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ANALYTIC FUNCTIONS IN THE UNIT BALL AND SUFFICIENT SETS OF
BOUNDEDNESS OF L-INDEX IN DIRECTION

Вивчається взаємозв’язок мiж аналiтичною в одиничнiй кулi функцiєю F обмеженого L-
iндексу за напрямком та функцiєю зрiзки gz(t) = F (z + tb). Отримано умови на множину A,
якi забезпечують рiвнiсть Nb(F,L) = max{N(gz, lz) : z ∈ A}, де lz(t) = L(z+ tb), L : Bn → R+

— неперервна функцiя, Bn = {z ∈ Cn : |z| < 1}. Цi результати є узагальненням вiдомих
тверджень для цiлих функцiй декiлькох змiнних.

Ключовi слова: аналiтична функцiя, одинична куля, функцiя зрiзки, обмежений L-iндекс
за напрямком.

We study a relationship between analytic function F in the unit ball of bounded L-index in the
direction and the slice function gz(t) = F (z + tb). There are obtained the conditions on a set A
providing the equality Nb(F,L) = max{N(gz, lz) : z ∈ A}, where lz(t) = L(z + tb), L : Bn → R+

is a continuous function, Bn = {z ∈ Cn : |z| < 1}. The results are generalizations of known
propositions for entire functions of several variables.

Keywords: analytic function, unit ball, slice function, bounded L-index in direction.

The paper is devoted to analytic functions
in the unit ball. This class of analytic functi-
on of several variables is very important in
complex analysis [16,20].

Let 0 = (0, . . . , 0), b = (b1, . . . , bn) ∈
Cn \ {0} be a given direction, R+ = (0,+∞),
Bn = {z ∈ Cn : |z| < 1}, L : Bn → R+ be a
continuous function such that for all z ∈ Bn

L(z) >
β|b|

1− |z|
, β = const > 1. (1)

For a given z ∈ Bn we denote Sz = {t ∈ C :
z + tb ∈ Bn}.

Analytic function F : Bn → C is called a
function of bounded L-index in a direction b [7]
if there existsm0 ∈ Z+ such that for everym ∈
Z+ and every z ∈ Bn the following inequality
is valid

|∂mb F (z)|
m!Lm(z)

≤ max
0≤k≤m0

|∂kbF (z)|
k!Lk(z)

, (2)

where ∂0
bF (z) = F (z), ∂bF (z) =

n∑
j=1

∂F (z)
∂zj

bj,

∂kbF (z) = ∂b

(
∂k−1
b F (z)

)
, k ≥ 2.

The least such integer m0 = m0(b) is called
the L-index in the direction b of the analytic

function F and is denoted by Nb(F,L) = m0.
If n = 1, b = 1, L = l, F = f, then N(f, l) ≡
N1(f, l) is called the l-index of the function f.
In the case n = 1 and b = 1 we obtain the
definition of an analytic function in the unit
disc of bounded l-index [13,21]. The definition
is a generalization of concept of bounded L-
index in direction introduced and considered
for entire functions of several variables in [2,5,
9]. The primary definition of bounded index for
entire function of one variable was supposed by
B. Lepson [14].

There was proved some interesting properti-
es of entire functions from this class [2, 3].
Namely, an entire function F has bounded L-
index in the direction b if and only if the sli-
ce function gz(t) = F (z + tb) has bounded
lz-index as a function of variable t ∈ C and
there exists M > 0 such that N(gz, lz) ≤
M for all z ∈ Cn (lz(t) = L(z + tb) and
Nb(F,L) = max{N(gz, lz) : z ∈ Cn}. This
proposition shows a deep connection between
the entire function F of bounded L-index in the
direction b and the corresponding slice functi-
on gz(t) = F (z + tb). Clearly, the set Cn is
very large in this proposition. Therefore, there
are few known theorems [3] with lesser sets A
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instead Cn in Nb(F,L) = max{N(gz, lz) : z ∈
Cn}. Moreover, there is an open problem [4]:
what is the least set A such that Nb(F,L) =
max{N(gz, lz) : z ∈ A}?

In this paper, we will state few statements
that contain the basic properties of analytic
functions in the unit ball of bounded L-index
in a direction. They demonstrate a relationship
between analytic functions of several variables
with Nb(F,L) < ∞ and the corresponding
slice function of one variable. Note that for
a concept of bounded L-index in joint vari-
ables similar propositions have not a sense (see
definition and properties for various classes of
analytic functions in [1, 6, 8, 13,15,15,17]).

Denote lz(t) = L(z+ tb), gz(t) = F (z+ tb)
for a given z ∈ Cn.

Lemma 1. If an analytic function F : Bn → C
has bounded L-index Nb(F,L) in the direction
b, then for every z0 ∈ Bn the analytic functi-
on gz0(t), t ∈ Sz0, is of bounded lz0-index and
N(gz0 , lz0) ≤ Nb(F,L).

Proof. Let z0 ∈ Bn, g(t) ≡ gz0(t), l(t) ≡
lz0(t). Since for every p ∈ N

g(p)(t) = ∂pbF (z0 + tb), (3)

by the definition of bounded L-index in the
direction b for all t ∈ Sz0 and for p ∈ Z+ we
obtain

|g(p)(t)|
p!lp(t)

=
|∂pbF (z0+tb)|
p!Lp(z0 + tb)

≤

≤max

{
|∂kbF (z0 + tb)|
k!Lk(z0 + tb)

: 0≤k≤Nb(F,L)

}
=

= max
{ |g(k)(t)|
k!lk(t)

: 0 ≤ k ≤ Nb(F,L)
}
.

Hence, g(t) is a function of bounded l-index
and N(g, l) ≤ Nb(F,L). Lemma 1 is proved.

Equality (3) implies the following proposi-
tion.

Lemma 2. If an analytic function F : Bn → C
has bounded L-index in the direction b ∈ Cn

then Nb(F,L) = max {N(gz0 , lz0) : z0 ∈ Bn}.

However, maximum can be calculated on a
set A with a property

⋃
z0∈A{z0 + tb : t ∈

Sz0} = Bn. Thus, the following assertion is
valid.

Lemma 3. If an analytic function F :
Bn → C has bounded L-index in the directi-
on b and j0 is chosen with bj0 6= 0 then
Nb(F,L) = max{N(gz0 , lz0) : z0 ∈ Cn, z0

j0
=

0} and if
∑n

j=1 bj 6= 0 then Nb(F,L) =

max{N(gz0 , lz0) : z0 ∈ Cn,
∑n

j=1 z
0
j = 0}.

Proof. We prove that for every z ∈ Bn
there exist z0 ∈ Cn and t ∈ Sz0 with z = z0+tb
and z0

j0
= 0. Put t = zj0/bj0 , z0

j = zj − tbj, j ∈
{1, 2, . . . , n}. Clearly, z0

j0
= 0 for this choice.

However, the point z0 may not be contained
in Bn. But there exists t ∈ C that z0 +tb ∈ Bn.
Let z0 /∈ Bn and |z| = R1 < 1. Therefore,
|z0 + tb| = |z − zj0

bj0
b + tb| = |z + (t− zj0

bj0
)b| ≤

|z|+ |t− zj0
bj0
| · |b| ≤ R1 + |t− zj0

bj0
| · |b| < 1. Thus,

|t− zj0
bj0
| < 1−R1

|b| .

In the second part we prove that for every
z ∈ Bn there exist z0 ∈ Cn and t ∈ Sz0
such that z = z0 + tb and

∑n
j=1 z

0
j = 0. Put

t =
∑n
j=1 zj∑n
j=1 bj

and z0
j = zj − tbj, 1 ≤ j ≤ n.

Thus, the following equality is valid
∑n

j=1 z
0
j =∑n

j=1(zj − tbj) =
∑n

j=1 zj −
∑n

j=1 bjt = 0.
Lemma 3 is proved.
Note that for a given z ∈ Bn we can pi-

ck uniquely z0 ∈ Cn and t ∈ Sz0 such that∑n
j=1 z

0
j = 0 and z = z0 + tb.

Remark 1. If for some z0 ∈ Cn {z0 + tb :
t ∈ C}

⋂
Bn = ∅ then we put N(gz0 , lz0) = 0.

Lemmas 1–3 imply the following proposition.

Theorem 1. An analytic function F (z) :
Bn → C is a function of bounded L-index in the
direction b if and only if there exists number
M > 0 such that for every z0 ∈ Bn the function
gz0(t) is of bounded lz0-index with N(gz0 , lz0) ≤
M < +∞, as a function of variable t ∈ Sz0 and
Nb(F,L) = max{N(gz0 , lz0) : z0 ∈ Bn}.

Proof. The necessity follows from Lemma
1.
Sufficiency. Since N(gz0 , lz0) ≤ M, there exi-
sts max{N(gz0 , lz0) : z0 ∈ Bn}. We denote
this maximum by Nb(F,L) = max{N(gz0 , lz0) :
z0 ∈ Bn} <∞. Suppose that Nb(F ) is not the
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L-index in the direction b of the function F (z).
It means that there exists n∗ > Nb(F,L) and
z∗ ∈ Bn for which∣∣∂n∗b F (z∗)

∣∣
n∗!Ln∗(z∗)

> max
0≤k≤Nb(F,L)

∣∣∂kbF (z∗)
∣∣

k!Lk(z∗)
. (4)

Since for gz0(t) = F (z0 + tb) we have g(p)

z0 (t) =
∂pF (z0+tb)

∂bp
, inequality (4) can be rewritten as∣∣g(n∗)

z∗ (0)

∣∣
n∗!ln

∗
z∗ (0)

> max

{
|g(k)
z∗ (0)|

k!lk
z∗ (0)

: 0 ≤ k ≤ Nb(F,L)

}
.

It contradicts that all lz0-indices N(gz0 , lz0) are
not greater than Nb(F ). As follows Nb(F ) is
the L-index in the direction b of the function
F (z). Theorem 1 is proved.

From Lemma 3 the following condition is
sufficient in Theorem 1: there exists M < +∞
such that N(gz0 , lz0) ≤ M for every z0 ∈ Cn

with
∑n

j=1 z
0
j = 0.

In connection with Lemma 3 and 1 there is
a natural question: what is the least set A for
which Nb(F,L) = max

z0∈A
N(gz0 , lz0). Below we

prove propositions which give a partial answer
to the question. A solution is partial because
it is unknown whether our sets are the least
which satisfy the mentioned equality.

Theorem 2. Let A0 ⊂ Cn be such that⋃
z∈A0
{z + tb : t ∈ Sz} = Bn. An analytic

function F (z) : Bn → C is of bounded L-index
in the direction b if and only if there exists
M > 0 such that for all z0 ∈ A0 the function
gz0(t) is of bounded lz0-index with N(gz0 , lz0) ≤
M < +∞, as a function of variable t ∈ Sz0 and
Nb(F,L) = max{N(gz0 , lz0) : z0 ∈ A0}.

Proof. By Theorem 1 the analytic functi-
on F is of bounded L-index in the direction b
if and only if there exists number M > 0 such
that for every z0 ∈ Bn the function gz0(t) is
of bounded lz0-index N(gz0 , lz0) ≤ M < +∞,
as a function of variable t ∈ Sz0 . But in vi-
ew of property of the set A0 for every z0 + tb
there exist z̃0 ∈ A0 and t̃ ∈ Bz̃0 such that
z0+tb = z̃0+ t̃b. In other words, for all p ∈ Z+

(gz0(t))
(p) = (gz̃0(t̃))

(p). But t̃ depends on t.
Thus, the condition that gz0(t) is of bounded
lz0-index for all z0 ∈ Bn is equivalent to the
condition g

z̃0
(t) is of bounded lz̃0-index for all

z̃0 ∈ A0.

Remark 2. An intersection of arbitrary
hyperplane H = {z ∈ Cn : 〈z, c〉 = 1} and
the set Bnb = {z + 1−〈z,c〉

〈b,c〉 b : z ∈ Bn}, where
〈b, c〉 6= 0, satisfies conditions of Theorem 2.

We prove that for every w ∈ Bn there exist
z ∈ H

⋂
Bnb and t ∈ C such that w = z + tb.

Choosing z = w + 1−〈w,c〉
〈b,c〉 b ∈ H

⋂
Bnb, t =

〈w, c〉 − 1

〈b, c〉
, we obtain

z + tb = w +
1− 〈w, c〉
〈b, c〉

b +
〈w, c〉 − 1

〈b, c〉
b = w.

Theorem 3. Let A be a dense set in Bn.
An analytic function F : Bn → C is of
bounded L-index in the direction b if and only
if there exists M > 0 such that for every
z0 ∈ A the function gz0(t) is of bounded lz0-
index N(gz0 , lz0) ≤ M < +∞, as a function
of t ∈ Sz0 , and Nb(F,L) = max{N(gz0 , lz0) :
z0 ∈ A}.

Proof. The necessity follows from
Theorem 1.

Sufficiency. Let A be a closure of the set A.
Since A = Bn, for every z0 ∈ Bn there exists
a sequence (zm) such that z(m) → z0 as m →
+∞ and z(m) ∈ A for all m ∈ N. But F (z +
tb) is of bounded lz-index for all z ∈ A ∩ Bn
as a function of variable t. Therefore, in view
of definition of bounded lz-index there exists
M > 0 such that for all z ∈ A, t ∈ C, p ∈ Z+

|g(p)z (t)|
p!lp(t)

≤ max
{
|g(k)z (t)|
k!lkz (t)

: 0 ≤ k ≤M
}
.

Substituting instead of z a sequence z(m) ∈
A and z(m) → z0, for each m ∈ N we

obtain |g(p)zm (t)|
p!lpzm (t)

≤ max

{
|g(k)zm (t)|
k!lkzm (t)

: 0 ≤ k ≤M

}
.

In other words, we have

|∂pbF (zm + tb)|
p!Lp(zm + tb)

≤ max
0≤k≤M

∣∣∂kbF (zm + tb)
∣∣

k!Lk(zm + tb)
.

(5)

Remind that F is an analytic function in
Bn and L is a positive continuous function.
Therefore, we calculate a limit in (5) as m →
+∞ (zm → z0). Then for all z0 ∈ Bn, t ∈ Sz0 ,
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m ∈ Z+

|∂pbF (z0 + tb)|
p!Lp(z0 + tb)

≤ max
0≤k≤M

|∂kbF (z0 + tb)|
k!Lk(z0 + tb)

.

This inequality implies that for every given
z0 ∈ Bn F (z0 + tb) is of bounded L(z0 + tb)-
index as a function of variable t. Applying
Theorem 1 we obtain the desired conclusion.
Theorem 3 is proved.

Remark 2 and Theorem 3 yield the following
corollary.
Corollary 1. Let A0 be such that its closure
is A0 = {z ∈ Cn : 〈z, c〉 = 1}

⋂
Bnb, where

〈c,b〉 6= 0, Bnb = {z + 1−〈z,c〉
〈b,c〉 b : z ∈ Bn}. An

analytic function F (z) : Bn → C is of bounded
L-index in the direction b if and only if there
exists number M > 0 such that for all z0 ∈ A0

the function gz0(t) is of bounded lz0-index with
N(gz0 , lz0) ≤ M < +∞, as a function of vari-
able t ∈ Sz0 . And Nb(F,L) = max{N(gz0 , lz0) :
z0 ∈ A0}.

Proof. In view of Remark 2 in Theorem
2 we can take an arbitrary hyperplane B0 =
{z ∈ Bn : 〈z, c〉 = 1}, where 〈c,b〉 6= 0. Let
A0 be a dense set in B0, A0 = B0. Repeati-
ng considerations of Theorem 3, we obtain the
desired conclusion.

Indeed, the necessity follows from Theorem
1 (in this theorem same condition is satisfied
for all z0 ∈ Cn, and we need this condition
for all z0 ∈ A0 such that A0∩Bn = {z ∈ Bn :
〈z, c〉 = 1}).

To prove the sufficiency, we use the density
of the set A0. Obviously, for every z0 ∈ B0

there exists a sequence z(m) → z0 and z(m) ∈
A0. But gz(t) is of bounded lz-index for all z ∈
A0. Taking the conditions of Corollary 1 into
account, for some M > 0 and for all z ∈ A0,
t ∈ C, p ∈ Z+ the following inequality holds
g
(p)
z (t)
p!lpz(t)

≤ max
{
|g(k)z (t)|
k!lkz (t)

: 0 ≤ k ≤M
}
.

Substituting an arbitrary sequence z(m) ∈
A, z(m) → z0 instead of z ∈ A0, we have
|g(p)
z(m)

(t)|
p!lp
z(m)

(t)
≤ max

{
|g(k)
z(m)

(t)|

k!lk
z(m)

(t)
: 0 ≤ k ≤M

}
, that

is ∣∣∂pbF (z(m)+tb)
∣∣

Lp(z(m)+tb)
≤ max

0≤k≤M

∣∣∂kbF (z(m)+tb)
∣∣

k!Lk(z(m)+tb)
.

However, F is an analytic function in Bn, L is a
positive continuous. So we calculate a limit as
m → +∞ (zm → z). For all z0 ∈ B0, t ∈ Sz0 ,
m ∈ Z+ we have

|∂pbF (z0 + tb)|
Lp(z0+tb)

≤ max
0≤k≤M

∣∣∂kbF (z0 + tb)
∣∣

k!Lk(z0 + tb)
.

Therefore, F (z0 +tb) is of bounded L(z0 +tb)-
index as a function of t at each z0 ∈ Bn. By
Theorem 3 and Remark 2 F is of bounded
L-index in the direction b.

Remark 3. Let H = {z ∈ Cn : 〈z, c〉 =
1}. The condition 〈c,b〉 6= 0 is essential. If
〈c,b〉 = 0 then for all z0 ∈ H and for all t ∈ C
the point z0 + tb ∈ H because 〈z0 + tb, c〉 =
〈z0, c〉+t〈b, c〉 = 1. Thus, this line z0 +tb does
not describe points outside the hyperplane H.

We consider F (z1, z2) = exp(−z2
1 + z2

2), b =
(1, 1), c = (−1, 1). On the hyperplane −z1 +
z2 = 1 function F (z1, z2) takes a look

F (z0 + tb) = F (z0
1 + t, z0

2 + t) =

= exp(−(z0
1 + t)2 + (1 + z0

1 + t)2) =

= exp(1 + 2z0
1 + 2t).

Using the definition of l-index boundedness
and evaluating corresponding derivatives it is
easy to show that exp(1+2z0

1+2t) is of bounded
index with l(t) = 1 and N(g, l) = 4.

Thus, F is of unbounded index in the
direction b. On the contrary, we assume
Nb(F ) = m and calculate directional derivati-
ves

∂pbF = 2p(−z1 + z2)p exp(−z1 + z2), p ∈ N.

By the definition of bounded index, an
inequality holds ∀ p ∈ N ∀z ∈ Cn

2p| − z1 + z2|p| exp(−z1 + z2)| ≤
≤ max

0≤k≤m
2k| − z1 + z2|k| exp(−z1 + z2)|. (6)

Let p > m and |−z1+z2| = 2. Dividing equati-
on (6) by 2p| exp(−z1+z2)|, we get 22p ≤ 22m. It
is impossible. Therefore, F (z) is of unbounded
index in the direction b.

Using calculated derivatives it is easy to
prove that the function F (z1, z2) is of bounded
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L-index in the direction b with L(z1, z2) =
2| − z1 + z2|+ 1 and Nb(F,L) = 0.

Now we consider another function

F (z) = (1 + 〈z, d〉)
∞∏
j=1

(1 + 〈z, c〉 · 2−j)j, c 6= d.

The multiplicity of zeros of the function F
increases to infinity. In view of definition of
L-index in the direction it means that F (z)
is of unbounded L-index in any direction b
(〈b, c〉 6= 0) and for any positive continuous
function L.

We select b ∈ Cn that 〈b, d〉 = 0. Let H =
{z ∈ Cn : 〈z, d〉 = −1}. But for z0 ∈ H we
have

F (z0 + tb)=(1+〈z0, d〉+ t〈b, d〉)×

×
∞∏
j=1

(1 + 〈z0, c〉2−j + t〈b, c〉2−j)j ≡ 0.

Thus, F (z0 + tb) is of bounded index as a
function of variable t.

Theorem 4. Let (rp) be a positive sequence
such that rp → 1 as p → ∞, Dp = {z ∈ Cn :
|z| = rp}, Ap be a dense set in Dp (i.e. Ap =

Dp) and A =
∞⋃
p=1

Ap. An analytic function F

in Bn is of bounded L-index in the direction b
if and only if there exists number M > 0 such
that for all z0 ∈ A the function gz0(t) is of
bounded lz0-index N(gz0 , lz0) ≤M < +∞, as a
function of variable t ∈ Sz0 . And Nb(F,L) =
max{N(gz0 , lz0) : z0 ∈ A}.

Proof. Theorem 1 implies the necessity of
this theorem.

Sufficiency. It is easy to prove {z + tb :
t ∈ Sz, z ∈ A} = Bn. Further, we repeat
arguments with the proof of sufficiency in
Theorem 3 and obtain the desired conclusion.

Auxiliary class Qn
b

The positivity and continuity of function L
and condition (1) are not sufficient to explore
the behavior of analytic function of bounded
L-index in direction. Below we impose an extra
condition that function L does not vary as
soon. Similar proposition for L : Cn → R+ are

obtained in [9]. For η ∈ [0, β], z ∈Bn, we defi-
ne λb1 (z, η, L) = inf

{
L(z+tb)
L(z)

: |t|≤ η
L(z)

}
,

λb2 (z, η, L) = sup
{
L(z+tb)
L(z)

: |t| ≤ η
L(z)

}
,

λb1 (η, L) = inf{λb1 (z, η, L) : z ∈ Bn},
λb2 (η, L) = sup{λb2 (z, η, L) : z ∈ Bn}.

If it will not cause misunderstandings, then
λb1 (z, η) ≡ λb1 (z, η, L), λb2 (z, η) ≡ λb2 (z, η, L),
λb1 (η) ≡ λb1 (η, L), λb2 (z, η) ≡ λb2 (η, L).

By Qb,β(Bn) we denote the class of all posi-
tive functions L : Bn → R+ satisfying (1) and
0 < λb1 (η) ≤ λb2 (η) < +∞ for any η ∈ [0, β]

Let D ≡ B1, Qβ(D) ≡ Q1,β(D).
The following lemma suggests possible

approach to compose function with Qb,β(Bn).

Lemma 4. Let Bn = {z ∈ Cn : |z| ≤ 1},
L : Bn → R+ be a continuous function,
m = min{L(z) : z ∈ Bn}. Then L̃(z) =
β|b|
m
· L(z)

(1−|z|)α ∈ Q
n
b(Bn) for every b ∈ Cn \ {0},

α ≥ 1.

Proof. Using the definition of Qn
b we have

∀z ∈ Bn

λb1 (z, η, L̃) = inf

{
L(z + tb)

(1− |z + tb|)α
(1− |z|)α

L(z)
:

|t| ≤ ηm(1− |z|)α

β|b|L(z)

}
≥

≥ inf

{
L(z + tb)

L(z)
: |t| ≤ ηm(1− |z|)α

β|b|L(z)

}
×

inf

{(
1− |z|

1− |z + tb|

)α
: |t| ≤ ηm(1− |z|)α

β|b|L(z)

}
Notice that if η ∈ [0, β], z ∈ Bn and |t| ≤
η

L(z)
then z + tb ∈ Bn. Indeed, we have |z +

tb| ≤ |z| + |tb| ≤ |z| + η|b|
L(z)

< |z| + β|b|
β|b|
1−|z|

= 1.

Therefore, the first infimum is not lesser than
a some constant K > 0 which is independent
from z and t0. Besides, we have ∀z ∈ Bn and
∀t ∈ Sz m

L(z)
≤ 1. Thus, for the second infimum

the following estimates are valid

inf

{(
1− |z|

1− |z + tb|

)α
: |t| ≤ ηm(1− |z|)α

β|b|L(z)

}
≥

≥ inf

{(
1− |z|

1− |z + tb|

)α
: |t| ≤ η(1− |z|)α

β|b|

}
=

=

(
1− |z|

1− |z + t∗b|

)α
.
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where |t∗| ≤ η(1−|z|)
β|b| . Now we find a lower esti-

mate for this fraction

1− |z|
1− |z + t∗b|

≥ 1− |z|
1− ||z| − |t∗b||

≥

≥ 1− |z|
1− ||z| − η(1−|z|)

β
|

Denoting u = |z| ∈ [0; 1), γ = η
β
∈ [0, 1], we

consider a function of one real variable s(u) =
1−u

1−|u−α(1−u)| = 1−u
1−|(1+γ)u−γ| . For u ∈ [0, γ

γ+1
]

the function s(u) strictly decreases and for
t ∈ [ γ

1+γ
; 1) the function s(u) ≡ 1

1+γ
. In fact, we

proved that λb1 (z, η, L̃) ≥ K · 1
1+ η

β
> 0. Hence,

we have λb1 (η, L̃) > 0. By analogy, it can be
proved that λb2 (η, L̃) <∞.

We often use the following properties
Qb,β(Bn).

Lemma 5. 1. If L ∈ Qb,β(Bn) then for
every θ ∈ C\{0} L ∈ Qθb,β/|θ|(Bn) and
|θ|L ∈ Qθb,β(Bn)

2. If L ∈ Qb1,β(Bn)
⋂
Qb2,β(Bn) and for all

z ∈ Bn L(z)> βmax{|b1|,|b2|,|b1+b2|}
1−|z| then

min{λb1
2 (β, L), λb2

2 (β, L)}L ∈
Qb1+b2,β(Bn).

Proof.
1. First, we prove that (∀θ ∈ C\{0}) : L ∈

Qθb,β(Bn). Indeed, we have by definition

λθb1 (z, η, L) = inf

{
L(z+tθb)

L(z)
: |t|≤ η

L(z)

}
=

= inf

{
L(z+(tθ)b)

L(z)
: |θt| ≤ |θ|η

L(z)

}
=

= λb1 (z, |θ|η, L).

Therefore, we get

λθb1 (η, L)=inf{λθb1 (z,η, L) : z ∈ Bn} =

=inf{λb1 (z, |θ|η, L) : z ∈ Bn}=λb1 (|θ|η, L)>0,

because L ∈ Qb,β(Bn). Similarly, we prove that
λθb2 (η, L) < +∞. But |θ|η ∈ [0, β]. So η ∈
[0, β/|θ|]. Thus, L ∈ Qθb,β/|θ|(Bn).

Let L∗ = |θ| · L. Using definition of

λb1 (z, η, L∗) we have

λθb1 (z, η, L∗)= inf

{
L∗(z+tθb)

L∗(z)
: |t|≤ η

L∗(z)

}
=

= inf

{
|θ|L(z + tθb)

|θ|L(z)
: |t| ≤ η

|θ|L(z)

}
=

= inf

{
L(z + (tθ)b)

L(z)
: |θt| ≤ η

L(z)

}
=

= λb1 (z, η, L).

Therefore, we obtain

λθb1 (η, L∗) = inf{λθb1 (z, η, L∗) : z ∈ Bn} =

= inf{λb1 (z, η, L) : z ∈ Bn}=λb1(η, L)>0,

because L ∈ Qb,β(Bn). Similarly, we prove that
λθb2 (η, L∗) = λb2 (η, L) < +∞. Thus, L∗ = |θ| ·
L ∈ Qθb,β(Bn).

2. It remains to prove a second part.
If z0 ∈ Bn and |t| ≤ η

L(z0)
then z0 +tb1 ∈ Bn

and z0 + tb2 ∈ Bn. Indeed, we have

|z0 + tb1|≤|z0|+ |t| · |b1| ≤ |z0|+ η|b1|
L(z0))

<

< |z0|+ β|b1|
βmax{|b1|,|b2|,|b1+b2|}

1−|z0|

≤ 1.

Thus, z0 + tb1 ∈ Bn.
Denote L∗(z) = min{λb1

2 (β, L), λb2
2 (β, L)} ·

L(z). Assume that min{λb1
2 (β, L), λb2

2 (β, L)}=
λb2

2 (β, L). Using definitions of λb1 (η, L),
λb2 (η, L) and Qb,β(Bn) we obtain that

inf

{
L∗(z0 + t(b1 + b2))

L∗(z0)
: |t| ≤ η

L∗(z0))

}
≥

≥ inf

{
L∗(z0 + tb1 + tb2)

L∗(z0 + tb2)
: |t| ≤ η

L∗(z0)

}
×

× inf

{
L∗(z0 + tb2)

L∗(z0)
: |t| ≤ η

L∗(z0)

}
=

=inf

{
λb2

2 (β, L)L(z0+tb1+tb2)

λb1
2 (β, L)L(z0 +tb2)

:

|t|≤η/(λb2
2 (β, L)L(z0))}×

×inf{λb2
2 (β, L)L(z0+tb2)/λb1

2 (β, L)L(z0) :

|t|≤η/λb2
2 (β, L)L(z0)}=

= inf{L(z0 + tb1 + tb2)/L(z0 + tb2) :
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|t− t0| ≤ η/(λb2
2 (β, L)L(z0 + b2))}×

× inf{L(z0 + tb2)/L(z0) :

|t| ≤ η/(λb2
2 (β, L)L(z0))} ≥

≥ inf{L(z0 + tb1 + tb2)/L(z0 + tb2) :

|t| ≤ η/λb2
2 (β, L)L(z0)}×

× inf

{
L(z0 + tb2)

L(z0)
: |t− t0| ≤

η

L(z0)

}
≥

≥ inf{L(z0 + tb1 + tb2)/L(z0 + tb2) :

|t− t0| ≤ η/(λb2
2 (β, L)L(z0))}λb2

1 (z0, η, L) ≥

≥ λb2
1 (η, L)

L(z0 + t̂b1 + t̂b2)

L(z0 + t̂b2)
(7)

where t̂ is a point at which infimum is attained

L(z0+ t̂b1+ t̂b2)

L(z0+ t̂b2)
=

= inf

{
L(z0+tb1+tb2)

L(z0+tb2)
: |t|≤ η

λb2
2 (β, L)L(z0)

}
.

But L ∈ Qb2,β(Bn), then for all η ∈ [0, β]

sup

{
L(z0 +tb2)

L(z0)
: |t|≤ η

L(z0)

}
≤λb2

2 (η, L)<∞.

Hence, L(z0 + tb2) ≤ λb2
2 (η, L) · L(z0), i.e. for

t = t̂ we have L(z0) ≥ L(z0+t̂b2)

λ
b2
2 (η,L)

. Using a proved

inequality and (7), we obtain

inf{L∗(z0+t(b1+b2))/L∗(z0) : |t|≤η/L∗(z0)}≥

≥λb2
1 (η, L)inf

{
L(z0+tb1+ t̂b2)/L(z0 + t̂b2) :

|t|≤ η

λb2
2 (β, L)L(z0)

}
≥λb2

1 (η, L)×

× inf
{
L(z0+tb1+ t̂b2)/L(z0+ t̂b2) :

|t|≤ ηλb2
2 (η, L)

λb2
2 (β, L)L(z0! + t̂b2)

}
≥

≥λb2
1 (η, L) · inf{L(z0+tb1+ t̂b2)/L(z0+ t̂b2) :

|t|≤η/L(z0+ t̂b2)}=λb2
1 (η,L)λb1

1 (z0+ t̂b2, η, L)≥
≥ λb2

1 (η, L)λb1
1 (η, L).

Therefore, λb1+b2
1 (η, L∗) ≥

λb2
1 (η, L)λb1

1 (η, L) > 0. By analogy, we can
prove that for all η ∈ [0, β] λb1+b2

2 (η, L∗) <
+∞. Thus, L∗ ∈ Qb1+b2,β(Bn).
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