ues — Usl|cqorm < C MEP,
with C = C(T,p,w, L,d9) > 0, M from (9) and § from (10).
In what follows we will investigate the behavior of solutions to the problem (Ps) as § — 0.

Theorem 5. Let T' > 0 and p € (1, 00|. Assume that gy = w — L > 0 and conditions (HA)
and (HB) are fulfilled. If ug € D(A) and f € W0, T; H), then there exists constant
C=C(T,p,w,L) > 0 such that

15(t) = ()] < hoe™ @+ C 6P| fllwisorm, t€(0,T), 6€(0,1),  (29)

where ls and v are strong solutions to the problems (Ps) and (F), respectively, and
ho = |ug — (A + B)~ f(0)].

Proof. Denote by Ri(t,0) = l5(t) — v(t). Then R;(t,0) is a strong solution to the
problem

{5 R|(t,8) + ARy (t,8) = —60/(t) — B(5(t)) + B(v(t)), € (0,T), (50)

R1(0,6) =up — (A+ B)~1£(0),
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Multiplying equation from (30) scalarly in H by R;, we obtain the equality
d
(5 E|R1(t, (5)’2 + 2 (ARl(t, (5), Rl(t, (5)) -

=20 (V'(t), Ri(t,0)) + 2 (B(v(t)) — B(l5(t)), Ri(t,6)), te€(0,T).
Then, using conditions (HA), (HB) and w — L > 0 and, we get
d
) E|Rl(t,5)\2 +2q0 |Ri(t,0)[* < 26 |0/ (1) |Ru(t,6)], t€(0,T),
or p
TR 0) e P < 2o/ (1) e |Ru(t,8) e, t € (0,T).

Integrating this inequality on (0,t), we obtain
Ra(t,0) e 9 < 0,0 +2 [ () 7R, 8) 0L, 1€ [0,T)
0
Applying Gronwall-Bellman’s Lemma to the last inequality and using (4), we get the estimate
|R1(t,6)| < |R1(0,68)| e~ + /t e~ 0 =0 (1) dr <
0

) >(p—1)/;n

< IR0,0)] e 4 ()" W lasoran <
0

) )(p—l)/p

<IR©.8)| e w0 (2 1 llwiror, te€[0.T)
0

from which follows (29). Theorem 5 is proved. [
Remark 1. Under the conditions of Theorem 5 it follows that for every to > 0 and T > t,
s(t) = v(t) in C([to,T);H) as ¢ — 0.

If the concordance condition f(0) = Aug+ B(uo) is satisfied, then l5(t) — v(t) in C([0,T]; H),
as 0 — 0.

From Theorems 4 and 5 immediately follows the following theorem.

Theorem 6. Let T' > 0 and p € (1, 00]. Assume that ¢y = w— L > 0 and conditions (HA),
(HB) are fulfilled. If ug € D(A), uw; € D(AY?) and f € W'?(0,T; H), then there exists
constant C' = C(T,p,w, L) > 0 such that

uss — vl|oqorsm < hoe @ + CMO(e,8), € (0,1, e € (0, uod?], (31)

where u.s and v are strong solutions to the problems (P.s) and (F), respectively, M is from
(9), ho = |ug — (A+ B)~1f(0)|, po is from (5) and

{61/2 5752, if f=0,

§e=D/p 4 c=1/p) §-5/2 if £,

Remark 2. Under the conditions of Theorem 6 it follows that for every to > 0 and T > tg,
uss(t) = v(t) in C([to, T); H) as ©O(e,pu) — 0.

If the concordance condition f(0) = Aug + B(ug) is satisfied, then
uss(t) = v(t) in C([0,T]; H), as © — 0.



[1]

2]

3]

[4]

[5]

[6]

7]

8]

19]

ABSTRACT SECOND ORDER DIFFERENTIAL EQUATIONS... 39

REFERENCES
V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer-Verlag, New
York, 2010.

K. J. Engel, On singular perturbations of second order Cauchy problems, Pacific J. Math., 152(1992),
no. 1, 79-91.

H. O. Fattorini, The hyperbolic singular perturbation problem: an operator approach, J. Differential
Equations, 70(1987), no. 1, 1-41.

M. Ghisi and M. Gobbino Global-in-time uniform convergence for linear M.hyperbolic-parabolic singular
perturbations, Acta Math. Sinica (English Series), 22(2006), no. 4, 1161-1170.

B. Najman, Time singular limit of semilinear wave equations with damping, J. Math. Anal. Appl., 174,
(1993), 95-117.

A. Perjan, Singularly perturbed boundary value problems for evolution differential equations, D.Sc. thesis,
Moldova State University, 2008.

A. Perjan, Linear singular perturbations of hyperbolic-parabolic type, Bul. Acad. Stiinte Repub. Mold.
Mat., 42(2003), no. 2, 95-112.

A. Perjan and G. Rusu, Convergence estimates for abstract second-order singularly perturbed Cauchy
problems with Lipschitz nonlinearities, Asymptot. Anal. 97(2016), no. 3-4, 337-349.

A. Perjan and G. Rusu, Convergence estimates for abstract second order differential equations with
two small parameters and monotone nonlinearities, Topol. Methods Nonlinear Anal., 54(2019), no. 2B,
1093-1110.

Received 29.10.2020

Tlepxkan A., Pycy I'. A6emparxmmi dugepenyianvii pieuanms 0py2020 nopaoky 3 060Ma MAGAUMU
NAPAMEMPAMU § AINWILEBUMY HeainiTnocmamy // BykoBuHchbKuil MareM. xypHaia — 2020. —
T.8, Nel. — C. 29-40.

VY piiicHomy TisnbOepToBOMY mpocTopi H pO3IJISHYTO TaKy CHHIYJISAPHO 30ypeny 3amady Ko-
i

{ g0+ ) At + Blas) = SO £€ 0.7 P

Ues(0) = up,  uls(0) = u,
ne ug,u; € H, f : [0,T] - H u &,6 - maJi napamerpu. JJoC/iI2KEHO IOBEJIHKY PO3B’A3KIB U
sagaun (P.s) B y IBOX BUIIAIKAX:
(i) e = 0u d > dp > 0, BiuHOCHO PO3B’s13KiB TaKOl He30ypeHol 3a1aui:

{&g(t) + Als(t) + B(I5(t)) = f(t), te(0,T), P
15(0) = uop;
(ii) e = 0 u § — 0, BigHocHO PO3B’si3KiB HE30YpeEHOI 3a/a4i:

Av(t) + B(v(t)) = f(t), tel0,T), (Po)

Bagaua (P.s) € abCTPAKTHOIO MOJIEIIIIO CUHTYJIAPHO 30ypeHux 3a1a4 rinep6osiiuno-napabosianoro]]
runy y Bunaiky (i) i rinepbosiuno-napabosiuno-esiinruanoro tuny y punaaky (ii). IToxi6ui 3a-
a4l BUHHKAIOTb y PI3HOMAHITHHX 00JTACTIX HAYKHU 1 TEXHIKM.
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Ha Bimminy Bim iHIMUX MeTOMiB, JAHWN METOM, TPYHTYETHCA HA JABOX KJIIOYOBUX MTO3UITIAX.
Ilo—mepre, omepxkano dopmysry, sika 3B’s3y€e po3B’s30K 3amadi Ko jist aOCTpakTHOrO Jii-
HIMHOrO audepeHItiaabHOr0 PiBHAHHS APYTOro MOPSAIKY 3 BIAIOBIIHUM PO3B’I3KOM 3a0ati s
piBHsHHSA nepiioro nopsiaky. [lo—apyre, orpumano it ampiopHi ominku po3B’a3KiB, SKi € piBHO-
MipHUMY 11040 MaJsioro napamerpa. Kpim roro, gociaigzxeno 3agauy (Pes) JJis LUPLIOrO KJacy
byuxmiit, a came f € W1P(0,T; H). Takox BCTaHOBJIEHO MBUIKICTH 36iKHOCTI PO3B’SA3KOM,
KA 3aJI€KUTH Big p, mpu € — 0 u § — 0.



