C2018 A.I. Bandura¹, O.B. Skaskiv²

¹ Ivano-Frankivsk National Technical University of Oil and Gas ² Ivan Franko National University of Lviv

ANALYTIC FUNCTIONS IN THE UNIT BALL AND SUFFICIENT SETS OF BOUNDEDNESS OF L-INDEX IN DIRECTION

Вивчається взаємозв'язок між аналітичною в одиничній кулі функцією F обмеженого Lіндексу за напрямком та функцією зрізки $g_z(t) = F(z + t\mathbf{b})$. Отримано умови на множину A, які забезпечують рівність $N_{\mathbf{b}}(F, L) = \max\{N(g_z, l_z) : z \in A\}$, де $l_z(t) = L(z + tb), L : \mathbb{B}^n \to \mathbb{R}_+$ — неперервна функція, $\mathbb{B}^n = \{z \in \mathbb{C}^n : |z| < 1\}$. Ці результати є узагальненням відомих тверджень для цілих функцій декількох змінних.

Ключові слова: аналітична функція, одинична куля, функція зрізки, обмежений *L*-індекс за напрямком.

We study a relationship between analytic function F in the unit ball of bounded L-index in the direction and the slice function $g_z(t) = F(z + t\mathbf{b})$. There are obtained the conditions on a set A providing the equality $N_{\mathbf{b}}(F, L) = \max\{N(g_z, l_z) : z \in A\}$, where $l_z(t) = L(z + tb), L : \mathbb{B}^n \to \mathbb{R}_+$ is a continuous function, $\mathbb{B}^n = \{z \in \mathbb{C}^n : |z| < 1\}$. The results are generalizations of known propositions for entire functions of several variables.

Keywords: analytic function, unit ball, slice function, bounded *L*-index in direction.

The paper is devoted to analytic functions in the unit ball. This class of analytic function of several variables is very important in complex analysis [16,20].

Let $\mathbf{0} = (0, \dots, 0), \ \mathbf{b} = (b_1, \dots, b_n) \in \mathbb{C}^n \setminus \{\mathbf{0}\}$ be a given direction, $\mathbb{R}_+ = (0, +\infty), \mathbb{B}^n = \{z \in \mathbb{C}^n : |z| < 1\}, L : \mathbb{B}^n \to \mathbb{R}_+$ be a continuous function such that for all $z \in \mathbb{B}^n$

$$L(z) > \frac{\beta |\mathbf{b}|}{1 - |z|}, \ \beta = \text{const} > 1.$$
(1)

For a given $z \in \mathbb{B}^n$ we denote $S_z = \{t \in \mathbb{C} : z + t\mathbf{b} \in \mathbb{B}^n\}.$

Analytic function $F : \mathbb{B}^n \to \mathbb{C}$ is called a function of *bounded L-index in a direction* **b** [7] if there exists $m_0 \in \mathbb{Z}_+$ such that for every $m \in \mathbb{Z}_+$ and every $z \in \mathbb{B}^n$ the following inequality is valid

$$\frac{\left|\partial_{\mathbf{b}}^{m}F(z)\right|}{m!L^{m}(z)} \le \max_{0\le k\le m_{0}}\frac{\left|\partial_{\mathbf{b}}^{k}F(z)\right|}{k!L^{k}(z)},\qquad(2)$$

where $\partial_{\mathbf{b}}^{0}F(z) = F(z), \partial_{\mathbf{b}}F(z) = \sum_{j=1}^{n} \frac{\partial F(z)}{\partial z_{j}} b_{j},$ $\partial_{\mathbf{b}}^{k}F(z) = \partial_{\mathbf{b}} \left(\partial_{\mathbf{b}}^{k-1}F(z) \right), k \ge 2.$

The least such integer $m_0 = m_0(\mathbf{b})$ is called the *L*-index in the direction \mathbf{b} of the analytic

function F and is denoted by $N_{\mathbf{b}}(F, L) = m_0$. If n = 1, $\mathbf{b} = 1$, L = l, F = f, then $N(f, l) \equiv N_1(f, l)$ is called the *l*-index of the function f. In the case n = 1 and $\mathbf{b} = 1$ we obtain the definition of an analytic function in the unit disc of bounded *l*-index [13,21]. The definition is a generalization of concept of bounded *L*-index in direction introduced and considered for entire functions of several variables in [2,5, 9]. The primary definition of bounded index for entire function of one variable was supposed by B. Lepson [14].

There was proved some interesting properties of entire functions from this class [2, 3]. Namely, an entire function F has bounded Lindex in the direction \mathbf{b} if and only if the slice function $g_z(t) = F(z + t\mathbf{b})$ has bounded l_z -index as a function of variable $t \in \mathbb{C}$ and there exists M > 0 such that $N(g_z, l_z) \leq$ M for all $z \in \mathbb{C}^n$ $(l_z(t) = L(z + t\mathbf{b})$ and $N_{\mathbf{b}}(F, L) = \max\{N(g_z, l_z) : z \in \mathbb{C}^n\}$. This proposition shows a deep connection between the entire function F of bounded L-index in the direction \mathbf{b} and the corresponding slice function $g_z(t) = F(z + t\mathbf{b})$. Clearly, the set \mathbb{C}^n is very large in this proposition. Therefore, there are few known theorems [3] with lesser sets A instead C^n in $N_{\mathbf{b}}(F, L) = \max\{N(g_z, l_z) : z \in \mathbb{C}^n\}$. Moreover, there is an open problem [4]: what is the least set A such that $N_{\mathbf{b}}(F, L) = \max\{N(g_z, l_z) : z \in A\}$?

In this paper, we will state few statements that contain the basic properties of analytic functions in the unit ball of bounded *L*-index in a direction. They demonstrate a relationship between analytic functions of several variables with $N_{\mathbf{b}}(F, L) < \infty$ and the corresponding slice function of one variable. Note that for a concept of bounded **L**-index in joint variables similar propositions have not a sense (see definition and properties for various classes of analytic functions in [1, 6, 8, 13, 15, 15, 17]).

Denote $l_z(t) = L(z+t\mathbf{b}), g_z(t) = F(z+t\mathbf{b})$ for a given $z \in \mathbb{C}^n$.

Lemma 1. If an analytic function $F : \mathbb{B}^n \to \mathbb{C}$ has bounded L-index $N_{\mathbf{b}}(F, L)$ in the direction **b**, then for every $z^0 \in \mathbb{B}^n$ the analytic function $g_{z^0}(t), t \in S_{z^0}$, is of bounded l_{z^0} -index and $N(g_{z^0}, l_{z^0}) \leq N_{\mathbf{b}}(F, L).$

Proof. Let $z^0 \in \mathbb{B}^n$, $g(t) \equiv g_{z^0}(t)$, $l(t) \equiv l_{z^0}(t)$. Since for every $p \in \mathbb{N}$

$$g^{(p)}(t) = \partial_{\mathbf{b}}^{p} F(z^{0} + t\mathbf{b}), \qquad (3)$$

by the definition of bounded *L*-index in the direction **b** for all $t \in S_{z^0}$ and for $p \in \mathbb{Z}_+$ we obtain

$$\frac{|g^{(p)}(t)|}{p!l^{p}(t)} = \frac{|\partial_{\mathbf{b}}^{p}F(z^{0}+t\mathbf{b})|}{p!L^{p}(z^{0}+t\mathbf{b})} \leq \\ \leq \max\left\{\frac{|\partial_{\mathbf{b}}^{k}F(z^{0}+t\mathbf{b})|}{k!L^{k}(z^{0}+t\mathbf{b})} : 0 \leq k \leq N_{\mathbf{b}}(F,L)\right\} = \\ = \max\left\{\frac{|g^{(k)}(t)|}{k!l^{k}(t)} : 0 \leq k \leq N_{\mathbf{b}}(F,L)\right\}.$$

Hence, g(t) is a function of bounded *l*-index and $N(g, l) \leq N_{\mathbf{b}}(F, L)$. Lemma 1 is proved.

Equality (3) implies the following proposition.

Lemma 2. If an analytic function $F : \mathbb{B}^n \to \mathbb{C}$ has bounded L-index in the direction $\mathbf{b} \in \mathbb{C}^n$ then $N_{\mathbf{b}}(F, L) = \max \{ N(g_{z^0}, l_{z^0}) : z^0 \in \mathbb{B}^n \}.$

However, maximum can be calculated on a set A with a property $\bigcup_{z^0 \in A} \{z^0 + t\mathbf{b} : t \in$ S_{z^0} = \mathbb{B}^n . Thus, the following assertion is valid.

Lemma 3. If an analytic function F: $\mathbb{B}^n \to \mathbb{C}$ has bounded L-index in the direction **b** and j_0 is chosen with $b_{j_0} \neq 0$ then $N_{\mathbf{b}}(F,L) = \max\{N(g_{z^0}, l_{z^0}) : z^0 \in \mathbb{C}^n, z_{j_0}^0 = 0\}$ and if $\sum_{j=1}^n b_j \neq 0$ then $N_{\mathbf{b}}(F,L) = \max\{N(g_{z^0}, l_{z^0}) : z^0 \in \mathbb{C}^n, \sum_{j=1}^n z_j^0 = 0\}.$

Proof. We prove that for every $z \in \mathbb{B}^n$ there exist $z^0 \in \mathbb{C}^n$ and $t \in S_{z^0}$ with $z = z^0 + t\mathbf{b}$ and $z_{j_0}^0 = 0$. Put $t = z_{j_0}/b_{j_0}, z_j^0 = z_j - t\mathbf{b}_j, j \in$ $\{1, 2, \ldots, n\}$. Clearly, $z_{j_0}^0 = 0$ for this choice. However, the point z^0 may not be contained

However, the point z^0 may not be contained in \mathbb{B}^n . But there exists $t \in \mathbb{C}$ that $z^0 + t\mathbf{b} \in \mathbb{B}^n$. Let $z^0 \notin \mathbb{B}^n$ and $|z| = R_1 < 1$. Therefore, $|z^0 + t\mathbf{b}| = |z - \frac{z_{j_0}}{b_{j_0}}\mathbf{b} + t\mathbf{b}| = |z + (t - \frac{z_{j_0}}{b_{j_0}})\mathbf{b}| \leq |z| + |t - \frac{z_{j_0}}{b_{j_0}}| \cdot |\mathbf{b}| \leq R_1 + |t - \frac{z_{j_0}}{b_{j_0}}| \cdot |\mathbf{b}| < 1$. Thus, $|t - \frac{z_{j_0}}{b_{j_0}}| < \frac{1-R_1}{|\mathbf{b}|}$.

In the second part we prove that for every $z \in \mathbb{B}^n$ there exist $z^0 \in \mathbb{C}^n$ and $t \in S_{z^0}$ such that $z = z^0 + t\mathbf{b}$ and $\sum_{j=1}^n z_j^0 = 0$. Put $t = \frac{\sum_{j=1}^n z_j}{\sum_{j=1}^n b_j}$ and $z_j^0 = z_j - t\mathbf{b}_j, \ 1 \le j \le n$. Thus, the following equality is valid $\sum_{j=1}^n z_j^0 = \sum_{j=1}^n (z_j - tb_j) = \sum_{j=1}^n z_j - \sum_{j=1}^n b_j t = 0$. Lemma 3 is proved.

Note that for a given $z \in \mathbb{B}^n$ we can pick uniquely $z^0 \in \mathbb{C}^n$ and $t \in S_{z^0}$ such that $\sum_{j=1}^n z_j^0 = 0$ and $z = z^0 + t\mathbf{b}$.

Remark 1. If for some $z^0 \in \mathbb{C}^n$ { $z^0 + t\mathbf{b}$: $t \in \mathbb{C}$ } $\bigcap \mathbb{B}^n = \emptyset$ then we put $N(g_{z^0}, l_{z^0}) = 0$.

Lemmas 1–3 imply the following proposition.

Theorem 1. An analytic function F(z) : $\mathbb{B}^n \to \mathbb{C}$ is a function of bounded L-index in the direction **b** if and only if there exists number M > 0 such that for every $z^0 \in \mathbb{B}^n$ the function $g_{z^0}(t)$ is of bounded l_{z^0} -index with $N(g_{z^0}, l_{z^0}) \leq M < +\infty$, as a function of variable $t \in S_{z^0}$ and $N_{\mathbf{b}}(F, L) = \max\{N(g_{z^0}, l_{z^0}) : z^0 \in \mathbb{B}^n\}.$

Proof. The necessity follows from Lemma 1.

Sufficiency. Since $N(g_{z^0}, l_{z^0}) \leq M$, there exists $\max\{N(g_{z^0}, l_{z^0}) : z^0 \in \mathbb{B}^n\}$. We denote this maximum by $N_{\mathbf{b}}(F, L) = \max\{N(g_{z^0}, l_{z^0}) : z^0 \in \mathbb{B}^n\} < \infty$. Suppose that $N_{\mathbf{b}}(F)$ is not the

L-index in the direction **b** of the function F(z). **Remark 2.** An intersection of arbitrary

$$\frac{\left|\partial_{\mathbf{b}}^{n^*}F(z^*)\right|}{n^*!L^{n^*}(z^*)} > \max_{0 \le k \le N_{\mathbf{b}}(F,L)} \frac{\left|\partial_{\mathbf{b}}^kF(z^*)\right|}{k!L^k(z^*)}.$$
 (4)

Since for $g_{z^0}(t) = F(z^0 + t\mathbf{b})$ we have $g_{z^0}^{(p)}(t) =$ $\frac{\partial^p F(z^0 + t\mathbf{b})}{\partial \mathbf{b}^p}$, inequality (4) can be rewritten as $\frac{\left|\frac{g_{z^{*}}(0)}{\partial \mathbf{b}^{p}}\right|}{n^{*!}l_{z^{*}}^{n^{*}}(0)} > \max\left\{\frac{|g_{z^{*}}^{(k)}(0)|}{k!l_{z^{*}}^{k}(0)}: 0 \le k \le N_{\mathbf{b}}(F,L)\right\}.$ It contradicts that all l_{z^0} -indices $N(g_{z_0}, l_{z^0})$ are not greater than $N_{\mathbf{b}}(F)$. As follows $N_{\mathbf{b}}(F)$ is the *L*-index in the direction \mathbf{b} of the function F(z). Theorem 1 is proved.

From Lemma 3 the following condition is sufficient in Theorem 1: there exists $M < +\infty$ such that $N(g_{z^0}, l_{z^0}) \leq M$ for every $z^0 \in \mathbb{C}^n$ with $\sum_{j=1}^{n} z_{j}^{0} = 0.$

In connection with Lemma 3 and 1 there is a natural question: what is the least set A for which $N_{\mathbf{b}}(F, L) = \max_{z^0 \in A} N(g_{z^0}, l_{z^0})$. Below we prove propositions which give a partial answer to the question. A solution is partial because it is unknown whether our sets are the least which satisfy the mentioned equality.

Theorem 2. Let $A_0 \subset \mathbb{C}^n$ be such that $\bigcup_{z \in A_0} \{z + t\mathbf{b} : t \in S_z\} = \mathbb{B}^n$. An analytic function $F(z): \mathbb{B}^n \to \mathbb{C}$ is of bounded L-index in the direction **b** if and only if there exists M > 0 such that for all $z^0 \in A_0$ the function $g_{z^0}(t)$ is of bounded l_{z^0} -index with $N(g_{z^0}, l_{z^0}) \leq$ $M < +\infty$, as a function of variable $t \in S_{z^0}$ and $N_{\mathbf{b}}(F,L) = \max\{N(q_{z^0}, l_{z^0}) : z^0 \in A_0\}.$

Proof. By Theorem 1 the analytic function F is of bounded L-index in the direction \mathbf{b} if and only if there exists number M > 0 such that for every $z^0 \in \mathbb{B}^n$ the function $g_{z^0}(t)$ is of bounded l_{z^0} -index $N(g_{z^0}, l_{z^0}) \leq M < +\infty$, as a function of variable $t \in S_{z^0}$. But in view of property of the set A_0 for every $z^0 + t\mathbf{b}$ there exist $\tilde{z}^0 \in A_0$ and $\tilde{t} \in \mathbb{B}_{\tilde{z}^0}$ such that $z^0 + t\mathbf{b} = \tilde{z}^0 + t\mathbf{b}$. In other words, for all $p \in \mathbb{Z}_+$ $(g_{z_0}(t))^{(p)} = (g_{\widetilde{z}_0}(\widetilde{t}))^{(p)}$. But \widetilde{t} depends on t. Thus, the condition that $g_{z^0}(t)$ is of bounded l_{z^0} -index for all $z^0 \in \mathbb{B}^n$ is equivalent to the condition $g_{\tilde{z}^0}(t)$ is of bounded $l_{\tilde{z}^0}$ -index for all $\widetilde{z}^0 \in A_0.$

It means that there exists $n^* > N_{\mathbf{b}}(F, L)$ and hyperplane $H = \{z \in \mathbb{C}^n : \langle z, c \rangle = 1\}$ and $z^* \in \mathbb{B}^n$ for which the set $\mathbb{B}^n_{\mathbf{b}} = \{z + \frac{1 - \langle z, \mathbf{c} \rangle}{\langle \mathbf{b}, c \rangle} \mathbf{b} \colon z \in \mathbb{B}^n\}$, where $\langle \mathbf{b}, c \rangle \neq 0$, satisfies conditions of Theorem 2.

> We prove that for every $w \in \mathbb{B}^n$ there exist $z \in H \cap \mathbb{B}^n_{\mathbf{b}}$ and $t \in \mathbb{C}$ such that $w = z + t\mathbf{b}$.

> Choosing $z = w + \frac{1 - \langle w, c \rangle}{\langle \mathbf{b}, c \rangle} \mathbf{b} \in H \bigcap \mathbb{B}^n_{\mathbf{b}}, t =$ $\frac{\langle w, c \rangle - 1}{\langle \mathbf{b}, c \rangle}$, we obtain

$$z + t\mathbf{b} = w + \frac{1 - \langle w, c \rangle}{\langle \mathbf{b}, c \rangle} \mathbf{b} + \frac{\langle w, c \rangle - 1}{\langle \mathbf{b}, c \rangle} \mathbf{b} = w.$$

Theorem 3. Let A be a dense set in \mathbb{B}^n . An analytic function $F : \mathbb{B}^n \to \mathbb{C}$ is of bounded L-index in the direction **b** if and only if there exists M > 0 such that for every $z^0 \in A$ the function $g_{z^0}(t)$ is of bounded l_{z^0} index $N(g_{z^0}, l_{z^0}) \leq M < +\infty$, as a function of $t \in S_{z^0}$, and $N_{\mathbf{b}}(F, L) = \max\{N(g_{z^0}, l_{z^0}) :$ $z^0 \in A$.

The Proof. necessity follows from Theorem 1.

Sufficiency. Let \overline{A} be a closure of the set A. Since $\overline{A} = \mathbb{B}^n$, for every $z^0 \in \mathbb{B}^n$ there exists a sequence (z^m) such that $z^{(m)} \to z^0$ as $m \to z^0$ $+\infty$ and $z^{(m)} \in A$ for all $m \in \mathbb{N}$. But F(z + $t\mathbf{b}$) is of bounded l_z -index for all $z \in A \cap \mathbb{B}^n$ as a function of variable t. Therefore, in view of definition of bounded l_z -index there exists M > 0 such that for all $z \in A, t \in \mathbb{C}, p \in \mathbb{Z}_+$ $\frac{|g_z^{(p)}(t)|}{p!l^p(t)} \le \max\left\{\frac{|g_z^{(k)}(t)|}{k!l_z^k(t)} : 0 \le k \le M\right\}.$

Substituting instead of z a sequence $z^{(m)} \in$ A and $z^{(m)} \rightarrow z^0$, for each $m \in \mathbb{N}$ we obtain $\frac{|g_{zm}^{(p)}(t)|}{p!l_{zm}^{p}(t)} \le \max\left\{\frac{|g_{zm}^{(k)}(t)|}{k!l_{zm}^{k}(t)}: 0 \le k \le M\right\}.$ In other words, we have

$$\frac{\left|\partial_{\mathbf{b}}^{p}F(z^{m}+t\mathbf{b})\right|}{p!L^{p}(z^{m}+t\mathbf{b})} \leq \max_{0 \leq k \leq M} \frac{\left|\partial_{\mathbf{b}}^{k}F(z^{m}+t\mathbf{b})\right|}{k!L^{k}(z^{m}+t\mathbf{b})}.$$
(5)

Remind that F is an analytic function in \mathbb{B}^n and L is a positive continuous function. Therefore, we calculate a limit in (5) as $m \rightarrow$ $+\infty$ $(z^m \to z^0)$. Then for all $z^0 \in \mathbb{B}^n$, $t \in S_{z^0}$, $m \in \mathbb{Z}_+$ $\frac{|\partial_{\mathbf{b}}^p F(z^0 + t\mathbf{b})|}{p!L^p(z^0 + t\mathbf{b})} \le \max_{0 \le k \le M} \frac{|\partial_{\mathbf{b}}^k F(z^0 + t\mathbf{b})|}{k!L^k(z^0 + t\mathbf{b})}.$

This inequality implies that for every given $z^0 \in \mathbb{B}^n$ $F(z^0 + t\mathbf{b})$ is of bounded $L(z^0 + t\mathbf{b})$ index as a function of variable t. Applying Theorem 1 we obtain the desired conclusion. Theorem 3 is proved.

Remark 2 and Theorem 3 yield the following corollary.

Corollary 1. Let A_0 be such that its closure is $\overline{A}_0 = \{z \in \mathbb{C}^n : \langle z, c \rangle = 1\} \bigcap \mathbb{B}^n_{\mathbf{b}}$, where $\langle c, \mathbf{b} \rangle \neq 0$, $\mathbb{B}^n_{\mathbf{b}} = \{z + \frac{1 - \langle z, \mathbf{c} \rangle}{\langle \mathbf{b}, c \rangle} \mathbf{b} \colon z \in \mathbb{B}^n\}$. An analytic function $F(z) \colon \mathbb{B}^n \to \mathbb{C}$ is of bounded *L*-index in the direction \mathbf{b} if and only if there exists number M > 0 such that for all $z^0 \in A_0$ the function $g_{z^0}(t)$ is of bounded l_{z^0} -index with $N(g_{z^0}, l_{z^0}) \leq M < +\infty$, as a function of variable $t \in S_{z^0}$. And $N_{\mathbf{b}}(F, L) = \max\{N(g_{z^0}, l_{z^0}) \colon z^0 \in A_0\}$.

Proof. In view of Remark 2 in Theorem 2 we can take an arbitrary hyperplane $B_0 = \{z \in \mathbb{B}^n : \langle z, c \rangle = 1\}$, where $\langle c, \mathbf{b} \rangle \neq 0$. Let A_0 be a dense set in B_0 , $\overline{A_0} = B_0$. Repeating considerations of Theorem 3, we obtain the desired conclusion.

Indeed, the necessity follows from Theorem 1 (in this theorem same condition is satisfied for all $z^0 \in \mathbb{C}^n$, and we need this condition for all $z^0 \in A_0$ such that $\overline{A}_0 \cap \mathbb{B}^n = \{z \in \mathbb{B}^n : \langle z, c \rangle = 1\}$).

To prove the sufficiency, we use the density of the set A_0 . Obviously, for every $z^0 \in B_0$ there exists a sequence $z^{(m)} \to z^0$ and $z^{(m)} \in A_0$. But $g_z(t)$ is of bounded l_z -index for all $z \in A_0$. Taking the conditions of Corollary 1 into account, for some M > 0 and for all $z \in A_0$, $t \in \mathbb{C}, p \in \mathbb{Z}_+$ the following inequality holds $\frac{g_z^{(p)}(t)}{p!l_z^{p}(t)} \leq \max\left\{\frac{|g_z^{(k)}(t)|}{k!l_z^k(t)}: 0 \leq k \leq M\right\}$.

Substituting an arbitrary sequence $z^{(m)} \in A$, $z^{(m)} \to z^0$ instead of $z \in A^0$, we have $\frac{|g_{z(m)}^{(p)}(t)|}{p!l_{z(m)}^p(t)} \le \max\left\{\frac{|g_{z(m)}^{(k)}(t)|}{k!l_{z(m)}^k(t)}: 0 \le k \le M\right\}$, that is

 $\frac{\left|\partial_{\mathbf{b}}^{p}F(z^{(m)}+t\mathbf{b})\right|}{L^{p}(z^{(m)}+t\mathbf{b})} \leq \max_{0 \leq k \leq M} \frac{\left|\partial_{\mathbf{b}}^{k}F(z^{(m)}+t\mathbf{b})\right|}{k!L^{k}(z^{(m)}+t\mathbf{b})}.$

However, F is an analytic function in \mathbb{B}^n , L is a positive continuous. So we calculate a limit as $m \to +\infty$ $(z^m \to z)$. For all $z^0 \in B_0$, $t \in S_{z^0}$, $m \in \mathbb{Z}_+$ we have

$$\frac{\left|\partial_{\mathbf{b}}^{p}F(z^{0}+t\mathbf{b})\right|}{L^{p}(z^{0}+t\mathbf{b})} \leq \max_{0 \leq k \leq M} \frac{\left|\partial_{\mathbf{b}}^{k}F(z^{0}+t\mathbf{b})\right|}{k!L^{k}(z^{0}+t\mathbf{b})}.$$

Therefore, $F(z^0+t\mathbf{b})$ is of bounded $L(z^0+t\mathbf{b})$ index as a function of t at each $z^0 \in B^n$. By Theorem 3 and Remark 2 F is of bounded L-index in the direction \mathbf{b} .

Remark 3. Let $H = \{z \in \mathbb{C}^n : \langle z, c \rangle = 1\}$. The condition $\langle c, \mathbf{b} \rangle \neq 0$ is essential. If $\langle c, \mathbf{b} \rangle = 0$ then for all $z^0 \in H$ and for all $t \in \mathbb{C}$ the point $z^0 + t\mathbf{b} \in H$ because $\langle z^0 + t\mathbf{b}, c \rangle = \langle z^0, c \rangle + t \langle \mathbf{b}, c \rangle = 1$. Thus, this line $z^0 + t\mathbf{b}$ does not describe points outside the hyperplane H.

We consider $F(z_1, z_2) = \exp(-z_1^2 + z_2^2)$, $\mathbf{b} = (1, 1)$, c = (-1, 1). On the hyperplane $-z_1 + z_2 = 1$ function $F(z_1, z_2)$ takes a look

$$F(z^{0} + t\mathbf{b}) = F(z_{1}^{0} + t, z_{2}^{0} + t) =$$

= exp(-(z_{1}^{0} + t)^{2} + (1 + z_{1}^{0} + t)^{2}) =
= exp(1 + 2z_{1}^{0} + 2t).

Using the definition of *l*-index boundedness and evaluating corresponding derivatives it is easy to show that $\exp(1+2z_1^0+2t)$ is of bounded index with l(t) = 1 and N(g, l) = 4.

Thus, F is of unbounded index in the direction **b**. On the contrary, we assume $N_{\mathbf{b}}(F) = m$ and calculate directional derivatives

$$\partial_{\mathbf{b}}^{p}F = 2^{p}(-z_{1}+z_{2})^{p}\exp(-z_{1}+z_{2}), \ p \in \mathbb{N}.$$

By the definition of bounded index, an inequality holds $\forall p \in \mathbb{N} \ \forall z \in \mathbb{C}^n$

$$2^{p}|-z_{1}+z_{2}|^{p}|\exp(-z_{1}+z_{2})| \leq \\ \leq \max_{0 \leq k \leq m} 2^{k}|-z_{1}+z_{2}|^{k}|\exp(-z_{1}+z_{2})|.$$
(6)

Let p > m and $|-z_1+z_2| = 2$. Dividing equation (6) by $2^p |\exp(-z_1+z_2)|$, we get $2^{2p} \le 2^{2m}$. It is impossible. Therefore, F(z) is of unbounded index in the direction **b**.

Using calculated derivatives it is easy to prove that the function $F(z_1, z_2)$ is of bounded *L*-index in the direction **b** with $L(z_1, z_2) = 2|-z_1+z_2|+1$ and $N_{\mathbf{b}}(F, L) = 0$.

Now we consider another function

$$F(z) = (1 + \langle z, d \rangle) \prod_{j=1}^{\infty} (1 + \langle z, c \rangle \cdot 2^{-j})^j, \ c \neq d.$$

The multiplicity of zeros of the function F increases to infinity. In view of definition of L-index in the direction it means that F(z) is of unbounded L-index in any direction \mathbf{b} $(\langle \mathbf{b}, c \rangle \neq 0)$ and for any positive continuous function L.

We select $\mathbf{b} \in \mathbb{C}^n$ that $\langle \mathbf{b}, d \rangle = 0$. Let $H = \{z \in \mathbb{C}^n : \langle z, d \rangle = -1\}$. But for $z^0 \in H$ we have

$$F(z^{0} + t\mathbf{b}) = (1 + \langle z^{0}, d \rangle + t \langle \mathbf{b}, d \rangle) \times$$
$$\times \prod_{j=1}^{\infty} (1 + \langle z^{0}, c \rangle 2^{-j} + t \langle \mathbf{b}, c \rangle 2^{-j})^{j} \equiv 0.$$

Thus, $F(z^0 + t\mathbf{b})$ is of bounded index as a function of variable t.

Theorem 4. Let (r_p) be a positive sequence such that $r_p \to 1$ as $p \to \infty$, $D_p = \{z \in \mathbb{C}^n : |z| = r_p\}$, A_p be a dense set in D_p (i.e. $\overline{A}_p = D_p$) and $A = \bigcup_{p=1}^{\infty} A_p$. An analytic function Fin \mathbb{B}^n is of bounded L-index in the direction **b** if and only if there exists number M > 0 such that for all $z^0 \in A$ the function $g_{z^0}(t)$ is of bounded l_{z^0} -index $N(g_{z^0}, l_{z^0}) \leq M < +\infty$, as a function of variable $t \in S_{z^0}$. And $N_{\mathbf{b}}(F, L) = \max\{N(g_{z^0}, l_{z^0}) : z^0 \in A\}$.

Proof. Theorem 1 implies the necessity of this theorem.

Sufficiency. It is easy to prove $\{z + t\mathbf{b} : t \in S_z, z \in A\} = \mathbb{B}^n$. Further, we repeat arguments with the proof of sufficiency in Theorem 3 and obtain the desired conclusion.

Auxiliary class $Q^n_{\mathbf{b}}$

The positivity and continuity of function Land condition (1) are not sufficient to explore the behavior of analytic function of bounded L-index in direction. Below we impose an extra condition that function L does not vary as soon. Similar proposition for $L : \mathbb{C}^n \to \mathbb{R}_+$ are obtained in [9]. For $\eta \in [0, \beta]$, $z \in \mathbb{B}^n$, we define $\lambda_1^{\mathbf{b}}(z, \eta, L) = \inf\left\{\frac{L(z+t\mathbf{b})}{L(z)} : |t| \le \frac{\eta}{L(z)}\right\}$, $\lambda_2^{\mathbf{b}}(z, \eta, L) = \sup\left\{\frac{L(z+t\mathbf{b})}{L(z)} : |t| \le \frac{\eta}{L(z)}\right\}$, $\lambda_1^{\mathbf{b}}(\eta, L) = \inf\{\lambda_1^{\mathbf{b}}(z, \eta, L) : z \in \mathbb{B}^n\}$, $\lambda_2^{\mathbf{b}}(\eta, L) = \sup\{\lambda_2^{\mathbf{b}}(z, \eta, L) : z \in \mathbb{B}^n\}$.

If it will not cause misunderstandings, then $\lambda_1^{\mathbf{b}}(z,\eta) \equiv \lambda_1^{\mathbf{b}}(z,\eta,L), \ \lambda_2^{\mathbf{b}}(z,\eta) \equiv \lambda_2^{\mathbf{b}}(z,\eta,L),$ $\lambda_1^{\mathbf{b}}(\eta) \equiv \lambda_1^{\mathbf{b}}(\eta,L), \ \lambda_2^{\mathbf{b}}(z,\eta) \equiv \lambda_2^{\mathbf{b}}(\eta,L).$

By $Q_{\mathbf{b},\beta}(\mathbb{B}^n)$ we denote the class of all positive functions $L: \mathbb{B}^n \to \mathbb{R}_+$ satisfying (1) and $0 < \lambda_1^{\mathbf{b}}(\eta) \le \lambda_2^{\mathbf{b}}(\eta) < +\infty$ for any $\eta \in [0, \beta]$ Let $\mathbb{D} \equiv \mathbb{B}^1, Q_\beta(\mathbb{D}) \equiv Q_{1,\beta}(\mathbb{D}).$

The following lemma suggests possible approach to compose function with $Q_{\mathbf{b},\beta}(\mathbb{B}^n)$.

Lemma 4. Let $\overline{\mathbb{B}}^n = \{z \in \mathbb{C}^n : |z| \leq 1\},$ $L : \overline{\mathbb{B}}^n \to \mathbb{R}_+$ be a continuous function, $m = \min\{L(z) : z \in \overline{\mathbb{B}}^n\}.$ Then $\widetilde{L}(z) = \frac{\beta|\mathbf{b}|}{m} \cdot \frac{L(z)}{(1-|z|)^{\alpha}} \in Q^n_{\mathbf{b}}(\mathbb{B}^n)$ for every $\mathbf{b} \in \mathbb{C}^n \setminus \{0\},$ $\alpha \geq 1.$

Proof. Using the definition of $Q_{\mathbf{b}}^n$ we have $\forall z \in \mathbb{B}^n$

$$\lambda_{1}^{\mathbf{b}}(z,\eta,\widetilde{L}) = \inf\left\{\frac{L(z+t\mathbf{b})}{(1-|z+t\mathbf{b}|)^{\alpha}}\frac{(1-|z|)^{\alpha}}{L(z)}: |t| \leq \frac{\eta m(1-|z|)^{\alpha}}{\beta|b|L(z)}\right\} \geq \left|t\right| \leq \frac{\eta m(1-|z|)^{\alpha}}{\beta|b|L(z)}\right\} \times \inf\left\{\frac{L(z+t\mathbf{b})}{L(z)}: |t| \leq \frac{\eta m(1-|z|)^{\alpha}}{\beta|b|L(z)}\right\} \times \left|t\right| \leq \frac{\eta m(1-|z|)^{\alpha}}{\beta|b|L(z)}\right\}$$
Notice that if $\eta \in [0,\beta], z \in \mathbb{B}^{n}$ and $|t| \leq \frac{\eta}{2}$
Notice that if $\eta \in [0,\beta], z \in \mathbb{B}^{n}$ and $|t| \leq \frac{\eta}{2}$

 $\frac{\eta}{L(z)}$ then $z + t\mathbf{b} \in \mathbb{B}^n$. Indeed, we have $|z + t\mathbf{b}| \leq |z| + |t\mathbf{b}| \leq |z| + \frac{\eta|\mathbf{b}|}{L(z)} < |z| + \frac{\beta|\mathbf{b}|}{\frac{\beta|\mathbf{b}|}{1-|z|}} = 1$. Therefore, the first infimum is not lesser than a some constant K > 0 which is independent from z and t_0 . Besides, we have $\forall z \in \mathbb{B}^n$ and $\forall t \in S_z \ \frac{m}{L(z)} \leq 1$. Thus, for the second infimum the following estimates are valid

$$\inf\left\{\left(\frac{1-|z|}{1-|z+t\mathbf{b}|}\right)^{\alpha}:|t|\leq\frac{\eta m(1-|z|)^{\alpha}}{\beta|b|L(z)}\right\}\geq\\\geq\inf\left\{\left(\frac{1-|z|}{1-|z+t\mathbf{b}|}\right)^{\alpha}:|t|\leq\frac{\eta(1-|z|)^{\alpha}}{\beta|b|}\right\}=\\=\left(\frac{1-|z|}{1-|z+t^{*}\mathbf{b}|}\right)^{\alpha}.$$

ISSN 2309-4001.Буковинський математичний журнал. 2018. – Т. 6, № 1-2.

where $|t^*| \leq \frac{\eta(1-|z|)}{\beta|b|}$. Now we find a lower esti- $\lambda_1^{\mathbf{b}}(z,\eta,L^*)$ we have mate for this fraction

$$\begin{split} \frac{1-|z|}{1-|z+t^*\mathbf{b}|} &\geq \frac{1-|z|}{1-||z|-|t^*\mathbf{b}||} \geq \\ &\geq \frac{1-|z|}{1-||z|-\frac{\eta(1-|z|)}{\beta}|} \end{split}$$

Denoting $u = |z| \in [0; 1), \ \gamma = \frac{\eta}{\beta} \in [0, 1]$, we consider a function of one real variable $s(u) = \frac{1-u}{1-|u-\alpha(1-u)|} = \frac{1-u}{1-|(1+\gamma)u-\gamma|}$. For $u \in [0, \frac{\gamma}{\gamma+1}]$ the function s(u) strictly decreases and for $t \in [\frac{\gamma}{1+\gamma}; 1)$ the function $s(u) \equiv \frac{1}{1+\gamma}$. In fact, we proved that $\lambda_1^{\mathbf{b}}(z, \eta, \widetilde{L}) \geq K \cdot \frac{1}{1+\frac{\eta}{\beta}} > 0$. Hence, we have $\lambda_1^{\mathbf{b}}(\eta, \widetilde{L}) > 0$. By analogy, it can be proved that $\lambda_2^{\mathbf{b}}(\eta, \widetilde{L}) < \infty$.

We often use the following properties $Q_{\mathbf{b},\beta}(\mathbb{B}^n)$.

Lemma 5. 1. If $L \in Q_{\mathbf{b},\beta}(\mathbb{B}^n)$ then for every $\theta \in \mathbb{C} \setminus \{0\}$ $L \in Q_{\theta \mathbf{b},\beta/|\theta|}(\mathbb{B}^n)$ and $|\theta|L \in Q_{\theta \mathbf{b},\beta}(\mathbb{B}^n)$

2. If
$$L \in Q_{\mathbf{b}_{1},\beta}(\mathbb{B}^{n}) \bigcap Q_{\mathbf{b}_{2},\beta}(\mathbb{B}^{n})$$
 and for all
 $z \in \mathbb{B}^{n} L(z) > \frac{\beta \max\{|\mathbf{b}_{1}|,|\mathbf{b}_{2}|,|\mathbf{b}_{1}+\mathbf{b}_{2}|\}}{1-|z|}$ then
 $\min\{\lambda_{2}^{\mathbf{b}_{1}}(\beta,L),\lambda_{2}^{\mathbf{b}_{2}}(\beta,L)\}L \in Q_{\mathbf{b}_{1}+\mathbf{b}_{2},\beta}(\mathbb{B}^{n}).$

Proof.

1. First, we prove that $(\forall \theta \in \mathbb{C} \setminus \{0\}) : L \in Q_{\theta \mathbf{b},\beta}(\mathbb{B}^n)$. Indeed, we have by definition

$$\begin{split} \lambda_1^{\theta \mathbf{b}}(z,\eta,L) &= \inf \left\{ \frac{L(z+t\theta \mathbf{b})}{L(z)} : |t| \leq \frac{\eta}{L(z)} \right\} = \\ &= \inf \left\{ \frac{L(z+(t\theta)\mathbf{b})}{L(z)} : |\theta t| \leq \frac{|\theta|\eta}{L(z)} \right\} = \\ &= \lambda_1^{\mathbf{b}}(z, |\theta|\eta, L). \end{split}$$

Therefore, we get

$$\begin{split} \lambda_1^{\theta \mathbf{b}} &(\!\eta, L\!) \!=\! \inf\{\lambda_1^{\theta \mathbf{b}} \!(z, \eta, L\!) : z \in \mathbb{B}^n\} = \\ &=\! \inf\{\lambda_1^{\mathbf{b}}(z, |\theta|\eta, L) : z \in \mathbb{B}^n\} \!=\! \lambda_1^{\mathbf{b}}(|\theta|\eta, L) \!>\! 0, \end{split}$$

because $L \in Q_{\mathbf{b},\beta}(\mathbb{B}^n)$. Similarly, we prove that $\lambda_2^{\theta\mathbf{b}}(\eta, L) < +\infty$. But $|\theta|\eta \in [0, \beta]$. So $\eta \in [0, \beta/|\theta|]$. Thus, $L \in Q_{\theta\mathbf{b},\beta/|\theta|}(\mathbb{B}^n)$.

Let $L^* = |\theta| \cdot L$. Using definition of

$$\begin{split} \lambda_1^{\theta \mathbf{b}}(z,\eta,L^*) &= \inf\left\{\frac{L^*(z+t\theta \mathbf{b})}{L^*(z)} : |t| \le \frac{\eta}{L^*(z)}\right\} = \\ &= \inf\left\{\frac{|\theta|L(z+t\theta \mathbf{b})}{|\theta|L(z)} : |t| \le \frac{\eta}{|\theta|L(z)}\right\} = \\ &= \inf\left\{\frac{L(z+(t\theta)\mathbf{b})}{L(z)} : |\theta t| \le \frac{\eta}{L(z)}\right\} = \\ &= \lambda_1^{\mathbf{b}}(z,\eta,L). \end{split}$$

Therefore, we obtain

$$\begin{split} \lambda_1^{\theta \mathbf{b}}(\eta, L^*) &= \inf \{ \lambda_1^{\theta \mathbf{b}}(z, \eta, L^*) : z \in \mathbb{B}^n \} = \\ &= \inf \{ \lambda_1^{\mathbf{b}}(z, \eta, L) : z \in \mathbb{B}^n \} = \lambda_1^{\mathbf{b}}\!(\eta, L) \! > \! 0, \end{split}$$

because $L \in Q_{\mathbf{b},\beta}(\mathbb{B}^n)$. Similarly, we prove that $\lambda_2^{\theta \mathbf{b}}(\eta, L^*) = \lambda_2^{\mathbf{b}}(\eta, L) < +\infty$. Thus, $L^* = |\theta| \cdot L \in Q_{\theta \mathbf{b},\beta}(\mathbb{B}^n)$.

2. It remains to prove a second part.

If $z^0 \in \mathbb{B}^n$ and $|t| \leq \frac{\eta}{L(z^0)}$ then $z^0 + t\mathbf{b}_1 \in \mathbb{B}^n$ and $z^0 + t\mathbf{b}_2 \in \mathbb{B}^n$. Indeed, we have

$$\begin{aligned} |z^{0} + t\mathbf{b}_{1}| &\leq |z^{0}| + |t| \cdot |\mathbf{b}_{1}| \leq |z^{0}| + \frac{\eta |\mathbf{b}_{1}|}{L(z^{0}))} < \\ &< |z^{0}| + \frac{\beta |\mathbf{b}_{1}|}{\frac{\beta \max\{|\mathbf{b}_{1}|,|\mathbf{b}_{2}|,|\mathbf{b}_{1}+\mathbf{b}_{2}|\}}{1-|z^{0}|} \leq 1. \end{aligned}$$

Thus, $z^0 + t\mathbf{b}_1 \in \mathbb{B}^n$.

Denote $L^*(z) = \min\{\lambda_2^{\mathbf{b}_1}(\beta, L), \lambda_2^{\mathbf{b}_2}(\beta, L)\} \cdot L(z)$. Assume that $\min\{\lambda_2^{\mathbf{b}_1}(\beta, L), \lambda_2^{\mathbf{b}_2}(\beta, L)\} = \lambda_2^{\mathbf{b}_2}(\beta, L)$. Using definitions of $\lambda_1^{\mathbf{b}}(\eta, L), \lambda_2^{\mathbf{b}}(\eta, L)$, $\lambda_2^{\mathbf{b}}(\eta, L)$ and $Q_{\mathbf{b},\beta}(\mathbb{B}^n)$ we obtain that

$$\begin{split} \inf \left\{ \frac{L^*(z^0 + t(\mathbf{b}_1 + \mathbf{b}_2))}{L^*(z^0)} : \ |t| &\leq \frac{\eta}{L^*(z^0))} \right\} &\geq \\ &\geq \inf \left\{ \frac{L^*(z^0 + t\mathbf{b}_1 + t\mathbf{b}_2)}{L^*(z^0 + t\mathbf{b}_2)} : |t| &\leq \frac{\eta}{L^*(z^0)} \right\} \times \\ &\times \inf \left\{ \frac{L^*(z^0 + t\mathbf{b}_2)}{L^*(z^0)} : |t| &\leq \frac{\eta}{L^*(z^0)} \right\} = \\ &= \inf \left\{ \frac{\lambda_2^{\mathbf{b}_2}(\beta, L)L(z^0 + t\mathbf{b}_1 + t\mathbf{b}_2)}{\lambda_2^{\mathbf{b}_1}(\beta, L)L(z^0 + t\mathbf{b}_2)} : \\ &|t| &\leq \eta/(\lambda_2^{\mathbf{b}_2}(\beta, L)L(z^0)) \right\} \times \\ &\times \inf \{\lambda_2^{\mathbf{b}_2}(\beta, L)L(z^0 + t\mathbf{b}_2)/\lambda_2^{\mathbf{b}_1}(\beta, L)L(z^0) : \\ &|t| &\leq \eta/\lambda_2^{\mathbf{b}_2}(\beta, L)L(z^0) \} = \\ &= \inf \{L(z^0 + t\mathbf{b}_1 + t\mathbf{b}_2)/L(z^0 + t\mathbf{b}_2) : \end{split}$$

ISSN 2309-4001. Буковинський математичний журнал. 2018. – Т. 6, № 1-2.

$$|t - t_{0}| \leq \eta / (\lambda_{2}^{\mathbf{b}_{2}}(\beta, L)L(z^{0} + \mathbf{b}_{2})) \} \times \\ \times \inf\{L(z^{0} + t\mathbf{b}_{2})/L(z^{0}) : \\ |t| \leq \eta / (\lambda_{2}^{\mathbf{b}_{2}}(\beta, L)L(z^{0})) \} \geq \\ \geq \inf\{L(z^{0} + t\mathbf{b}_{1} + t\mathbf{b}_{2})/L(z^{0} + t\mathbf{b}_{2}) : \\ |t| \leq \eta / \lambda_{2}^{\mathbf{b}_{2}}(\beta, L)L(z^{0}) \} \times \\ \times \inf\left\{\frac{L(z^{0} + t\mathbf{b}_{2})}{L(z^{0})} : |t - t_{0}| \leq \frac{\eta}{L(z^{0})}\right\} \geq \\ \geq \inf\{L(z^{0} + t\mathbf{b}_{1} + t\mathbf{b}_{2})/L(z^{0} + t\mathbf{b}_{2}) : \\ |t - t_{0}| \leq \eta / (\lambda_{2}^{\mathbf{b}_{2}}(\beta, L)L(z^{0})) \} \lambda_{1}^{\mathbf{b}_{2}}(z^{0}, \eta, L) \geq \\ \geq \lambda_{1}^{\mathbf{b}_{2}}(\eta, L) \frac{L(z^{0} + t\mathbf{b}_{1} + t\mathbf{b}_{2})}{L(z^{0} + t\mathbf{b}_{2})}$$
(7)

where \hat{t} is a point at which infimum is attained

$$\frac{L(z^{0}+\hat{t}\mathbf{b}_{1}+\hat{t}\mathbf{b}_{2})}{L(z^{0}+\hat{t}\mathbf{b}_{2})} = \\ = \inf\left\{\frac{L(z^{0}+t\mathbf{b}_{1}+t\mathbf{b}_{2})}{L(z^{0}+t\mathbf{b}_{2})}: |t| \le \frac{\eta}{\lambda_{2}^{\mathbf{b}_{2}}(\beta,L)L(z^{0})}\right\}.$$

But $L \in Q_{\mathbf{b}_2,\beta}(\mathbb{B}^n)$, then for all $\eta \in [0,\beta]$

$$\sup\left\{\frac{L(z^0+t\mathbf{b}_2)}{L(z^0)}: |t| \leq \frac{\eta}{L(z^0)}\right\} \leq \lambda_2^{\mathbf{b}_2}(\eta, L) < \infty.$$

Hence, $L(z^0 + t\mathbf{b}_2) \leq \lambda_2^{\mathbf{b}_2}(\eta, L) \cdot L(z^0)$, i.e. for $t = \hat{t}$ we have $L(z^0) \geq \frac{L(z^0 + \hat{t}\mathbf{b}_2)}{\lambda_2^{\mathbf{b}_2}(\eta, L)}$. Using a proved inequality and (7), we obtain

$$\begin{split} \inf\{L^{*}(z^{0}+t(\mathbf{b}_{1}+\mathbf{b}_{2}))/L^{*}(z^{0}):|t| \leq \eta/L^{*}(z^{0})\} \geq \\ \geq \lambda_{1}^{\mathbf{b}_{2}}(\eta,L) \inf\left\{L(z^{0}+t\mathbf{b}_{1}+\hat{t}\mathbf{b}_{2})/L(z^{0}+\hat{t}\mathbf{b}_{2}): \\ |t| \leq \frac{\eta}{\lambda_{2}^{\mathbf{b}_{2}}(\beta,L)L(z^{0})}\right\} \geq \lambda_{1}^{\mathbf{b}_{2}}(\eta,L) \times \\ \times \inf\left\{L(z^{0}+t\mathbf{b}_{1}+\hat{t}\mathbf{b}_{2})/L(z^{0}+\hat{t}\mathbf{b}_{2}): \\ |t| \leq \frac{\eta\lambda_{2}^{\mathbf{b}_{2}}(\eta,L)}{\lambda_{2}^{\mathbf{b}_{2}}(\beta,L)L(z^{0}!+\hat{t}\mathbf{b}_{2})}\right\} \geq \\ \geq \lambda_{1}^{\mathbf{b}_{2}}(\eta,L) \cdot \inf\{L(z^{0}+t\mathbf{b}_{1}+\hat{t}\mathbf{b}_{2})/L(z^{0}+\hat{t}\mathbf{b}_{2}): \\ |t| \leq \eta/L(z^{0}+\hat{t}\mathbf{b}_{2})\} = \lambda_{1}^{\mathbf{b}_{2}}(\eta,L)\lambda_{1}^{\mathbf{b}_{1}}(z^{0}+\hat{t}\mathbf{b}_{2},\eta,L) \geq \\ \geq \lambda_{1}^{\mathbf{b}_{2}}(\eta,L)\lambda_{1}^{\mathbf{b}_{1}}(\eta,L). \end{split}$$

Therefore, $\lambda_1^{\mathbf{b}_1+\mathbf{b}_2}(\eta, L^*) \geq \lambda_1^{\mathbf{b}_2}(\eta, L)\lambda_1^{\mathbf{b}_1}(\eta, L) > 0$. By analogy, we can prove that for all $\eta \in [0, \beta]$ $\lambda_2^{\mathbf{b}_1+\mathbf{b}_2}(\eta, L^*) < +\infty$. Thus, $L^* \in Q_{\mathbf{b}_1+\mathbf{b}_2,\beta}(\mathbb{B}^n)$.

REFERENCES

- Bandura, A., Skaskiv, O. (2017). Functions analytic in a unit ball of bounded *L*-index in joint variables. *J. Math. Sci.*, 227(1), 1–12. DOI:10.1007/s10958-017-3570-6
- Bandura, A.I., Skaskiv, O.B. (2007). Entire functions of bounded *L*-index in direction. *Mat. Stud.*, 27(1), 30–52. (in Ukrainian)
- Bandura, A.I., Skaskiv, O.B. (2008). Sufficient sets for boundedness *L*-index in direction for entire functions. *Mat. Stud.*, 30(2), 177–182.
- Bandura, A.I., Skaskiv, O.B. (2015). Open problems for entire functions of bounded index in direction. *Mat. Stud.*, 43(1), 103–109. DOI:10.15330/ms.43.1.103-109
- Bandura, A., Skaskiv, O. (2016). Entire functions of several variables of bounded index. Lviv: Publisher I.E.Chyzhykov.
- Bandura, A.I., Skaskiv, O.B. (2017). Directional logarithmic derivative and the distribution of zeros of an entire function of bounded *L*-index along the direction. *Ukrain. Mat. J.*, 69(1), 500– 508. DOI:10.1007/s11253-017-1377-8
- Bandura, A., Skaskiv, O. (2015). Analytic in the unit ball functions of bounded *L*-index in direction. (submitted in Rocky Mountain Journal of Mathematics), Retrieved from https://arxiv.org/abs/1501.04166.
- Bandura, A.I., Petrechko, N.V. (2017). Properties of power series of analytic in a bidisc functions of bounded L-index in joint variables. *Carpathian Math. Publ.*, 9(1), 6–12. DOI:10.15330/cmp.9.1.6-12
- Bandura, A.I. (2015) Properties of positive continuous functions in Cⁿ. Carpathian Math. Publ., 7(2), 137–147. DOI: 10.15330/cmp.7.2.137-147
- Bandura, A., Skaskiv, O. (2017). Entire functions of bounded L-Index: its zeros and behavior of partial logarithmic derivatives. J. Complex Analysis, 2017, Article ID 3253095,1–10. DOI:10.1155/2017/3253095
- Kushnir, V.O., Sheremeta, M.M. (1999). Analytic functions of bounded *l*-index. Mat. Stud., 12(1), 59–66.
- Lepson, B. (1968). Differential equations of infinite order, hyperdirichlet series and entire functions of bounded index. *Proc. Sympos. Pure Math.*, 2, 298–307.
- Nuray, F., Patterson, R.F. (2015). Entire bivariate functions of exponential type. Bull. Math. Sci., 5(2), 171–177. DOI:10.1007/s13373-015-0066-x
- Nuray, F., Patterson, R.F. (2015). Multivalence of bivariate functions of bounded index. Le Matematiche, 70(2), 225–233. DOI:10.4418/2015.70.2.14

ISSN 2309-4001.Буковинський математичний журнал. 2018. – Т. 6, № 1-2.

- Patterson, R., Nuray, F. (2017). A characterization of holomorphic bivariate functions of bounded index. *Mathematica Slovaca*, 67(3), 731–736. DOI: 10.1515/ms-2017-0005
- 16. Rudin, W. (2008). Function Theory in the unit ball on \mathbb{C}^n . Reprint of the 1980 Edition. New York: Springer.
- Salmassi, M. (1989). Functions of bounded indices in several variables. *Indian J. Math.*, 31(3), 249–257.
- Sheremeta, M. (1999). Analytic functions of bounded index, Lviv: VNTL Publishers.
- Strochyk, S.N., Sheremeta, M.M. (1993). Analytic in the unit disc functions of bounded index. *Dopov. Akad. Nauk Ukr.*, 1, 19–22. (in Ukrainian)
- Zhu, K. (2005). Spaces of holomorphic functions in the unit ball. Graduate Texts in Mathematics. New York: Springer.