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Introduction.
Let ω1, ω2 be complex numbers, such that

Imω2

ω1
> 0. A meromorphic in C function g is

called elliptic [2] if for every u ∈ C

g(u+ ω1) = g(u), g(u+ ω2) = g(u).

We deal with quasi-elliptic functions, whi-
ch are a direct natural generalization of elliptic
functions which are widely used, and not only
in mathematics. Thus the investigation of such
functions and their properties is quite interesti-
ng. One of these functions is the Weierstrass
℘ function,

℘(u) =
1

u2
+
∑
ω 6=0

(
1

(u− ω)2
− 1

ω2

)
,

ω = mω1 + nω2, m, n ∈ Z.

It is basic in the theory of Weierstrass. The
Weierstrass ℘ function and its derivative play
an important role for a representation of elli-
ptic functions. Each elliptic function can be
expressed in terms of ℘ and ℘′.

The Weierstrass ℘ function satisfies the
nonlinear ordinary differential equation [3],

℘′2(u) = 4℘3(u)− g2℘(u)− g3,

where

g2 = 60
∑
ω 6=0

1

ω4
, g3 = 140

∑
ω 6=0

1

ω6
.

The expressions g2 and g3 are called the elliptic
invariants of the function ℘ (see [3] for more
details).

This differential equation is of great
importance in the applications of Weierstrass
elliptic function in physics. For a physicist
it is sometimes useful to even conceive this
differential equation as the definition of Wei-
erstrass elliptic function [5].

The last equation play a great role in
the Weierstrass elliptic function expansion
method [1], which allows to seek new types
of doubly periodic solutions of nonlinear wave
equations in mathematical physics. This
equation is useful to solve the following
nonlinear wave equations: new integrable
Davey–Stewartson-type equation, the (2 +
1)- dimensional modified KdV equation, the
generalized Hirota equation in 2 + 1 dimensi-
ons, the Generalized KdV equation, the (2
+ 1)-dimensional modified Novikov–Veselov
equations, (2 + 1)-dimensional generalized
system of modified KdV equation, the coupled
Klein–Gordon equation, and the (2 + 1)-
dimensional generalization of coupled nonli-
near Schrodinger equation [1]. The Weierstrass
elliptic function expansion method and algori-
thm is also applied to other many nonlinear
wave equations, which arise in mathematical
physics. It is important to note that this
method is based on differential equation, which
classic Weierstrass ℘ function satisfies.

Also the Weierstrass ℘ function and it’s di-
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fferential equation have significant applicati-
ons in classical mechanics, including a point
particle in a cubic, sinusoidal or hyperbolic
potential, quantum mechanics, namely the n
= 1 Lamé potential (see [5]).

Now let’s return to quasi-elliptic functions.
Definition. [4] Let p = eiα, q = eiβ,

where α, β ∈ R. A meromorphic in C functi-
on g is called quasi-elliptic, if there exist
ω1, ω2 ∈ C∗, Imω2

ω1
> 0, such that for every

u ∈ C

g(u+ ω1) = pg(u), g(u+ ω2) = qg(u).

The class of quasi-elliptic functions is
denoted by QE . The concept of quasi-elliptic
functions was first introduced in [4]. A quasi-
elliptic analogue ℘αβ of classic Weierstrass ℘
function is constructed in [4] in such a way that
the classic Weierstrass ℘ function turns out to
be a partial case of ℘αβ if α = β = 0. That
is why we call ℘αβ generalized Weierstrass ℘
function. Therefore the problem of finding a
differential equation for the generalized Wei-
erstrass function ℘αβ arises naturally and this
is the main purpose of the present paper. Also,
it is a logical continuation of [4].

The rest of this work is organized as follows:
in Section 2, we give some auxiliary results
concerning quasi-elliptic functions. Section 3
is devoted to the construction of differential
equation for generalized Weierstrass function
℘αβ. In Section 4 it is shown that this diffe-
rential equation indeed is a generalization of
the classic one.

1. Auxiliary results
Let ω1, ω2 ∈ C∗ and Imω2

ω1
> 0.We say that

two points u ∈ C and v ∈ C, are congruent
modulo the periods ω1 and ω2 or equi-
valent if u− v = mω1 + nω2, where m,n ∈ Z
[3].

In the finite complex plane we take a
point u0, and construct the parallelogram
with vertices u0, u0 + ω1, u0 + ω1 + ω2,
u0 + ω2. The vertex u0 and the adjacent si-
des of the boundary, exclusive of their other
end points, are considered as belonging to
parallelogram, the rest of the boundary being
excluded. The resulting point set is called a

period parallelogram. In other words, poi-
nts belonging to the parallelogram have a form

u0 + r1ω1 + r2ω2 (0 ≤ r1 < 1, 0 ≤ r2 < 1).

By
∏

(u0) we denote this point set.

Theorem A. [3] For any point u ∈ C there is
a unique point in a period parallelogram which
is equivalent to u.

The following lemmas describe the properti-
es of quasi-elliptic functions. These lemmas are
analogues of classic results for elliptic functi-
ons. The Lemma 1 being a consequence of
Theorem A.

Lemma 1. Every holomorphic quasi-
elliptic function is constant. Доведення.
This lemma can be easily proved using the Li-
ouville’s theorem.

Lemma 2. Let f ∈ QE . Then f has
equal numbers of zeros and poles (counted
according to their multiplicities) in every peri-
od parallelogram

∏
(u0). Доведення. It

follows immediately from the argument princi-
ple applied to a period parallelogram.

Consider the function

Gαβ(u) =
1

u2
+
∑
ω 6=0

(
1

(u− ω)2
− 1

ω2

)
ei(mα+nβ),

(1)
where ω1, ω2 ∈ C, Imω2

ω1
> 0, ω = mω1 + nω2,

m, n ∈ Z, α, β ∈ R. Note that Gαβ is
meromorphic in C (see [4] for more details).

Obviously, G00 coincides with the classic
Weierstrass ℘ function.

Definition. [4] Let α 6= 0 mod 2π, β 6= 0
mod 2π. The function of the form

℘αβ(u) = Gαβ(u) + Cαβ =

=
1

u2
+
∑
ω 6=0

(
1

(u− ω)2
− 1

ω2

)
ei(mα+nβ) + Cαβ,

where

Cαβ =
Gαβ

(ω1

2

)
− eiαGαβ

(
−ω1

2

)
eiα − 1

=

=
Gαβ

(ω2

2

)
− eiβGαβ

(
−ω2

2

)
eiβ − 1
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is called the generalized Weierstrass ℘
function.

Remark 1. For the sake of completeness,
in the case α = β = 0 mod 2π, we define
C00 = 0. Then ℘00 = ℘.
Theorem B. [4] The fuction ℘αβ is quasi-
elliptic with p = eiα, q = eiβ.

Thus, constructed in such a way functi-
on ℘αβ is a kind of quasi-elliptic analogue of
the classic Weierstrass ℘ function. We will
show, that the function ℘αβ satisfies certain
differential equation as the original function ℘
does.

2. The differential equation for ℘αβ
It is known [2], that in the neighborhood of

the point u = 0

1

(u− ω)2
= −

(
1

u− ω

)′
=

= −

(
− 1

ω

+∞∑
k=0

(u
ω

)k)′
=

1

ω

+∞∑
k=1

kuk−1

ωk
,

where ω = mω1 +nω2, m, n ∈ Z\{0, 0}. Thus,

1

(u− ω)2
− 1

ω2
=

2u

ω3
+

3u2

ω4
+

4u3

ω5
+ · · · =

=
+∞∑
k=2

kuk−1

ωk+1
, ω = mω1+nω2, m, n ∈ Z\{0, 0}.

From this we can conclude that in the nei-
ghborhood of the origin the function ℘αβ(u)
has the form

℘αβ(u) =
1

u2
+ Cαβ +

∑
ω 6=0

+∞∑
k=2

kuk−1

ωk+1
ei(mα+nβ).

The above expression also may be written as

℘αβ(u) =
1

u2
+ Cαβ +

+∞∑
k=2

kuk−1
∑
ω 6=0

ei(mα+nβ)

ωk+1
.

To shorten notations, set

Ak = Ak(α, β) =
∑
ω 6=0

ei(mα+nβ)

ωk+1
, k = 2, 3, . . .

Hence, we can rewrite ℘αβ as follows

℘αβ(u) =
1

u2
+ Cαβ +

+∞∑
k=2

Akku
k−1. (2)

Therefore,

℘′αβ(u) = − 2

u3
+

+∞∑
k=2

Akk(k − 1)uk−2,

and

℘′2αβ(u) =
4

u6
− 4

u6

+∞∑
k=2

Akk(k − 1)uk−2+

+

(
+∞∑
k=2

Akk(k − 1)uk−2

)2

=

=
4

u6
− 8A2

u3
− 24A3

u2
− 48A4

u
−

− 4

u3

+∞∑
k=5

Akk(k − 1)uk−2+

+

(
+∞∑
k=2

Akk(k − 1)uk−2

)2

.

Also we need to calculate ℘2
αβ(u) and ℘3

αβ(u).
We have

℘2
αβ(u) =

1

u4
+ C2

αβ +

(
+∞∑
k=2

Akku
k−1

)2

+

+
2Cαβ
u2

+
2

u2

+∞∑
k=2

Akku
k−1+2Cαβ

+∞∑
k=2

Akku
k−1 =

=
1

u4
+

2Cαβ
u2

+
4A2

u
+C2

αβ+

(
+∞∑
k=2

Akku
k−1

)2

+

+
2

u2

+∞∑
k=3

Akku
k−1 + 2Cαβ

+∞∑
k=2

Akku
k−1.

Similarly,

℘3
αβ(u) =

1

u6
+

3Cαβ
u4

+
6A2

u3
+(9A3 +3C2

αβ)
1

u2
+

+(12A4 + 12A2Cαβ)
1

u
+

3

u4

+∞∑
k=5

Akku
k−1+
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+(3Cαβ +
1

u2
)

(
+∞∑
k=2

Akku
k−1

)2

+ C3
αβ+

+

(
+∞∑
k=2

Akku
k−1

)3

+(3C2
αβ+

4A2

u
)

+∞∑
k=2

Akku
k−1+

+
6Cαβ
u2

+∞∑
k=3

Akku
k−1+

2

u2

+∞∑
k=2

Akku
k−1

+∞∑
k=3

Akku
k−1.

In view of these expansions,

℘′2αβ(u)− 4℘3
αβ(u) + 12Cαβ℘

2
αβ(u)−

−16A2℘
′
αβ(u) + (60A3 + 12C2

αβ−
−24Cαβ)℘αβ(u) =

= (48A2 − 96A4 − 48A2Cαβ)
1

u
+H(u),

where H is an entire function of the form

H(u) = 2A2(1− 16A2)− 140A5+

+8C3
αβ − 24C2

αβ + 60A3Cαβ+

+
+∞∑
k=1

{(1− 16A2)Ak+2(k + 2)(k + 1)−

−4Ak+5(k + 7)(k + 5)}uk−

−4

(
+∞∑
k=1

Ak+1(k + 1)uk

)3

−

− 4

u2

(
+∞∑
k=1

Ak+1(k + 1)uk

)2

+

+(60A3 −
16A2

u
− 8

+∞∑
k=0

Ak+3(k + 3)uk−

−4C3
αβ + 36C2

αβ − 24C2
αβ)

+∞∑
k=1

Ak+1(k + 1)uk.

In other words, the function ℘αβ satisfies the
differential equation

℘′2αβ(u) = 4℘3
αβ(u)− 12Cαβ℘

2
αβ(u)+

+16A2℘
′
αβ(u)− (60A3 + 12C2

αβ−
−24Cαβ)℘αβ(u)+

+(48A2 − 96A4 − 48A2Cαβ)
1

u
+H(u), (3)

where H is an entire function given above.

On the connection with the classic
differential equation for ℘

The important point to note here that the
differential equation for ℘αβ is a generalization
of the classic one for ℘.

Consider the case α= β= 0 mod 2π. Since
C00 = 0, A2k(0, 0) =

∑
ω 6=0

1
ω2k+1 = 0 for k ∈ N,

and A3(0, 0) =
g2

60
, then equation (3) takes the

form

℘′2(u) = 4℘3(u)− g2℘(u) +H(u), (4)

or

℘′2(u)− 4℘3(u) + g2℘(u) = H(u), (5)

The function on the left hand side of (5) is elli-
ptic. Since H is holomorphic, then by Lemma
1, H is constant. Thus, H(u) = H(0) for all
u. Since H(0) = −140A5 = −g3, then (4) can
be rewritten as follows

℘′2(u) = 4℘3(u)− g2℘(u)− g3,

which is the classic differential equation for the
classic Weierstrass ℘ function.
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