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ANALYTIC FUNCTIONS IN THE UNIT BALL AND SUFFICIENT SETS OF
BOUNDEDNESS OF L-INDEX IN DIRECTION
BusuaeTbcs B3a€MO3B 30K MiXK aHAJITHIHOIO B OJUHUYHIN Ky/1i ¢yHKIiEn F' obmexenoro L-

iHzIeKCy 3a HAUPAMKOM Ta (DyHKIE 3pisku ¢, (t) = F(z 4 tb). Orpumano ymoBu Ha MHOXKUHY A,
ki 3a6esnedyors pisaicts Ny (F, L) = max{N(g.,1,) : z € A}, ne l,(t) = L(z +tb), L : B" — R,

— mnenepepsHa dyHKIis, B" = {z € C" :

|z| < 1}. IIi pesynbraTu € y3arajdbHEHHSIM BiIOMHUX

TBEP/KEHD JJTsl TIUX (PYHKINA JEKIIbKOX 3MIHHUX.
Kirouosi cioBa: anajgiTuana dyHKISA, OMUHAYIHA KyJisi, (DYyHKIS 3pisku, oOMmexkeHuit L-iHaekc

3a HaIlIPAMKOM.

We study a relationship between analytic function F' in the unit ball of bounded L-index in the
direction and the slice function g,(t) = F(z + tb). There are obtained the conditions on a set A
providing the equality Ny (F, L) = max{N(g.,[.) : z € A}, where [,(t) = L(z + tb), L : B" — Ry

is a continuous function, B" =

{z e C":

|z| < 1}. The results are generalizations of known

propositions for entire functions of several variables.
Keywords: analytic function, unit ball, slice function, bounded L-index in direction.

The paper is devoted to analytic functions
in the unit ball. This class of analytic functi-
on of several variables is very important in
complex analysis [16,20].

Let 0 = (0,...,0), b = (by,...,b,) €
C™\ {0} be a given direction, R, = (0, +00),
B"={2e€C":|z] <1}, L: B" - R, be a
continuous function such that for all z € B”

L(z) > 15_|b||z| (1)

, B =const > 1.

For a given z € B" we denote S, = {t € C :
z+tb € B"}.

Analytic function F' : B" — C is called a
function of bounded L-index in a direction b |7|
if there exists my € Z such that for every m €
Z, and every z € B" the following inequality
is valid

|0p F'(2)] |OhF(2)]
mILm(2) = 0<kSmo KILF(z)

(2)

where OXF (z) = F(z),0uF(2) = i 852(,2)@,
=1 7

OLF(2) = By <a§;lF<z>), k> 2.
The least such integer mo = mg(b) is called
the L-index in the direction b of the analytic

function F' and is denoted by Ny(F, L) = my.
Ifn=1,b=1,L=1,F = f, then N(f,]) =
Ni(f,1) is called the l-index of the function f.
In the case n = 1 and b = 1 we obtain the
definition of an analytic function in the unit
disc of bounded [-index [13,21]. The definition
is a generalization of concept of bounded L-
index in direction introduced and considered
for entire functions of several variables in [2,5,
9]. The primary definition of bounded index for
entire function of one variable was supposed by
B. Lepson [14].

There was proved some interesting properti-
es of entire functions from this class [2, 3.
Namely, an entire function F' has bounded L-
index in the direction b if and only if the sli-
ce function ¢,(t) = F(z + tb) has bounded
[.-index as a function of variable ¢t € C and
there exists M > 0 such that N(g.,l,) <
M for all z € C" (I,(t) = L(z + tb) and
Ny(F,L) = max{N(g.,l.) : = € C"}. This
proposition shows a deep connection between
the entire function F' of bounded L-index in the
direction b and the corresponding slice functi-
on g,(t) = F(z + tb). Clearly, the set C" is
very large in this proposition. Therefore, there
are few known theorems [3] with lesser sets A
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instead C™ in Ny(F, L) = max{N(g.,l,) : z €
C"}. Moreover, there is an open problem [4]:
what is the least set A such that Np(F,L) =
max{N(g,,l,): z € A}?

In this paper, we will state few statements
that contain the basic properties of analytic
functions in the unit ball of bounded L-index
in a direction. They demonstrate a relationship
between analytic functions of several variables
with Np(F,L) < oo and the corresponding
slice function of one variable. Note that for
a concept of bounded L-index in joint vari-
ables similar propositions have not a sense (see
definition and properties for various classes of
analytic functions in [1,6,8,13,15,15,17]).

Denote [,(t) = L(z +tb), g.(t) = F(z+tb)
for a given z € C".

Lemma 1. If an analytic function F' : B" — C
has bounded L-index Ny(F, L) in the direction
b, then for every 2° € B" the analytic functi-
on g,o(t), t € Sy, is of bounded lo-index and
N(gzo, lzo) < Nb<F, L)

Proof. Let 2° € B™, g(t) = g.0(t), I(t)
l,o(t). Since for every p € N
g?(1) (3)

by the definition of bounded L-index in the
direction b for all ¢ € S,o and for p € Z, we
obtain

= OPF(2° + th),

9P @] _|0BF(z"+tb)| _
plr(t) — plLp(20 + tb) —

|OFF(2° + tb)|
<
—m“{km% 0+ tb)

e {00
KlIE (1)

:ogngb(F,L)}z

0<k< Nb(F,L)}.

Hence, ¢(t) is a function of bounded I-index
and N(g,l) < Np(F,L). Lemma 1 is proved.

Equality (3) 1mphes the following proposi-
tion.

Lemma 2. If an analytic function F' : B" — C
has bounded L-index in the direction b € C"
then Ny (F, L) = max {N(g.0,1,0) : 2° € B"}.

However, maximum can be calculated on a
set A with a property (J,o,{z° +tb : ¢ €

S.o} = B". Thus, the following assertion is
valid.

Lemma 3. If an analytic function F
B" — C has bounded L-index in the directi-
on b and jy, is chosen with bj, # 0 then
Np(F,L) = max{N(g.o,l.0) : 2° € C", 2} =
0} and if 375 ,b; # 0 then Ny(F,L) =
max{N(g.o,l0) : 20 € C*, 37 | 2] = 0}.

Proof. We prove that for every z € B"
there exist 20 € C" and t € S,o with z = 2" +tb
and 2) = 0. Put t = z;,/bj,, 20 = z; —tb;, j €
{1,2,...,n}. Clearly, 2) = 0 for this choice.

However, the point 2 may not be contained
in B". But there exists t € C that 2°+tb € B".
Let 2° ¢ B" and |z| = R; < 1. Therefore,

|z0+tb|:\z—%b+tb]—|z~l—( —zﬂ)b|<

0

\zpwt—ﬁq-mygza4+t—%wyby<1 Thus,
Z 1-R

|t— JO|< |b|1'

In the second part we prove that for every

2z € B" there exist 2 € C» andt € S,
such that z = 2° +tb and 3°7 | 2) = 0. Put
>z )

t = Zi’:ibj and zj =z —tb;, 1 < j < n.

Thus, the following equality is valid Y7, 2) =
Doz —thy) =370z — 3l bt =0
Lemma 3 is proved.
Note that for a given z € B"™ we can pi-
ck uniquely 2 € C" and t € S,o such that
> 2] =0and 2z = 2° +tb.

Remark 1. If for some z° € C* {2 + b :
t € C}y\B" =0 then we put N(g.o,1.0) = 0.

Lemmas 1-3 imply the following proposition.

Theorem 1. An analytic function F(z)
B"™ — C is a function of bounded L-index in the
direction b if and only if there exists number
M > 0 such that for every 2° € B™ the function
g.0(t) is of bounded lo-index with N(g.o,10) <
M < 400, as a function of variablet € S,o and
Nyp(F, L) = max{N(g,,1,0) : 2° € B"}.

Proof. The necessity follows from Lemma
1.
Sufficiency. Since N(g.o0,l,0) < M, there exi-
sts max{N(g.0,l0) : 2° € B"}. We denote
this maximum by Ny(F, L) = max{N (g0, [,0) :
2% € B"} < oo. Suppose that Ny, (F) is not the
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L-index in the direction b of the function F'(z).
It means that there exists n* > Ny (F, L) and
z* € B" for which

an*F *

| b 52 ) S

n* L (2%)

|0FF (2%)
0<I<Ng (F.L) K\LF(2%)

(4)

Since for g,o(t) = F(2°+tb) we have gi’o)) (t) =

—apFéf: tb); inequality (4) can be rewritten as
o) (k)

g, (0) ‘gZ* (0)‘ .

()~ MAX | it o) 10 < k< Np(F, L)

It contradicts that all [ o-indices N(g.,,l,0) are
not greater than N,(F). As follows Ny (F) is
the L-index in the direction b of the function
F(z). Theorem 1 is proved.

From Lemma 3 the following condition is
sufficient in Theorem 1: there exists M < 400
such that N(g,o,l,0) < M for every 2° € C"
with Y774 27 = 0.

In connection with Lemma 3 and 1 there is
a natural question: what is the least set A for
which Ny (F,L) = géﬁN(%”’l”)' Below we

prove propositions which give a partial answer
to the question. A solution is partial because
it is unknown whether our sets are the least
which satisfy the mentioned equality.

Theorem 2. Let Ay C C" be such that
U.ea iz +tb o t € S.} = B". An analytic
function F(z) : B" — C is of bounded L-index
in the direction b if and only if there exists
M > 0 such that for all 2° € Ay the function
g.0(t) is of bounded lo-index with N(g,o,(0) <
M < 400, as a function of variablet € S,o and
Np(F, L) = max{N(g.o,1L0) : 2* € Ap}.

Proof. By Theorem 1 the analytic functi-
on F'is of bounded L-index in the direction b
if and only if there exists number M > 0 such
that for every 2° € B" the function g,(t) is
of bounded [ 0-index N(g,0,l.0) < M < 400,
as a function of variable ¢ € S,. But in vi-
ew of property of the set Ay for every 2° + tb
there exist 2° € Ay and ¢t € Bz such that
294tb = 2°+tb. In other words, for allp € Z
(g2(1)® = (g5, ()P, But ¢ depends on t.
Thus, the condition that g.o(t) is of bounded
l,o-index for all 20 € B" is equivalent to the
condltlon 9z (t) is of bounded lzo-index for all
e Ap.

Remark 2. An intersection of arbitrary
hyperplane H = {Z E (C” : (z,¢) = 1} and
the set Br = {z 4 =0 “bo bz € B"}, where
(b,c) # 0, satisfies condztzons of Theorem 2.

We prove that for every w € B" there exist
z€ H( B anth(Csuchthatw—z+tb

Choosing

b’
1
<w<71:—>c>’ we obtain
1 —(w,c) (w,c) —1
tb = b b = w.
TEREMTT b "

Theorem 3. Let A be a dense set in B™.
An analytic function F B" — C is of
bounded L-index in the direction b if and only
if there exists M > 0 such that for every
2% € A the function g.,o(t) is of bounded lo-
index N(g,0,l0) < M < 400, as a function
of t € S,0, and Ny(F,L) = max{N(g.o,l.0) :
20 e A}

Proof.
Theorem 1.

Sufficiency. Let A be a closure of the set A.
Since A = B", for every z° € B" there exists
a sequence (z™) such that z(™ — 2% as m —
400 and 2™ € A for all m € N. But F(z +
tb) is of bounded [.-index for all z € AN B"
as a function of variable t. Therefore, in view
of definition of bounded [,-index there exists
M > 0 such that forall z € A, t € C,pe Z,

p)
%J?<mm{%%§o<k<M}

Substituting instead of z a sequence 2™ €
0

The necessity follows from

A and z™ — 20 for each m € N we
g ) g5 t>|
obtain P 1) < m Wi, 0<EkE< M
In other words, we have
0P F(2™ + tb)] |08 F (2™ + tb)|

= oghen K\LE(z™ 4+ tb)
()

Remind that F' is an analytic function in
B™ and L is a positive continuous function.
Therefore, we calculate a limit in (5) as m —
+00 (2™ — 2%). Then for all 2° € B", t € S0,

p!LP(z™ +tb) —
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m € Zy

0L F (20 + tb)] e |OFF(2° + tb)|

X .

plLP(Z0 +tb) ~ o<k<m kILE(20 + tb)
This inequality implies that for every given
22 e B" F(2° +tb) is of bounded L(z2° + tb)-
index as a function of variable ¢t. Applying
Theorem 1 we obtain the desired conclusion.
Theorem 3 is proved.

Remark 2 and Theorem 3 yield the following
corollary.

Corollary 1. Let Ay be such that its closure
is Ag = {z € C" : (z,¢) = 1}\B}, where
(c,b) # 0, By = {z+ “5%b: z € B"}. An
analytic function F(z) : B" — C is of bounded
L-index in the direction b if and only if there
exists number M > 0 such that for all 2° € Ay
the function g.,o(t) is of bounded lo-index with
N(g.0,l0) < M < +o00, as a function of vari-
ablet € S,o. And Ny (F, L) = max{N(g.o,.0) :
ZO S Ao}

Proof. In view of Remark 2 in Theorem
2 we can take an arbitrary hyperplane B, =
{z € B" : (2,¢) = 1}, where (¢,b) # 0. Let
Ay be a dense set in By, Ay = By. Repeati-
ng considerations of Theorem 3, we obtain the
desired conclusion.

Indeed, the necessity follows from Theorem
1 (in this theorem same condition is satisfied
for all 2 € C", and we need this condition
for all 2° € Ay such that A)NB" = {z € B" :
(z,0) = 1}).

To prove the sufficiency, we use the density
of the set Ay. Obviously, for every 2° € B,
there exists a sequence 2™ — 2% and 2™ ¢
Ap. But g, (t) is of bounded [,-index for all z €
Ag. Taking the conditions of Corollary 1 into
account, for some M > 0 and for all z € Aq,
t € C, p € Z, the following inequality holds

() (k)
) 0% @)
s < max { il o<k < M

Substituting an arbitrary sequence z(™ €
A, 2m 5 20 instead of z € A°, we have

® *®) (4
9. () < max{gz(m)( ) 0<k< M} , that

p!lz(m) @t = k!l’:(m> (t)
is
ERACKRERTY
Lr(z(m) +tb)

[k )
= ohan RILE(20m 4 1b)

However, F'is an analytic function in B", L is a
positive continuous. So we calculate a limit as
m — 400 (2™ — z). For all 2° € By, t € S,o,
m € Z, we have

[BF(=° + tb)
L»(z0+1b)

Therefore, F'(2°+tb) is of bounded L(z°+tb)-
index as a function of ¢t at each 2° € B". By
Theorem 3 and Remark 2 F' is of bounded
L-index in the direction b.

Remark 3. Let H = {z € C" : (z,¢) =
1}. The condition {(c,b) # 0 is essential. If
{c,b) = 0 then for all 2° € H and for allt € C
the point 2° +tb € H because (2 + tb,c) =
(2%, ¢y +t(b,c) = 1. Thus, this line z°+tb does
not describe points outside the hyperplane H.

|0EF (2° + tb)|
= 0Sken KILF(20 + th) |

We consider F(z1,29) = exp(—27+25), b=
(1,1), ¢ = (=1,1). On the hyperplane —z; +
2o = 1 function F'(z, 22) takes a look

F(2°"+tb) = F(V 4+, 29 +1) =
= exp(=(z +)° + (1 +2 +1)°) =
= exp(1 + 22¥ 4 2t).

Using the definition of [-index boundedness
and evaluating corresponding derivatives it is
easy to show that exp(1+2294-2t) is of bounded
index with [(¢) = 1 and N(g,l) = 4.

Thus, F' is of unbounded index in the
direction b. On the contrary, we assume
Np(F) = m and calculate directional derivati-
ves

OpF = 2P(—z1 + z9)P exp(—21 + 22), p € N.

By the definition of bounded index,
inequality holds V p e NVz € C"

an

2P| — 21 + 2Pl exp(—21 + 22)| <

< nax 2] = 21 4 2" exp(—21 + 22)|. (6)
Let p > m and | — 21+ 23| = 2. Dividing equati-
on (6) by 2P| exp(—z1+23)|, we get 227 < 2%™ T
is impossible. Therefore, F'(z) is of unbounded
index in the direction b.

Using calculated derivatives it is easy to
prove that the function F'(z1, z2) is of bounded
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L-index in the direction b with L(zy,2) =
2| — 21+ 22‘ +1 and Nb(F, L) =0.

Now we consider another function
L+ (zd) JJ+(z,0) -2

=1

F(z) = ), c#d.

The multiplicity of zeros of the function F
increases to infinity. In view of definition of
L-index in the direction it means that F(z)
is of unbounded L-index in any direction b
((b,c) # 0) and for any positive continuous
function L.

We select b € C" that (b,d) = 0. Let H =

{z € C": (2,d) = —1}. But for 2° € H we
have
F(2° +tb)=(1+(z% d) + t(b,d))x
< [T+ (2° )27 + t(b,c)277) = 0.
j=1

Thus, F(z" + tb) is of bounded index as a
function of variable ¢.

Theorem 4. Let (r,) be a positive sequence
such that r, — 1 as p — oo, D, = {z € C" :
|z| = m}, Ay be a dense set in D, (i.e. A, =

D,) and A = U A,. An analytic function F

in B™ is of bounded L-index in the direction b
if and only if there exists number M > 0 such
that for all 2° € A the function g,o(t) is of
bounded 1 o-index N(g.o,l0) < M < +00, as a
function of variable t € S,o. And Ny(F,L) =
max{N(g.o,l,0): 2° € A}.

Proof. Theorem 1 implies the necessity of
this theorem.

Sufficiency. Tt is easy to prove {z + tb :
t € S,, z € A} = B". Further, we repeat
arguments with the proof of sufficiency in
Theorem 3 and obtain the desired conclusion.

Auxiliary class Qp

The positivity and continuity of function L
and condition (1) are not sufficient to explore
the behavior of analytic function of bounded
L-index in direction. Below we impose an extra
condition that function L does not vary as
soon. Similar proposition for L : C* — R, are
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obtained in [9]. For n € [0, 5], z € B", we defi-
ne Ab(zn,L) = inf{HH: <o),

Nz D) = sup{H \tr<Lz)}
AP(n,
Ab(n,

(z+tb)

L) = inf{\P(z, n,L) : oz € B},
L) = sup{\2(z,n,L) : z € B"}.

If it will not cause misunderstandings, then
A(z,m) = AP (z,m, L), A3(z,m) = A8(z,n, L),
AL (n) = A2 (n, L), AB(2.m) = A3(n, L).

By Qb s(B™) we denote the class of all posi-
tive functions L : B" — R, satisfying (1) and
0 < AP(n) < AB(n) < +oo for any n € [0, 3]

Let D = B!, Q3(D) = Q, 4(D).

The following lemma suggests possible
approach to compose function with Qy g(B").

Lemma 4. Let B' = {z € C" : |z] < 1},
B" — R. be a continuous function,

L : B ur
m = min{L(z) : z € B"}. Then L(z)
8

A6l L& e Qp(B") for every b € C\ {0,

a>1.

Proof. Using the definition of @)}, we have
Vz e B”

o L(z+tb) (1—|z])°
A(z,m, L) = mf{(1 — |z +th))e  L(2)
nm(l — |z|)*
< P )2
g [ LEETD) L m(L— 2]
> mf{ L) 1] < B|b|L(2) } .
E nm(l

o () =

Notice that if n € [0,4], z € B™ and [t| <
ﬁ then z + tb € B". Indeed, we have |z +

b b
th] < 2] + [tb] < |2] + £ < |2] + lg;?‘ll — 1.

Therefore, the first infimum is not lesser than
a some constant K > 0 which is independent
from z and ty. Besides, we have Vz € B" and
Vte S, T 3 < 1. Thus, for the second infimum

the following estimates are valid

. 1— ‘o nm(1 — [z])

o (o) 1= T )2
. 1—1]z| \*. n(d =1\ _

= { () =

17



where [¢*] < 24 ‘b| . Now we find a lower esti- AP(2,7, L*) we have

mate for this fraction

. [ L*(z+tOb) n
ob L*)=inf{ ———= : |t| < =
1 — ’Z‘ 1 — |Z‘ >‘1 (277% ) m L*(Z) |t|_L*(Z)
1—|z+tb] = 1—||z| — |t*b|| — —'f{|9’L(Z+wb>-H< n }_
1— 2| |01L(2) — 101L(2)
_ _ n(=lz)
1—|[2] 3 | — inf w;’gﬂg U =
L(z) L(z)

Denoting u = |z| € [0;1), v = § € [0, 1], we — \P(z,n, L).
consider a function of one real variable s(u) = Y
W = (W,;‘or u € [OA%F] Therefore, we obtain
the function s(u) strictly ecreases and for b € b o ny _
t € [1f5; 1) the function s(u) = F In fact, we A0 L7) = nfA (2, L) s 2 € BT} =

3 b . nYy _ \b
proved that AP(z,n,L) > K - +,7 > 0. Hence, =inf{\)(z,n,L) : 2 € B"} =X\, L) >0,

because L € Qp 3(B™). Similarly, we prove that
NP (n, L*) = AB(n, L) < +oo. Thus, L* = |0| -
Le ngﬁ(Eﬂn).

n 2. It remains to prove a second part
@o,(B"). If 2° € B" and [t| < 7555 7 then z 0+tb, € B"

Lemma 5. 1. If L € Qug(B") then for and 2°+tby € B”. Indeed we have

we have AP(n, L) > 0. By analogy, it can be
proved that A\b(n, L) < oo.
We often use the following properties

every € C\{0} L € Qg p/o(B") and o o o . b1l
0|L € Qob,5(B") |27+ thy | <[27] + [t] - [ba] < 27| + L(=%) <
2. If L € Qu, s(B")Qb,.s(B") and for all <12 + Blb| .
2 €B" L(z)> Bmax{lbl\llrzll\bﬂbﬂ} then BmaX{‘b11|7||b20‘|,|bl+b2|} -
min{\>' (8, L), \>2(5 L €
Qb ijQ/B((]Bn)_) 2 ( )} Thus, 20 + tb; € B".
e Denote L*(z) = min{\y' (8, L), \>*(8, L)} -
Proof. L(z). Assume that min{A3* (8, L), A2 (13, )}
1. First, we prove that (V8 € C\{0}) : L € A>*(B,L). Using definitions Of A ( n, L
Qob,s(B"). Indeed, we have by definition AB(n, L) and Qp 5(B") we obtain that
*( .0
. ( L(z+t0b) - {L (2" + (b1 + b)) 1 }
ob _ _inf Ct] < >
AP(z,m, L) mf{ I(2) st ]_ Iz )} L*(29) L*(z9))
_ 1nf {L<Z+(t9) ) ‘0t| |9|77 } > lnf L*(ZO +tb1 +tb2) ) |t| < n %
L(z) - L(z) = L (20 + tby) ' = L*(20)
__\b
s V) x inf{—L*(ZO AL } =
Therefore, we get Lx(=%) — L)

A, D =ifA (2, L) : 2 € B"} =

_inf {)\IQ)Q(ﬁ,L)L(ZO+tb1+tb2) :
=inf{\} (2, [0]n, L) : = € B"}=A(|0], L) >0,

A>U(B, LYL(2° +tby)
t|<n/(A9*(B, L)L(2"))}x

because L € Qp g(B™). Similarly, we prove that inf{A2? (3, L)L(2°+tby) /A2 (3, L) L(2") :
NP(n, L) < +oo. But |8ln € [0,8]. So n € | <n/AB (8. L)L (=)} =
[0, 8/10]]. Thus, L € Qob,p/j0/(B"). =M1 A2 2=

Let L* = |A] - L. Using definition of = inf{L(z" + tby + tby)/L(2° + thy) :
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[t = to] < n/(A>(8, L)L(2" + b2))}
x inf{L(z° + thy)/L(2°) :
[t < n/(032(8, L)L(="))} =
> inf{L(2° + tby + thy)/L(z° + tby) :
[t < n/23*(8, L)L(2°)} %
0
x inf M n Z
L(z°) L(z°)
> inf{L(z" 4+ tby + tby)/L(z° + tby) :
[t = to < n/(A*(8, L)L(z"))}A0* (2%, L) =
L(2° 4 tb; + thy) ™
L(ZO + ibg)
where £ is a point at which infimum is attained
L(Zo—f—tAbl —I—tAbg)
L(20+1by)
0
_ inf{L(Z +tby+tby) - Sb#} .
L(29+tb,) A5%(5, DL(29)
But L € Qp, 3(B"), then for all n € [0, ]
L(2° +tby) n
L) L)
Hence, L(z° 4 thy) < A%(n, L) - L(2"), i.e. for
t =t we have L(z°) > %. Using a proved
27\,

inequality and (7), we obtain

inf{L* (=" t(b1+by))/L* (1) : [t <n/L*E0)} >

Dt —to] <

> A2 (n, L)

< g b D) <o,

> AP, L)inf{L(z°+tb1—|—fb2)/L(z0 +1tby)

n by
M= i 2 D

x inf { L(z°+tb; +1by) /L(2"+1bs) :
b2 L
|t|§ - 77>\2 (777 ) _ }_
AD2(B, L)L(2°! +iby)
>AP2(n, L) - inf{ L(2°+tb, +tby) /L(z" +1b,) :
|t <0/ LE°+ bl = AP, DAY (2°+Ebg, 1, L) >
> AP (n, L)AY (1, L).

Therefore, APtb2 () 1) >
AP2(n, L)AP*(n, L) > 0. By analogy, we can
prove that for all n € [0,3] A*P2(n, L*) <

400. Thus, L* € Qb1+b275<Bn).
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