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SOME CHARACTERISTIC PROPERTIES OF ANALYTIC FUNCTIONS IN

D x C OF BOUNDED L-INDEX IN JOINT VARIABLES

Busuarorbest xapakTepucTudHi BacTuBOCTI (DYHKINI obmexkenoro L-iHmekcy 3a CyKyIHICTIO
aMinanx, #ki anagituanai B D X C. OTrpumani TBepIKEeHHsS € aHAJOTAMM BiJIOMUX KPUTEDIIB s
QYHKITNH, 9Ki aHAJITUIHI B OAWHUYHIN Kysi, B MOJIKpPY3i Ta s Iianx YHKINH Bif AeKiIbKOX
3MiHHUX. BOHM OMHUCYIOTH OIIHKU MAKCUMyMy MOoOjyss yHKINl obmexkenoro L-iHmekcy 3a cyky-
IHICTIO 3MIiHHUX y Gikpy3i. 30Kpema, BCTAHOBJIEHO aHAJIOI TeOpeMH XelMaHa Ijisl OO KJIacy
dyHKII, TKa Mae 3aCTOCYBaHHsI B aHAJITUYHIN Teopil JudepeHIliaj bHuX PIBHIHD 10 aHAJITHIHUX
PO3B’SI3KiB B OJMHUYHIN KyJIi Ta y MOJIKPY3i, a TaKoXK A0 Iianx po3s’s3kiB. Takoxk dopmysmoemo
Bl HEpO3B’s13aHi 3aa41 PO OIIHKKM 3POCTAHHS JJI X (PYHKIIH, a TaKOXK TXHE 3aCTOCYBAHHS 110
CHCTeM DIBHSHBb 3 YACTUHHUM ITOXiTHUMH.

Kurowosi cioBa: anamitnyni dyHKIil, Teopema XeliMaHa.

We investigate the characteristic properties of functions of bounded of L-index in joint variables
which are analytic in D x C. The obtained propositions are analogs of known criterion for analytic
functions in the unit ball, in the polydisc and for entire functions of several variables. They described
estimates maximum modulus of the function of bounded of L-index in joint variables in a bidisc.
Particularly, we obtained analog of Hayman’s Theorem for this functions class. The theorem has
applications in analytic theory of differential equations to analytic solutions in the unit ball, in the
polydisc and to entire solutions. Also we posed two unsolved problems about growth estimates for

these functions and its applications to system of partial differential equations.
Keyword: analytic functions, Hayman’s Theorem.

1. Definition and notations. We need some
standard notation. Denote Ry = (0,+00),
0= (0,0), 1= (1,1), R = (Tl,Tg) S R%—’ zZ =
(21,20) € D x C. For A = (ay,a,) € R?, B =
(b1, by) € R? we will use formal notations with-
out violation of the existence of these expres-
sions AB = (albl,agbg), A/B = (al/bl,ag/bg),
AP = b4, The notation A < B means that
aj < b;, j € {1,2}; the relation A < B is de-
fined similarly. For K = (ki, k2) € Z% denote
| K| = k1 + ko, K!' = kq!- kol

For 20 € C? we denote D?*(2°, R) := {z €
C*: |z — 2| < 15, j € {1,2}} the bidisc,
its skeleton T?(z°, R) := {z € C?*: |z —
2] =r;, j € {1,2}}, and D*[°, R] == {z €
C*: |z — 2)] < 715, j € {1,2}} the closed
bidisc, D = {z € C: |z| < 1}. For K =
(k1,k2) € Z2, z € C* and the partial deriva-
tives of function F(z) = F(z1,29) we use the

following notation
IIEIE(z) otk F(2)
0K gk

Let L(z) = ({1(2), l2(2)), where [;(2): DxC —
R, is a continuous function.

In this article, we continue to investigate
analytic functions in D x C of bounded L-
index initiated in articles [10,11]. The concept
of bounded index is useful in analytic theory
of differential equations. It allows examining
properties of analytic solutions of differenti-
al equations. If the solution has bounded
index then we immediately deduce its growth
estimates, local behavior of its derivatives,
uniform zero distribution in a some sense
and other properties concerned with regular
behavior. Of course, there is another method
in analytic theory of differential equations - so-
called Wiman-Valiron method. But it is appli-
cable mostly for entire solutions of differenti-
al equations. In multidimensional case the

F(K)(z)
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method requires many additional assumptions
which are not always such clear and natural as
for the concept of bounded index. Moreover,
we do not know an implementation of Wiman-
Valiron method for the partial differential
equations with coefficients which are analytic
in D x C. So, in the paper we want to deduce
criterion of index boundedness for this class
of analytic functions. Particularly, we prove
analog of Hayman’s Theorem. The theorem
is convenient to investigate index boundedness
of analytic solutions of linear higher-order di-
fferential equations.

An analytic function F': DxC — C is called
( |10,11]) a function of bounded L-index (in
joint variables), if there exists ng € Z, such
that for all z € D x C and for all J € Z2

J K
LGN IO T,
JILI(z) ~ IK|<no KILK(2)
The least such integer ng is called the L-index
in joint variables of the function F and is
denoted by N(F,L,D x C) = ng. It is an
analog of the definition of an analytic function
of bounded L-index in joint variables (see defi-
nitions for various classes of analytic functions
in [2,4,5,7,14, 15,17]).
By Q(IDxC) we denote the class of functions
L which satisfy the conditions

(VzeDxC): l1(2) > B/(1 — |z)|),
(Vry €0, 5], Vre € (0,+00)):
0< /\17]'(R) < /\QJ'(R) < +00,

where § > 1 is a some constant, and

Avj(z0, R) = . (1)R/L(z0 1i(2)/1;(2°)
)\Q:j(zoaR) = sup j( )/ZJ( )7
2€D?[z0,R/L(z0)]

Al:j(R) = zoé%)fx(c A1 J(ZOv R)7
)\27]‘(R) = sup )\27j(Zo,R), j € {172}

20eDxC

A similar condition was used for other classes
of analytic functions of bounded index as one
so several variables 13,19, 21].

2. Main criteria. Denote B> = (0,4] x
(0,40), B := (B,5). We have proved such
theorem.

Theorem 1 ( [10]). Let L € Q(D x C). An
analytic function F' : D x C — C has bounded
L-index in joint variables if and only if for each
R € B? there exist ng € Z.., py > 0 such that
for every 2° € D x C there exists K° € 72,
| K°|| < ng, and

[F ()|
maX{K'LK(z) | K| < no,
(K9) (0
2 €D? [2°, R/L(» ]}gpol‘f;!L—KE(;()g. )

In the proofs of the following statements we
will use methods developed for entire functions
and for analytic functions in a polydisc and in
the unit ball [1-5,7,8].

Theorem 2. Let L € Q(D x C). In order
that an analytic function F' : D x C — C

be of bounded L-index in joint variables it is
necessary that for every R € B* dng € Z,4

dp > 1V e Dx C3K° € 72, |K°|| < no,
and
max {|F(2)]: 2 € D? [%, R/L(")] } <
< p| (0] (3)

and it is sufficient that for every R € B? Ing €
Zy dp > 1V2" e Dx C 3 KY = (k9,0) and
K9 = (0,kY) such that k{ < ng, kY < ng and

max {|F<K§-’>(z)|: 2 eD? [, R/L(z“)]} <
< plFUD ()| vj e {1,2}, (4)

Proof. The proof of Theorem 1 implies
that the inequality (2) is true for some K.
Therefore, we have

po |FE(2)]
KOU LK (20)

FR (2 27,0 0
Zmax{—l@TKE(ig:zeD [2°, R/L(z )]} =

FEK?)
:me{| ()|

LE°(20)
KOl LE°(20)LK°(z)
zeD?[2°, R/L(z")]} >

> max { \F(Ko (2)] szl (Mo (R)) ™
- KOl LR (20)

zeD?[2°, R/L(z")] } .
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This inequality implies

PoTTis Qay (R)™ [P ()]
KOl LKO(zO) -

) (= 27,0 0
ZmaX{}g!TO((z)(l): zeD?[2°, R/L(z )}}

(5)

From (5) we obtain inequality (3) with p =
Do H§:1 (A2(R))™. The necessity of condition
(3) is proved.

Now we prove the sufficiency of (4). We wi-
11 use methods which are developed for analytic
functions in the bidisc [8] and in the unit ball
[1]. Suppose that for every R € B? dny €
Zy,p > 1 such that Vzy € D x C and some
K§ € 7% with kY < ng the inequality (4) holds.

We write Cauchy’s formula as following
Ve D x CVseZ

F(Kf}—i—S)(ZO)
s
1 FED
= : / 7(2) dz.
(2mi)? (z — 20)5+1
T2(20,R/L(2%))
This yields
(K9+S)(,0
PUSH) ()] _
Sl -
1 [P (2)
< ——|dz| <
= (2n)? |z—20\5+1‘ =
T2(20,R/L(2%))
1
< @y max{|F" (2)]: zeD?[z°, R/L(z°)]} x
LS+1 (ZO)
X / Wkiz‘ =

T2(29,R/L(2%))

— max{|F59(2)]: 2D, R/L(zo)]}Lzzo).
Now we put R = 3 and use (4)
[FUSTHO0)] _ L8(:0)
3| = 18T %
x max{|F") (2)]: 2 € D*[2°, R/L(z°)]} <
L5(20), (ko
LBl rE @

We choose S € Z2 such that ||S]| > so, where

f% < 1. Therefore (6) implies that for all j €

1,2} and &% < ng
J
[P+ (20)]
LIS (20) (K9 + S)! —
0
o  SUGY PG
= BISI(S + KP)ILEG (20) K01
[FUD(0)]
T L (0RO

Consequently, N(F,L,D x C) < ng + so.
Denote L(z) = (lL(2),l(2)). L =< L

means that there exist ©; = (6 ;,6012) € R%,

By = (927]‘,9272) S Ri such that Vz € D x C

gl’jlj(Z) S ZJ(Z) S 02Jlj(2>7 ] c {1,2}
Theorem 3. Let L € Q(D x C) and L < L.
An analytic function F : D x C — C has

bounded L-index in joint variables if and only
if it has bounded L-index in joint variables.

Proof. It is easy to prove that if L €
QD x C) and L < L then L € Q(D x C).

Let N(F,L,D x C) = fip < +0o. Then
by Theorem 1 for every R = (71,...,7,) € B2
there exists p > 1 such that for each 20 € DxC
and some K with [|K°|| < 7, the inequality
(2) holds with L and R instead of L and R.
Hence

R e R A )

KOl LE°(20) — KO ©K'LK°(20)
pF"DE)
RMOf TR ()

1 R -
> —5 max w: | K| < 7no,
@2 K‘LK(Z)

>

z € D? [zo, é/f‘(z)}} >

S 1 Of|F5) (2)|
= ok M TKILE(2)
z € D? [zo, E/i(z)}} >
min {OX
- OSHKHSno{ vl
- @5(-0

K < 7o,

FOG] o
max {m ||K|| S’I’L(),
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zeD? [zo, é/i(z)} } .

In view of Theorem 1 we obtain that the functi-
on F has bounded L-index.

Theorem 4. Let L € Q(D x C). An analytic
function F' : D x C — C has bounded L-index
in joint variables if and only if there exist R €
B% ng € Z, po > 1 such that for each 2° €
D?(2°, R) and for some K° € Z?% with | K°|| <
ng the inequality (2) holds.

Proof. The necessity of this theorem
follows from the necessity of Theorem 1. We
prove the sufficiency. The proof of Theorem
1 with R = @ implies that N(F,L,D x C) <
+00.

The formulation of the theorem uses idea
about replacing of universal quantifier by exi-
stential quantifier. The replacement relaxes
the sufficient conditions of index boundedness
(see its implementation for entire functions in
9]). Let L*(z) = HoLz) = . In general
case from validity of (2) for F and L with
R=(r1,...,rn), 7; < B, j € {1,2} we obtain

[FUO(2)]
max
K\ (RoL(z)/R)¥
z€D? [2% Ry/L* (2
_ o (IFRE)]
max ¢ —————
- KILKX(2)"
zeD? [2°, R/L(2%)]} <
po [FED(EO) Iy [FED(2)]
— KO LE°(z0)  RE°KOl(RyL(z)/R)K°
pod™_|FUO(z)
[Ti_, ryo KoL~ (2)%°
i. e. (2) holds for F, L* and Ry = (53, 5). Now
as above we apply Theorem 1 to the functi-
on F(z) and L*(z) = RyL(z)/R. This implies
that F' is of bounded L*-index in joint vari-
ables. Therefore, by Theorem 3 the function
F has bounded L-index in joint variables.
3. Estimate of maximum modulus.
For an analytic function F(z) we put
M(R,2° F) = max{|F(z)|: z € T*(2°, R)}.
The following Theorems 5 and 7 are given
in article [11] without proof.

K] <n

Rl

K< o,

<

<

24

Theorem 5. Let L € Q(DxC). If an analytic
function F : D x C — C has bounded L-index
in joint variables then for any R',R" € BZ,
R' < R",| there exists p1 = p1(R', R") > 1 such
that for each 2° € D x C

M (R"/L(z"),2°, F) <p1M (R’/L(zo),zo,l*ﬂ() )
7

Proof. Let N(F,L,D xC) = N < +o0.
Suppose that inequality (7) does not hold, i.e.
there exist R/, R" € B%, R’ < R”, such that for
each p, > 1 and some 2° = 20(p,)

(R'/L(z"),2", F) .
(8)
By Theorem 2 there exists a number p, =

po(R”) > 1 such that for every 20 € D x C
and for some k° € Z2, kY + k3 < N, one has

M (R"/L(2°),2°, F) >p.M

M (RIJL(0), 20, D) < po| FEHHD(:0)
(9)
We put

=

T”T”
bl—p0N|(T1T2) AR, (R Z

172 =

—] max{(r1) - 1}

N
) +0by+ by + 1.

Let 2 = 2%p.) be a point for which
inequality (8) holds and k° is such for which
(9) holds. We choose z* and zj, ;) such that

(J1.32
M (R'/L(z%),2°, F) =

= [F(z7)];
M (R"/L(z%), 2%, FU! ”) [FO (205, )]

for every j = (j1,J2) € Z%, ji +j» < N. We
apply Cauchy’s inequality
0\ \ J1
PO < it (M)
Ty

(M) ey

(10)
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for estimate the difference

F(j1,j2)(z? o* )| —

) ~5,2

|F(J132)(Z " ~* )

J,10 <j,2

s (j1+1,j2) X
/ PO (¢, 22, dc| <

0
i
11(29) }X

1

<ima {[FOR(G,5,)| -8]-

Z;‘:1 A ‘ . 1””
X /O |d¢| = |F(]1+17J2)(z(j1+17j2))|m.
1
(11)
Since (27, z5,) € D*[2% R"/L(2")], for k €
{1,2} we have |z, — z)| = lk?—’;;o) and

lk(zl, 259) < Aow(R")k(2 9). Putting j = k°
n (10), by Theorem 1 we obtain
[P0, 275)| < aljalpo ) (2°)
lﬁ(zla ]2)ZJ2(2172]2)
FOLRONEY (20)152 (0)
]1']2')‘%11(RH))‘JQ22(R”)ZJI( °)i5 (2%
JORQI ( 0)1%% (20

()" (4 e

< A R ) e
1)1 12)

PokY!Kk9Ix

From inequalities (11) and (12) it follows that
|F(11+1 Jz)(z(]l+1j2 )| >

Lz 0) 1. ,
2 (|[FU (23 1, 25| = [FV2) (2], 25,)]) >

*
]1

e CIENE

]17 7,2
i

o l{l(zo)ljZ(ZO)

—J1 !JZ!AJQH (R”) >\ (R”)po W
I

GO Fli s, ) = M (R

AL (R )poly (2°) %

F(=")) =

[F'(27)].
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We choose j = (ji1,j2) =

(k9. k9) and deduce

(RO KS) ( >l1(20) FR-LED)
| (20)| = 7 | ((ko 1k0))’_
kO 0
po(kY — 1)K (Zo)l22(zo)
T ()M (rp) s

N3 (RN (R F(27)] >

l%( O) (k9 —2,k9)
> |F (Z(ko 2k0))’

(Tl)
po(k0 — 2)%0'5’“1( 0y1%%5 (,0)
()2 (r K ()
11(f3”)A%22(R”)IF( )=
<k0— P ()1
P (r)M ()
X AP, (R F(2")| =

RCRSVATOR

> . ll( )|F(Ok(
SRGIE

R ) (R P
pol) = DU OB ()
DR
po(kS — DI (20)15 (")
R
M (RNE(RY) ()] =

kO k9
_ |F(0,kg (2 )|_p0k8!l11(20)l22(20)
N 042) < '>k°< '>k°

) Z

Zon)l-

XA (R")|F(2)|~

O RMRIFE) S Ed

Moy oRONET 20V
> (r/f)k(? ( ;>k0>’F(Z(070))|_p ( )k((l)(T)é) ( )X
XASh(RY)ASL(R")|F(2")] Z
p0l1 ( O)ZQ ( ) 1" ‘_
R IR 'Z -

:lf?(zo)lkg( 0) G
(r/1/>k0(ré/>k0 ’F( )‘(bl_'_b?)a

(13)

[F'(2{0,0))| =

25



where
0 0
s pok‘g!llfl (Zo>l12€2 (2Y)
(r))H (Té)kg
kY

(k,O jl)' O|
i

ji=1

A’§31<R">A’5?2<R">><
69 e
(19’“0(")’“0 (D’“O(Té)
k0
K9 1\ K9 i - ko_j !
XA (R)A5(R )Z % <
1

j11

><

NI, & Y
(’9’“0( e

N

_oN'

1Ty

= py BIEDE ) ks (R — o)
by= s MR <

ICAERCALITAL: ()
I (20)758 (0 e (N — )
_pol( 22( ))‘é\[?(R)Z( ])X

J=1

0 0
1 (20182 (20)

X max{ ——, 1p="2"22 " Jp = (14

{(n)N } (r)H (s )

Inequality (13) implies that
0 0
I (20)15% (20)
(k9 ,k9) 1 2 *

|F ( (k:o k9) )| = (ri’)k?(ré’)kg |F(Z )|X

x(M_

|F'(z*)]
In view of (8) we have that % > Dy >
by + be. Hence, applying (10) and (9) to (15),

we deduce

PR (25 )] > %wwnx
X( (bl + bg)) Z

B (2012 (=0)

= (//)W(T,/)k ( (b1+b2>>

\F'“O (ZO)I( DR ()" -

ko'ko'lll( )l22(20) N

I k9 k9 *
o (1) Gt
—\riry o po(N1)2

rlllrg N /N \ N 1
7 )‘2,1(R ))‘2,2<R )X

"on

N
Therefore, p. < po(N!)? <:1,:? ) + by + by, but

1°2

o N
it contradicts of choice p, = po(N!)? (%) +
™72
by + by + 1. Thus, inequality (7) is valid.

Theorem 6. Let L € Q(D x C), F be an
analytic in D x C function. If there exist
R R" € B*, R < R", and p1 > 1 such that
for each 2 € D x C inequality (7) holds, then
the function F has bounded L-index in joint
variables.

Proof. At first, we assume that R’ <1 <
R". Let 2° € D x C be an arbitrary point.
We expand a function F' in power series in

D*(2°, R)
= Zbk(z — 20 =
k>0
= Z bkl k2 (Zl - Zl)kl(ZQ - Zg)kQ’ (16>
k120,k2>0

Flk1k) (50 20)

where k = (ki, ks), by = Dk ks = ko1 lko!

R = (r1,79).

Let u(R, 2% F) = max{|by|R*: k > 0} =
max{|bg, &, [rH 752 ki > 0,ky > 0} be a
maximal term of series (16) and v(R) =
v(R,2°, F) = (v1(R),»(R)) be a set of indi-
ces such that

H’(R’ ZoyF) = |b1/(R)|RV(R)7
||V(R)||:Vl(R)+V2(R)=maX{kZ1+I€22 lﬁZO,
ko >0, |by| R*= (R, 2°, F)}.

We apply Cauchy’s inequality
VR = (7"1,7”2),0 <r; < 1,j € {1,2}
w(R, 2% F) < M(R,2°, F).
For given R’ and R", such that 0 < r} < 1,

1 <77 <, we conclude

M(R'R2°F) < |bhl (R'R)*

k>0

<3 (B PR = (R, F) YO (R) =

k>0
2
=115

J=1

(R, 2%, F).

26 ISSN 2309-4001. Byxosuncvkuil mamemamusnud otcypruan. 2018. — T. 6, N 1-2.



Besides,

In (R, 2°, F) = n{[b,(r)| "V} =

5 1
=1In {|b,,(R)](RR”) (R)W} =

5 1
= In{|by(s [ (RR")"¥} + In {W} =
< Inp(R'R, 2°, F) — ||v(R) | T min{s!, }.
This implies that

I (R)[| < (Inp(R'R, 2°, F)~

In min{ry, r}
—IH/L(R,Z 7F)) <
- 1 M /! 0 F _
= Inmin{r}, Y (In M(R'R, 2", F)
—In((1 = 7)) (1 =) M(R'R, 2", F))) <
1

~ Inmin{r{, r}

(In M(R'R, 2", F)—

2 In(1—1+"
) - z11:1r111n{<7‘ Y / -
1>"2
1 M(R'R,2°, F)
lnmm{rl,r2 " M(R'R,29,F)
_Z ; In(1 R]). (17)
In min{r{, 4
Put R = ﬁ Now let N(F,z°,L) be a L-
index of the function F' in joint variables at
point z° i. e. it is the least integer for which
inequality (1) holds at the point 2Y. Clearly
that

—InM(R'R, 2°

N(F,2°,L) <v (L(lzo),ZO,F> =v(R,2°, F).
(18)
But
M (R"/L(2"),2°, F) <
<p(R,R"M (R'/L(z%),2°, F). (19

Therefore, from (17), (18), (19) we obtain that
V'eDxC

N(F,z°,L) <
In(l—7) = p(R R

j
In min{ry, r}

— 22
In min{ry, 4

This means that /' has bounded L-index in
joint variables, if R < 1 < R" anf R', R" € B2.
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Now we will prove the theorem for any R’ <
R"”. TFor entire functions of several variables
the constraint R’ < 1 < R was first removed

in [6]. From (7) with Ry < Rs it follows that
QR// R/+R//
) 2(.0
max{\F(z)\ 2z € T?(2Y, R 2L(20) }

2R R'+R"

< . 2(.0 )

< Pymax {|F(z)| z€T (z R R 2L(0) )}
Denoting i(z) = ;,I;(;)/,, we obtain
2 /!

max {|P(2)] : 2 T*(2" )<

(R + R")L(=")
2R"

§P1max{|F(z)| 1 2eT?(2°, — )},
(R'+R")L(z9)

where 2", R, n R,, <1< 3 R,, Taking into account
the first part of the proof we conclude that
the function F' has bounded L-index in joint
variables. By Theorem 3, the function F'is of
bounded L-index in joint variables.

4. Analog of Hayman’s Theorem.
Theorem 7 is an analogue of known Theorem
of Hayman, which was established for entire
functions of one complex variable (see [12]). Its
applications to differential equations are consi-
dered for analytic functions in the unit bidi-
sc [16], in the unit ball [3].

Theorem 7. Let L € Q(D x C). An analytic
function F : D x C — C has bounded L-index
in joint variables if and only if there exist p €
Z, and ¢ € Ry such that for each z € D x C
the inequality

‘F(j17j2)(z>’ . .
max{—: J1+J2 =p+1} <

 (2)15 ()
< cmax{%: kv + ko < p} (20)
holds.
Proof. Let N = N(F,L,C x D) < +o0.

We obtain immediately the necessity from the
definition of the boundedness of L-index in joi-
nt variables with p = N and ¢ = ((NV + 1)!)2.
We prove the sufficiency. If FF = 0 then
theorem is obvious. Thus, we suppose that
F # 0. Let (20) holds, 2 € D x C, z €
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. . i (1) 2 wi
T2 (Zo B ) For all j = (ji,js) € 72, points 2" and z'*) with plane

) L(ZO)
J1+ 72 <p+1 we have a: 2y =koz1 + o
(1) (1) (2) (1)
|F(]1’]2)(2)| |FUY2) ()|l (2)15° (2) < &0 @ _ 2(1)>k2 RECIROL
1 j2 1 2 1 j2 — 2 2 1 1 1 1
(2012 (2°) — l] (2 )l] (20)13' (2)I5(2) (1) _(2) (1) _(2)
A (o (o) Ui ()] e =2 Z? — Z% )22
< M (B)AT( )Z{I(Z)Z%QQ) = 2 — 2
; » Flkuk) (2)] Let G(z1) = G(2)]a be a restriction of the
< W\ J2 | — 1 !
- /\1,1(5))\1,2(5)0%1?3229 1 (2)ik2(2) function G onto a. All functions F*1:2)|  are
= ML (BN, (B)ex analytic functions of variable z; and G (z%l)) =
kf ' . k; 20 s ) G(2M)]a # 0, because F(zV) # 0. That’s why
% li: (= )li (2 ”f : - (2)] < zeros of the function G(z;) are isolated as zeros
Oskitka<p [} (20)157 (20)17" (2)15°(2) of a function of one variable. Therefore we can
< /\%h( 5))\%?2( B)ex choose piecewise analytic curve v onto « :
(k1,kz2)
y 1 |F (2)] < z=z(t) = (z1(t), kaz1(t) + c2),t € [0, 1],

oskitiasn X (B)N(8) I (005 (20)

- LIV . 1 . 2 which connect the points z() 23 and such

< cmax{Ay (B)A%(B): i +jo <p+1}X  that G(z(t)) # 0 and fo |z (t)|dt < 2
For a construction of the curve we connect

ll(zo)'
1
xmaxs ———————: ki +k <ppx 20 and 2@ by a line 2*(1) = (2@ — Wy o
{A’faw»’fz(m . y a line 2{(t) = (7 = 21")

(kv k) 27, t € [0,1]. The curve 7 can cross poi-
1,R2 . . -~

Jf k(Z)l k4 < p}:B - G(2), nts z; at which the function G(z;) = 0 Thg
171 (20)152(29) number of such points m = m(z, 2?)) is fini-
te. Let (27,) be a sequence of these points in

2)

xmax{

where ascending order of the value |zl1 — 24l k€

{1,2,...,m}. We choose r < 1<£Igrnl 1{|zlk

B = cmax{\}! M2 P e <p+1lx B . (2 2
{ 2’1(5) 22(5) HTR=P ! 21,k+1’a‘z11 21 | |Z1m_21)|727?§ll(210)}- Now

X max {)\i’fl (5))\1_’52 (B): k1 +ky < p} ) we construct circles with centre at the points

| F(kuk2) (2)] 21, and corresponding radii r;g < g such that

G(z):max #kl—}—]{QSp . =~ . . .
11 (20) 182 (20) G(z1) # 0 for all z; on the circles. It is possi-

ble, because F' # 0. Every such circle is di-

O 1) ) vided onto two semicircles by the line z{(t).

We  choose 2 = (217,27) € The required piecewise-analytic curve consists

T? (2071/(2511('20))) and z® (Z§ )72'52)) € with arcs of the constructed semicircles and

T? (2%, B/L(2°)) such that F (") # 0 and segments of line z7(¢), which connect the arcs
in series between themselves or with the points

|F ()] = 2D 22 The length of 7 (t) in C is less than
_B_ 1 28
=max {|F(2)]: z€T* (°, B/L(z")) } #0. L) taEnen TS neny
(21)
1 !/
_— » | ol =1kl [ o <
These points exist, otherwise if F(z) =0 0
on  skeleton T2 (2% 1/(28L(2%)))
’ (2)
T? (2°,8/L(z°)) then by the uniqueness ‘ )~z | 26 _ 262 +1 2BL(2°%)
theorem F' = 0 in D x C. We connect the ‘ E - z11)| L(z°) 7 2B1(2°) 268° -1
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2p

y 2822+ 1)
ll(ZO) N

(262 = )la(2%)

Hence,

[

() ldt = / 1 (20)) 2, (1) |de+

/ () 35(0) e <

0

23 2622 +1)

<hL(z")- 1(29) +12(=") (262 = D)ia(20)
833

:%Zj:s (22)

Since the function z = z(t) is piece-wise
analytic on [0,1], then for arbitrary k €
75,3 € Z3 k| < p, il < p.k # j either

[Fk0R2) (2 (1), 2 (1)) _
171 (20)152(20)

|FUn32) (2 (t), 25(t))|

1 (205 (2°)
(23)

or the equality
[F0) (2, (1), (0))] _ [FO29 (a1 (1), (1)

) EE )
(24)

holds only for a finite set of points ¢, € [0;1].
Then for function G(z(¢ )) as maximum of such
| FU1, JQ)(zl(
T
cases are possible:
1. In some interval of analyticity of the curve
v the function G(z(t)) identically equals si-
multaneously to some derivatives, that is
(23) holds. It means that G(z(t)) =

G020 for some ] < p. Clearly, the

function F (Jl 32)(,21 (t), z2(t)) is analytic. Then
[FU192) () (t),2(t))| is continuously differenti-
able functlon on the interval of analyticity
except points where this partial derivative
equals zero |FU192)(z (1), 2o(t))| = 0. However,
there are not the points, because in the opposi-
te case G(z(t)) = 0. But it contradicts the
construction of the curve 7.

2. In some interval of analyticity of the curve ~
the function G(z(t)) equals simultaneously to
some derivatives at a finite number of points

expressions Ol by all ||| < p two

ty, that is (24) holds. Then the points ¢; divi-
de interval of analyticity onto a finite number
of segments, in which of them G(z(t)) equals
to one of partial derivatives, i. e. G(z(t)) =
F1:32) (2 (¢ 2ot
) As
above, in each from these segments the functi-
ons |FULI2) (2 (1), z(t))| and G(z(t)) are conti-
nuously differentiable except the points ;.
Taking into account (2) and using the
inequality - |p(z)| < |Lo(x)|, which holds
for complex-valued functions of real argument
outside a countable set of points, we have

| for some j, 7l < p.

d
<max{; ip(jl,jg)(zl(t) ZQ(t))' :
N 1 (20)12(20) |dt )
(j1+1,42) L
< max {’F R CTORAO) METGIN
Jtsp i (2013 (2°)

[FUn2H0 (4 (1), 20(8)] - |2(8)[

! () () } -
(r+Ld2) ( 21 ()]0 (2°)

{|F + (2(1)) l{‘1+1(20)l%‘2(2,0)
(rda+1) |25(t)|12(2°)

+|F ( (t))|l{1(zo l%é+l(20)} <

< (12 ()10 (2°) + |25(8)]12(2°)) x

|[FUB2) (24 (t), za(1))]

X ~ max - - <
J1+ja<p+l l]l (ZO)ZJ2 (ZO)

(zz ) BO(=(1).

Therefore, (22) yields

(2)
‘ln —G(Z a )‘ =

= max
Jji+j2<p

(o)) <

<B/ Wt < B-S.
Using (21), we deduce
max {|F(z)]: z € T* (°, B/L(z%)) } =
= |F(z?)| < G(2?) < G(zV) - exp(BS).

Since z(V) € T?(2°,1/(28L(2°))), the Cauchy
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inequality holds
|FO) (D)) _
0 (20)l* (%)
< jilgp!(28) 2 M (1/<2ﬂL(ZO))aZOaF)

for every j € Z2. Therefore, for j; + j» < p we
have

G(2D) < (p1)*(28) M1/(2BL(=")), 2°, F) and

max{|F(z)|: ze T? (2°, B/L(z°)) } <
< eB3(p)%(28)%P x
(= M}

):zeT? (2% 1/(28L(z
Hence, by Theorem 6 F' is a function of
bounded L-index in joint variables.
Theorem 8. Let > 1, L € Q(D x C). An
analytic function F : 1D x C — C has bounded
L-indez in joint variables if and only if there
ezist ¢ € (0;400) and Ny € N such that for
each z € D x C the inequality

[ Fk2) (2)]
b T R\ (2) 152 (2)

x max{|F(z

No

+00
F(k1k2)
2o Y LB
k14+ka=No+1 kilkolly (2)15°(2)
holds.
Proof. Let 1 < 0, < 1, j € {1,2}.

If the function has bounded L-index in
joint variables then by Theorem 3 F' has
bounded L-index in joint variables, where L=

(h(2),5(2)), i(2) = 6;15(2), j € {1,2}.
Denote N = N(F,L,ID x C). Therefore,
k) (2)
max =
0<k1Hha <N Joy lep 1 (2)182(2)
0y 052 F (k) ()
max 7 >
0<ki+ka<N ko Lol 1M (2 )l (2)
[ (k1,k2)
Z (6192)]\[ max | (Z)| Z
0<kithe<N k:1!k:2!l1 (z )l22(z)
| Fn2)(2)]
LG 0 ()1 (2
|F J1,92) (Z

j1!j2!lj (2)f

> (010,

)N

)
_ QN—J'19N—J'2 )
=u 2 o

|
(2)

30

for all j; > 0,72 > 0 and

R |l (z)|
Ji4ja=N+1 J1lg2! lﬂ( )l§2(2> a
[Pt (z)
m
T 0SkikeSN foy 1 (2)157(2)
+oo
xRN =
J1tje=N+1
016 Flok2) ()| <
T 1—0)(1—6) 0<k1+k2<Nk1'k2'lk1( Vb2 (2)
< 016, = [Fkk2) (2)]
S0 -0, 2, Wl () ()
Hence, we obtain (25) with Ny = N and
c = % On the contrary, inequality

(25) implies

{ |F(j17j2)(z)|

ax <701 J2

Jilg2!l (2)13% (2)
+oo

1j1+j2_N+1}§

kl kQ (Z

= k1+kzZ=N+1 kq! k‘z'lkl(z)l (2) :
S [Flk) ()]
koI (2) 152 (2) —
|[Fkk2) ()]

0<kitha<N Joy ol (2)152 ()

and by Theorem 7 F' is of bounded L-index in
joint variables.

Analogs of Theorems 5 and 7 were used
[3, 16] to obtain growth estimates analytic
functions in the unit ball of bounded L-index in
joint variables and to deduce sufficient condi-
tions of index boundedness for analytic soluti-
ons in the unit bidisc of some system of partial
differential equations. It is naturally to pose
the similar questions for analytic function in
DxC:

1. What are growth estimates analytic
functions in D x C of bounded L-index in joint
variables?

2. What are sufficient conditions index
boundedness for analytic solutions in D x C of
linear higher-order system of partial differenti-
al equations?

1
S —
&

k1+ko=0
_ (NN

- 2c
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Now we are not ready to give a full answer
to this questions.

10.

11.

. Bandura, A., Skaskiv, O.
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