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REGULAR GROWTH OF FOURIER COEFFICIENTS OF THE
LOGARITHMIC DERIVATIVE OF ENTIRE FUNCTIONS OF IMPROVED
REGULAR GROWTH

We establish a criterion for the improved regular growth of entire functions of positive
order with zeros on a finite system of rays in terms of Fourier coefficients of their logarithmic
derivative.
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1 INTRODUCTION

Let f be an entire function, let f(0) = 1, let F\(2) := zf'(2)/f(2), z = re"?, let (\,) be the
sequence of its zeros, let Q = {|\,| : n € N}, let p be the least nonnegative integer number
for which >, |\ P70 < oo, let ng(r, f) == Y e *aed k€ 7 let n(r,; f) =

|/\n‘§7“

> 1, let @, be the coefficient of 2” in the exponential factor in the Hadamard-Borel
|>\'n‘§rv arg >\7L:¢
representation ([12, p. 24]) of an entire function f of order p € (0, +00), and let

1 2 ) )
u(rlog|fl) =5 [ e loglfre)dp, keZ, r>0,
0

1 2 ) ]
cp(r, F) = 2—/ e R F(re®)dp, ke€Z, r>0, r¢q,
T Jo
be a Fourier coefficients of the functions log | f(re’?)| and F(re*#), respectively. A set C' C C
is called a C°-set (|12, p. 90]) if it can be covered by a system of disks {z : |z — ax| < si},

k € N, satisfying > sp = o(r) as r — +oo. A set E C [0,+00) is called a Ep-set (|12,

lag|<r

p. 96]) if mes(E N [0,7]) = o(r) as r — +o0.
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An entire function f of order p € (0,+00) with the indicator h(y) is called an entire
function of completely reqular growth in the sense of Levin and Pfluger (|12, p. 139]) if there
exists a C-set such that

log |f(re"®)| = r*h(p) + o(r?), C° Fre’ — oo,

uniformly in ¢ € [0, 27). Numerous investigations have been devoted to the development of
the Levin-Pfluger theory of entire functions and generalization of its results to other classes
of functions (see [1, 3, 11, 12]). At present, many different conditions are known that are
necessary and sufficient for the completely regular growth of entire functions. In particular,
from [2, 4, 5] it follows a criterion for the completely regular growth of entire functions of
positive order in terms of Fourier coefficients of their logarithmic derivative.

Theorem A (|2, 4, 5|). For an entire function f of order p € (0,+00) to be a function of
completely reqular growth, it is necessary and sufficient that for all k € Z

ce(r, F) = dgr? + o(rf), r — +oo, r¢ Ey, deC.

In [7, 15] (see also [8, 9, 10, 14]), the notion of entire function of improved regular
growth was introduced, and a criterion for this regularity was obtained in terms of the
distribution of zeros under the condition that they are located on a finite system of rays. In
[6], this notion was generalized to subharmonic functions. Criterion for the improved regular
growth of entire functions of positive order with zeros on a finite system of rays in terms of
their Fourier coefficients was established in [8]. Asymptotic behavior of entire functions of
improved regular growth with zeros on a finite system of rays in the metric of LP[0, 27| was
described in [10].

An entire function f is called a function of improved reqular growth (|7, 8, 9, 10, 14, 15|)
if for certain p € (0,+o00) and p; € (0,p), and a 2m-periodic p-trigonometrically convex
function h(p) # —oo there exists a set U C C contained in the union of disks with finite
sum of radii and such that

log |f(2)] = |2°h(¢) + o(|2|™), U Fz=re? — occ.

If an entire function f is of improved regular growth, then it has the order p and indicator
h(e) ([15]).

The aim of the present paper is to establish an analog of Theorem A for the class of
entire functions of improved regular growth with zeros on a finite system of rays. Our main
result is the following theorem.

Theorem 1. An entire function f of order p € (0,+00) with zeros on a finite system of
rays {z : argz = ¢}, j € {1,...,m}, 0 < ¢y < ¢ < ... < ¢, < 27, is a function
of improved regular growth if and only if for certain py € (0,p) and ky € Z and each
k€ {ko,ko+1,...,ko+m — 1}, one has

ce(r, F) = dgr? +o(r”), r— 400, r¢Q, deC. (1)
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2 PRELIMINARIES

In the proof of Theorem 1, we use the following auxiliary statements.

Lemma 1 (|7, 15]). An entire function f of order p € (0,400) with zeros on a finite system
of rays {z rargz = ¢;}, j € {1,...,m}, 0 < ¢y <y < ... < ¥y, < 2m, is a function of
improved regular growth if and only if for a certain ps € (0, p) and each j € {1,...,m}

n(t,v5; f) = Ajt° +o(t?), t— 400, A;€]0,+00), (2)
and, in addition, for p € N and certain py € (0, p) and 6y € C, one has
Z NS =0 +o(r"7P), r— 4o0. (3)
0<|\n|<r
In this case,

h(y) = Z hi(p), p € (0,400) \N,

where h;(y) is the 2m-periodic function defined on the interval [1);,; + 2m) by the equality

hi(9) = sy cos plip — o — ). In the case p € N, we have

sinmp

Treos(pp +01) + Y hi(e), p=p,
h(p) = j=1

Qpcospp, p=p+1,
where 75 = |07 /p+Q,l, 0y = arg(ds/p+Q,) and h;(p) is the 2m-periodic function defined on
the interval [1);,1;+2m) by the equality hj(p) = Aj(m—p+1;) sin p(o—1);)— % cos p(p—1;).
Lemma 2 ([8]). Let f be an entire function of order p € (0,400) with zeros on a finite
system of rays {z argz = ;}, 7 € {1,....m}, 0 <)y < ¢y < ... <y, <27 If f is of
improved regular growth, then for a certain ps € (0, p) and each k € Z, one has

culrlog | f1) = et + o(r). = +oo, e
where )
. 1 " —ik P S —iki;
Cr =5 ; e " h(p) dp = 0% — 2 ;AJB , Aj €0, 400), (5)

if p is a noninteger number, and
(

P S —iky);
S D A k£ e =p,
P =
0 m
Tfef 1 P
R A e P¥; —
w={"3 a2 k== )
0, |k|7ép:p+1’
%, k=p=p+1,
\ 2

if p € N. Conversely, if for certain ps € (0, p) and ko € Z and each k € {ko, ko + 1,..., ko +
m — 1}, relation (4) with ¢, defined by (5) and (6) be true, then f is an entire function of
improved regular growth.
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3 PROOF OF THEOREM 1

Necessity. Let f be an entire function of improved regular growth of order p € (0, 4+00)
with zeros on a finite system of rays {z :argz =,}, j € {1,...,m}, 0 <y <y < ... <
Y < 2m. Then, by Lemma 1, for a certain p3 € (0,p) and each j € {1,...,m} holds (2)
and, according to Lemma 2, for a certain p; € (0,p) and each k € Z, one has (4) with ¢
defined by (5) and (6). In view of this, since

Ze_’k%n (r,v5; f), k€L,

J=1

and (|13, p. 43|)

ce(r, F) =ng(r, f) + k2/

0

" en(t, 1
c(t, ;)g|_f’) dt + ke (r,log|f|), k€Z, r¢Q,

then using (2), (4)—(6), for a certain py € (0, p) and each k € Z, we obtain
ck(r, F) = dgr? + o(r?), r— 400, r¢Q,

where
Aje~ i, (7)

x5
1M:

if p is a noninteger number, and (for p = p + 1 equality (2) holds with A; = 0, because
D e Al 77 < 4o00)

;

p S —iki;
HZAJ@ Wi |kl #p=p,
j=1

1 & i
do= 3 P7e "+ 5D AT k=p=p, (®)
=1
0, |kl#p=p+1,
(PQp, k=p=p+1,
if p € N. Thus, the relation (1) holds.
Sufficiency. Let equality (1) is true. Then, using (1) and the relation (|13, p. 43|)

"ep(t, F
ng(r, f) = cp(r, F) —k/ Ck(t—’)dt, ke,
0
for certain py € (0,p) and ko € Z and each k € {ko, ko + 1,..., ko +m — 1}, we obtain
n(r, f) = der?” — k/ (dit*" +o(t” 1)) dt + o(r7) = di(1 — k/p)r* +o(r™),  (9)
0

as 0 Z r — 400, where dj, are defined by (7) and (8). Further, without loss of generality,
we can assume that ko = 0. Then, by analogy with [8, p. 1957] (see also [11, p. 127]), for
ke{0,1,...,m— 1} we get

no(r, f) = n(r,¥u; f) +nlr,do; f) + -+ n(r, dm; f),
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ni(r, f) = e n(r, g1 ) + e n(r s f) + .4 € n(r s ),
Nn1(r, f) = e (e s f) + e o; f) + . e T (e s f).

This is a system of linear equations for the unknowns n(r,¢;; f), j € {1,...,m}. Its deter-
minant is the nonzero Vandermonde determinant:

1 1 . 1
e~ e~ W2 o e~ Wm 20,
6*2‘(;”:1)#)1 efi(;n';l)wz e*i(f.ﬂ;‘l)zﬁm
Therefore, the functions n(r,v;; f), j € {1,...,m}, can be represented as linear combinations

of the functions ng(r, f), k € {0,1,...,m — 1}. Solving this system by the Cramer rule and
using (9), we obtain

n(r, v f) = AP +o(r??), r— +oo, 1 ¢ Q,

for a certain p; € (0,p) and each j € {1,...,m}. Since the functions n(r,v;; f) are con-
tinuous on [0, +00) \ €2, we get relation (2). Let us now prove the equality (3). Since ([13,

p. 43]) )

ce(r, F) = 2keg(r,log | f]) + Z <%) , keN,

[An|<r

and for k = p = p we have (|7, p. 21])

1 1 ™\ A\
cp(r,log|f]) = §Qp7’p + 2—p0<AZn|§T <(/\—n> — <7) > :

then, using formulas (1), (8) and the identity > A;e™ ¥ =0, p € N, for a certain p, € (0, p)
j=1
we get

Z A7 :T_pcp(r, F) — PQp =d, — pQp,+ o(r?7")

0<|An <

=p(r7er — Qp) +o(r” Py =0d5 +o(r™ "), r— +o0.

Hence, equality (3) holds for p = p. In the case p = p + 1, condition (3) follows from (2)
(see |7, Remark 2, p. 23]). Thus, according to Lemma 1, the entire function f is a function
of improved regular growth. This completes the proof of Theorem 1.
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Hexait f — mina dbysxuis, f(0) = 1, (A,) — nocaimosuicts i1 mynmis, Q@ = {|A,] : n €
N} i F(z2) = 2f'(2)/f(2), z = re’?. Uina bynknia f nazubaeThcs BYHKIIEO TOKPAITIEHOTO
PEryJISpHOrO 3pOCTaHHsdA, AKmo s jgeakux p € (0,+00), p1 € (0,p) i 27-nepiomuunoi p-
TPUTOHOMETPUYHO OmyKJIol byHKIIT h(p) # —oo icuye muoxkuna U C C, ska micTurbes B
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06’eIHAHHI KPYTiB i3 CKIHYEHHOI0 CyMOI0 pasiycis Taka, mo log | f(2)| = |z|Ph(e) +o(|z]|P1), U &
z = re’? — co. B pobori goseseno, mo i Toro mob nina dynxuia f nopaiky p € (0,+00)
3 Hy/JIsIMU Ha CKiHdeHHiii cucremi mpomenis {z : argz = 9}, j € {1,...,m}, 0 < 91 < 9 <

coo < Yy < 27, Oysa DYHKITEO MOKPAIIEHOTO PEryJIIPHOTO 3POCTAHHSA, HEOOXiTHO 1 0CTATHRO,
mo6 mis geaxux po € (0, p), ko € Z i xoxuoro k € {ko,ko+1,..., ko +m — 1}, BuronyBagoch
1 2 ) )
cp(r,F) = 2—/ e MR (re) dp = dpr? + o(r”?), r — +oo, ré¢Q, d,eC.
T Jo
Ile momosuioe pesyabratu A. Tonbndepra, M. Cozxira, M. Crpounka, M. Kopenkosa ta 1. Ba-
CUJIbKIBA TIPO (PYHKIII IIJIKOM PEryJIsSpHOrO 3POCTAHHS.



