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In applications models described in the framework of delay differential equations (DDEs) 
are often used. The advantage of such approach is simplifying a description of complex natural 
phenomena which take some time. Using even one DDE with single delay one can reflect oscillatory 
dynamics typical for many biological systems. One ODE with two delays or two DDEs with si
ngle delay are sufficient to reflect stability switches with increasing delay. Simple DDEs models 
can also reflect chaotic dynamics. Although DDEs can be very useful in applications, they lead to 
much more complicated mathematical analysis than in ODEs case. DDEs define infinite dimensi
onal semi-dynamical systems. Comparing to appropriate ODEs it should be noticed that DDEs 
not necessarily preserve non-negativity of solutions, it can be difficult to study global existence 
of solutions, and moreover global stability can be really hard to prove. Therefore, proposing the 
model based on DDEs one should be very careful and check at least basic properties to be sure 
that the model is properly defined.

Introduction
M odelling o f biological systems in the 

framework of delay differential equations 
(DDEs) has a long history. Probably the 
eldest DDE m odel is the Hutchinson equati
on [34] proposed in 1948 for the description of 
population dynamics. This equation reads

A  =  r N ( t ) ( l  — , ( 1)

where N (t) reflects the population size at time 
t, K  is its carrying capacity and t is the delay 
in per capita N /N growth rate. For many years 
the delay has been typically introduced to this 
per capita growth rate, compare e.g. [36], leadi
ng to the models of the general form

N  =  N (t )F  (N ( t  — t ) ) ,  (2)

which preserves non-negativity.
Clearly, the integral form N  (t) =

N (0) exp ^ f  F  ( N (s — t ) ) d ^  is equivalent to

Eq. (2) under the weak assumption that F  is 
integrable and this guarantees non-negativity 
for N (0) >  0. Notice, that typically in biologi
cal models F  is of class C 1. Moreover, the 
form of Eq. (2) guarantees global existence of

solutions. Clearly, defining a continuous initial 
function p  : [—t , 0] ^  R +  (R + ) we can use 
the step method, compare e.g. [32], that is the 
m ethod o f mathematical induction applied to 
the subsequent intervals [u t , (n +  1)t], and 
show the existence of the solution for all t >  0 .

Although most o f natural phenomena is 
non-linear, also linear DDEs can be someti
mes used; e.g. Bratsun et al.[14] proposed the 
following linear equation

x  =  A  — B x ( t )  — C x ( t  — t ) (3)

as the description of biochemical reactions 
channel

0 2̂  P ,  p  —̂  0 , p  ^  0 , (4)

thinking about oscillatory dynamics. However, 
it occurs that such type o f oscillatory dynami
cs is present for the critical value of time delay 
and always leads to negative solutions [27]. 
This is one of the main problems for modelling 
using DDEs.

Moreover, as mentioned above to solve even 
such simple equation as Eq. (3) one needs to 
know the behaviour o f the variable x  on the 
whole interval [—t , 0], that is an initial condi
tion is a function, typically continuous, whi
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ch means that the problem is infinite dimensi
onal. Also an eigenvalue problem  is much more 
com plex than for ODEs. Clearly, looking for 
exponential solutions to Eq. (3) one gets

A =  —B  — C  ex p (—At ), (5)

and therefore there are infinitely many ei
genvalues for this equation. This means that it 
is not possible to calculate all the eigenvalues. 
One can only try to estimate real parts of ei
genvalues to check stability, compare e.g. [22] 
and the references therein. We should also noti
ce that the dynamics o f DDEs can be much 
richer than for appropriate ODEs, including 
multiple stability switches and chaotic behavi
our, compare e.g. [33].

In this paper we present some results 
concerning specific models, as mentioned 
above linear equation for biochemical reactions 
channel and delayed logistic equation.

N egativity of solutions to linear 
equation (3)

In this section we present the results obtai
ned in [27] concerning Eq. (3). As it is 
mentioned in Introduction, Bratsun et al. [14] 
considered the reaction channel (4) and used 
Eq. (3) as the mathematical description of that 
channel. In this case we require A, B , C > 0  as 
they reflect reactions propensities. In [27] we 
studied Eq. (3) with initial data of the form

x (t) =  0 for t <  0 and x (0) =  x° >  0 .
(6)

This initial data reflect the fact that the reacti
on channel (4) is triggered at t =  0. Although 
such type pf initial data is not typical, as 
it is noncontinuous, we can easily see that 
the Cauchy problem (3),(6) (and other similar 
problems with initial data having discontinuity 
in some points) is equivalent to the standard 
problem with continuous initial function starti
ng from to =  t . Clearly, for t E [0, t] Eq. (3) 
can be rewritten in the integral form

t —T

x(t)  =  B  + ( x 0 — B )  e —Bt—c J  x ( s ) e —B(t—s—
—T

which is continuous even if x is discontinuous 
in some points. Moreover, for x defined by

Eq. (6) we calculate x (t) =  x i(t )  =  B +  
(x° — A ) e —Bt for t E [0 ,t] implying that our 
Cauchy problem is equivalent to solving Eq. (3) 
with initial data t° =  t  and x =  x 1.

It is known that the dynamic of Eq. (3) 
depends on the ratio between the coefficients 
B  and C  as well as the magnitude of delay t . 
Clearly, if t =  0, then we have x  =  A  — (B  +  
C )x ( t )  and the steady state x ss =  A / (B  +  C ) 
is asymptotically stable. Eq. (3) depends on all 
parameters continuously, and therefore to get 
the change of stability a pair o f purely imagi
nary eigenvalues should appear. Moreover, 
these eigenvalues should cross imaginary axis 
from left to right. Let A =  iu , u  >  0. Then 
from Eq. (5) we get

iu  =  —B  — C e —iu,T = ^  \iu +  B\ =  C.

Following [15] we define an auxiliary function

F  (z) =  z +  B 2 — C 2,

where z =  u 2 and positive zeros of F  gi
ves purely imaginary eigenvalues. Hence, if 
B  >  C , then F  has no positive zeros implying 
that x s s  is stable independently of t , while for 
B  <  C  we have z° =  C 2 — B 2, and therefore 
purely imaginary eigenvalues are expressed as 
± i \ f C 2 — B 2. For these eigenvalues we can 
calculate critical values o f delays as Tt h , k  =  

+  2kn. Moreover, the sign o f F'(z°)  
describes the direction of the movement o f the 
purely imaginary eigenvalues in the com plex 
plane. If it is positive, then the movement is 
from left to right leading to destabilisation 
o f the steady state. Clearly, F ' ( z ) =  1, and 
therefore the steady state x ss loses stability at 
the first critical delay t cr =  Tt h ,° and cannot 
gain it again for larger delays.

In [27] we proved that for the Cauchy 
problem (3),(6 ) periodic solutions appearing 
for B  <  C  and delay t >  Tcr always take 
negative values. To reduce the number of 
parameters we scale the time and space vari

a b le  obtaining

y =  1 — by(t) — y (t — t  ), (7)

were b <  1 with y(t) =  0 for t <  0 and y (0) =  
y° >  0. It occurs that instead of Eq. (7) we
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can study the simpler problem for b =  0 and 
y(t) =  0 in [—t , 0], because solutions to Eq. (7) 
can be expressed by solutions to this simpler 
equation

tv =  1 -  w(t  -  t ), w (t) =  0 for t <  0. (8) 

Calculating solutions to Eq. 8 we obtain
n

w(t)  =  E  (t -  (k -  1)t)k (9)
k=i

for t E [(n -  1 ) t , u t ), n >  1. Using Eq. (9) 
we show that there exists t E (2t, 3 t ) or 
7 E [3t, 4 t ) such that x(t)  <  0. Clearly, 
on the interval [t, 2t ) the solution w (t) =  
t -  2 (t -  t )2 has a maximum at t =  1 +  
t , implying that w  has a minimum around 
t =  t +  2 t  =  1 +  3 t  , where 2 t is
around the half o f the basic period. We have 
w(1 +  3 t ) =  24 (15 +  36t -  36 t2 +  4 t 3), and 
therefore w(1 +  f ) ~  -0 .07 3 9  and the
polynomial w(1 +  3 t ) is decreasing for t  E 
(3 -  \/6 , 3 +  -\/6) ~  (0.55, 5.45). This result is 
very important from the application point of 
view as it shows that such type o f linear equati
ons cannot be used not only as a description of 
biochemical reactions channel but also any bi
ological process. In such cases the delay should 
be introduced in a different way, see [37, 13] for 
details.

Bifurcation with respect to delay for 
the logistic equation

In the series o f papers [23, 8 , 9] we studi
ed the logistic equation and its generalisati
ons in the context o f tumour growth dynamics. 
Because the delay reflect the length of the cell 
cycle in this case, the classic form of delayed 
logistic equation ( 1) seems to be not proper. 
Therefore, we consider

r  =  r V ( t  — t ) (1 -  V (t  — t ) ) ,  V (0) =  V 0 >  0,
(10)

where V  describes the tumour volume reflected 
as a percentage of the maximal possible si
ze that can be achieved without additional 
external supply of nutrients and r is the 
maximal growth rate. As it is mentioned in 
Introduction, such type o f equations can have 
negative solutions, compare [2] for more detai

ls on that topic. Therefore, we need to restri
ct the values o f parameters, including delay, 
to preserve positivity. On the other hand, for 
Eq. (10) negative solutions are possible only 
for large values of V 0 and t , implying that 
such case is biologically irrelevant, because the 
description on the basis o f the logistic equation 
can be used only for the initial stage of tumour 
growth, before the tumour angiogenesis starts.

Describing some process using DDEs we are 
typically interested in the dependance of the 
model dynamics on the magnitude o f delay. 
However, as the problem is infinite dimensional 
and defined on a Banach space o f continuous 
functions C , where C =  E C ( [ - t ,  0], R ) } ,  
we see that the space depends on the delay 
and therefore the delay cannot be treated 
as a parameter straightforward. However, in 
the case with only one discrete delay, as for 
Eq. (10), it is not a big problem, because for 
t  >  0 we can rescale the time t ^  t/T obtaini
ng

V  =  r T V ( t - 1) (1 -  V (t -  1) ) ,  V (0) =  V 0 >  0 ,
(11)

that is the equation with constant delay and t 
being a parameter.

Let f  ( V ) =  r T V (1 -  V ). Then Eq. (11) can 
be written as dotV  =  r T f  ( V ( t - 1)). Due to the 
properties of the function f  we have two steady 
states for Eq. 11, that is the trivial W =  0 and 
positive V2 =  1. The linearised equation reads

X(t) =  r T f ' ( V ) x ( t  -  1)

implying that the characteristic equation for 
Eq. (11) has the form (5) with B  =  0 and 
C  =  - r T f '(V ). For V4 there is f ' (0 )  =  
rT >  0. Hence, there exists a real positi
ve eigenvalue and the trivial steady state is 
unstable independently of the delay. On the 
other hand, for V2 we have f ' ( 1 ) =  - r T  <  0 . 
The full analysis of the characteristic equati
on Eq. (5) is presented in the previous section. 
Now, the threshold value of the delay can be 
expressed as Tcr =  2̂  and for t  <  Tcr the steady 
state V2 is stable, while for t  >  Tcr it remains 
unstable.

Moreover, in [9] we showed that if

(11* -  4 ) ( f " ( 1 ) )2 > * f '" ( 1 ) f ' ( 1 ) ,  (12)
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then a stable Hopf bifurcation occurs at rcr. To 
study stability of appearing periodic orbits we 
need to find the coefficient o f the third term 
in Taylor expansion o f the periodic solution. 
To do this we use the approach of normalised 
bounded variation functions (N BV) proposed 
by Diekamnn et al. [16]. Let us change the vari
able z(t) =  x (t) — 1 such that the positive 
steady state V2 is moved to 0. Therefore,

We have d2A ( i n , 2\fn(i)\) =  —i / /(1)l, and 
therefore the denominator of p c reads

Ш.
4 n

4 + n  ' (1)|(1 -  T

2 |f ' ( 1)|n
4 +  n 2

<  0 .

z(t) =  a f ( z ( t  — 1) +  1), a  =  гт. :i3 )

To find the numerator we need to calculate the 
derivatives of the non-linear part G. Let u, v, 
w E C be any test functions. Then

We easily see that L(f>) =  a f ' ( 1 ) f ( —1) and 
G (0 ) =  a  ( f  ( 0 ( —1) +  1) — f ' ( 1 ) f ( —1)), 0  E C , 
are the linear and non-linear part o f Eq. (13), 
respectively. The N BV function ( (9,  a)  for 
Eq. 13 reads

0 for 9 E [0,1),
a f '  (1) for 9 =  1,

d?G(0,
2 |f ' ( 1)1

) (U,V) =  a 0f ''( 1 )U( — 1 )V(—1)

and
d?G(0,

2|f ' ( 1)1
)(u , V, w)

z (9,T )

while the characteristic equation has the form

=  a o f ' ' ' ( 1)u (—1)v (—1)w (—1).

Moreover, Д (0 , 21/ '(1)1 )

-1
=  2 , while

Д (А ,а ) =  A +  a | f '(1)|exp(—A) =  0. (14) ( Д ( ‘ л - / m f )  =  —2 ( 2 i  +  ^  Therefore

Purely imaginary eigenvalues ± iu °  =  ± i n 
appear for a° =  n and are simple. Let
T(9) =  ex p (in9)p, p  =  0 be a right ei
genvector for the eigenvalue i n . We need 
choose a left eigenvector T (s ) =  ex p (ins)q 
such that qd1A ( i n , 2 )p =  1, where d1 denotes 
the derivative with respect to the first variable 
A. However, d1A ( i 2, ) =  1 +  i 2 and choosing

we obtain the desired

1 qd3G (0, 2 ] Щ ) ( ф ф - ф) =  — 4  d + 0  f
n f п , A f  ' ' ' (1)

f  W

qdlG(0 ,
21 f  ' ( 1)|-

) №  (•, 0), ф

f  ' ' ( 1)_ n  +  i
2 V2 +  J\ | f'(1)|

4+n2p  = 1  — i n and q 
property.

Now, we can calculate the third term coeffi
cient p 2 as

and

1 П
2 qd2G (0 ' 2 |Т '(1)|-

h 2
^  ^ 2Д(ішо, ao)p)

where p , q are defined above, d2 is the deri
vative with respect to the second variable a, 
and

c =  1 q d1G (0 ,a °)(T , T, T ) +  
qdfG(0,  a °) (T<j (•, 0), T ) +
1 qd2G (0 ,a ° ) (T $ 2 , 2iu °), T ) ,

where d1, i =  2, 3 denotes the derivative o f the 
ith order with respect to the first variable and

(9, a) =  ead(A(a,  a ° ) )—1d1G(0, a ° )(T , T 1).

H 1 — i V  4  — i 2
10

Eventually, we obtain

)(Ф ф (-,гп ), Ф

f  ' ' ( 1) 
f  ' ( 1)|

S c  =  _  l L n i L  +  1 ± L z ± (  T «
^  \f'(i)\ 5 { \ m \ .

We easily see that if Inequality (12) is satisfied, 
then p 2 >  0 and because all eigenvalues other 
than ± i n  are located in the left-hand com plex 
half-plane the periodic solutions exit for t  >  
Tcr and are stable.

2

2
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Let us check Inequality (12) for Eq. (11). As 
the fight-hand side of Eq. (11) is a polynom i
al o f the second degree, the third derivative 
equals 0, while the second one is non-zero, 
and therefore Inequality (12) is easily fulfi
lled. Hence, bifurcating periodic solutions are 
stable.

As we can see from the analysis presented 
above, studying bifurcations in the case of 
DDEs is not easy, even for such simple 
equation as Eq. (11). The situation is much 
more com plex when more than one delay is 
introduced into the model. Then stability swi
tches with increasing delay can be observed, 
compare [38, 39, 42]. This means that with 
increasing delay there appears a sequence of 
critical values of the delay and the steady state 
is stable for the delays between some critical 
values o f the delay, while is unstable between 
others. It should be marked, that if the steady 
state destabilises for some critical delay, than 
eventually it must remain unstable.

Final remarks
As we can see from the examples presented 

in this paper, analysis of even simple DDEs can 
be really complicated. Many other interesting 
examples of the models based on DDEs can be 
found in the literature, compare e.g. [10, 7, 5, 6 , 
26, 24, 28, 29, 41, 43] for the models describing 
different stages of tumour growth, [3, 4, 18, 
19, 20, 21, 25, 17, 12] for immune reactions 
modelling, also in the context of AIDS [11, 30] 
and tumour [31, 35, 40] or [1] for love affairs 
dynamics.

At the end we would like to recall that it 
is necessary to perform at least preliminary 
analysis o f the model we propose to descri
be a real phenomenon to be sure that the 
model is properly defined and can be biologi
cally relevant. The example of biochemical 
reactions channel described here is very signi
ficant, because mathematical description whi
ch seems "intuitive"is com pletely wrong. This 
shows that proposing mathematical models 
experimentalists should closely cooperate with 
mathematicians, as only such cooperation can 
guarantee that the model is properly defined.
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