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RATIONALLY REVERSIBLE CUBIC SYSTEMS

For cubic differential system with a singular point O(0,0) a weak focus it was found coefficient
conditions for O(0,0) to be a center. The presence of a center was proved by using the method of

rational reversibility.

1. Introduction

By using a nondegenerate transformation of
variables and a time rescaling, a cubic system
with a singular point with pure imaginary ei-
genvalues (A2 = +1, i = —1) can be brought
to the form

&=y +ax®+cxy+ fy®+ ka+
+maly + pry? + ry® = Pla,y),
= —(x+ gx* + dvy + by* + sx®+
+ax?y + nay® +1ly°) = Qx,y),

(1)

where the wvariables z,y and coefficients
a,b,...,sin (1) are assumed to be real. Then
the origin O(0,0) is a singular point of a center
or a focus type for (1), i.e. it is a weak focus. It
arises the problem of distinguishing between a
center and a focus, i.e. of finding the coefficient
conditions under which O(0, 0) is, for example,
a center. This problem is the so called the
"problem of the center"and the corresponding
conditions are called the "center conditions".

The derivation of necessary conditions for a
center existence often involves extensive use of
computer algebra (see, for example, [10], [12]),
in many cases making very heavy demands on
the available algorithms and hardware. The
necessary conditions are shown to be sufficient
by a variety of methods. A number of techni-
ques, of progressively wider application, have
been developed.

A theorem of Poincaré in [13] says that the
singular point O(0,0) is a center for (1) if and
only if the system has a nonconstant analytic
first integral F(z,y) = C in a neighborhood
of 0(0,0). It is known [1] that the origin is a
center for system (1) if and only if the system
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has in the neighborhood of O(0,0) an analytic
integrating factor of the form

M(:U)y) =1 + Zzozl Mk(wyy)y
where i are homogeneous polynomials of
degree k.

There exists a formal power series F'(x,y) =
> Fj(x,y) such that the rate of change of
F(x,y) along trajectories of (1) is a linear
combination of polynomials {(x* + 3*)7}%2, :

AF/dt =32, Li_1 (2 + y?)7.

Quantities L;, j = 1,00 are polynomials with
respect to the coefficients of system (1) called
to be the Lyapunov quantities [11]. The origin
0(0,0) is a center for (1) if and only if
L;=0,j7=1,00.

A singular point O(0,0) is a center for (1) if
the equations of (1) are invariant under reflecti-
on in a line through the origin and reversi-
on of time, called time-reversible systems. The
classical condition is that the system is invari-
ant under one or other of the transformati-
ons ($7y7t) (_$7y7 _t) or ($7y7t)
(x,—y,—t). The first corresponds to reflecti-
on the y-axis and the second to reflection in
the z-axis.

The time-reversibility in two-dimensional
autonomous systems was studied in [14] and
the relation between time-reversibility and the
center-focus problem was discussed in [18|.

In [9] by using the method of rational
reversibility it was found center conditions for
cubic differential system (1) with one invariant
straight line.

The paper is organized as follows. In Secti-
on 2 we present the results concerning the
problem of the center for cubic systems (1)

— —
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and formulate the main result. In Section 3
we describe the algorithm to transform a cubic
system to one which is symmetric in a line by
means of a rational transformation and finally
in Section 4 we find six series of conditions for
(1) to be rationally reversible and therefore a
singular point O(0,0) to be a center.

2. Statement of the main result

An algebraic curve f(z,y) = 0 is said to be
an invariant curve of system (1) if there exists
a polynomial K (x,y) such that

P-Of/ox+Q-0f/0y=K- [.

The polynomial K is called the cofactor of
the invariant algebraic curve f = 0. If the
cubic system (1) has sufficiently many invari-
ant algebraic curves f;(x,y) = 0, j = 1,q,
then in most cases a first integral (an integrati-
ng factor) can be constructed in the Darboux
form

a1 g2 L
1 2 fq

with a; € C not all zero. In this case we say
that the system (1) is Darboux integrable.

In [20] Zoladek mentioned three general
mechanisms for producing centers: searchi-
ng for 1) a Darboux first integral or 2) a
Darboux—Schwarz-Christoffel first integral or
by 3) generating centers by rational reversibi-
lity, and he claimed that these are sufficient
for producing all cases of real polynomial di-
fferential systems with centers. This conjecture
is still open, even for cubic systems (1).

The problem of the center was solved for
quadratic systems and for cubic symmetric
systems. If the cubic system (1) contains both
quadratic and cubic nonlinearities, then the
problem of finding a finite number of necessary
and sufficient conditions for the center is still
open. It was possible to find a finite number
of conditions for the center only in some parti-
cular cases (see, for example, [2-10, 15-17, 19]).

The problem of the center was completely

solved for cubic systems with at least
three invariant straight lines ([3, 4,
5, 17]) and for some classes of cubic
systems (1) with two invariant straight

lines and one invariant conic ([6, 7, §]).
The main results of these works are summari-
zed in the following theorem.
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Theorem 1. Every center in the cubic di-
fferential system (1) with:

1) three invariant straight lines comes from
a Darboux integrating factor or a rational
reversibility.

2) two invariant straight lines and one
invariant conic comes from a Darboux first
integral or a Darboux integrating factor.

The goal of this paper is to obtain the center
conditions for cubic differential system (1) by
using the method of rational reversibility. Our
main result is the following one.

Theorem 2. The cubic differential system
(1) is rationally reversible if and only if one of
the conditions 1) 6) is satisfied.

We shall prove Theorem 2 in Section 4.
There we shall provide explicit expressions for
center conditions.

3. Bilinear transformation in
cubic systems
It is well known from Poincaré [13] that if a di-
fferential system with a singular point O(0, 0)
a weak focus is invariant by the reflection with
respect, for example, to the axis X = 0 and
reversion of time then O(0,0) is a center for
(1) (X = 0 is called the axis of symmetry).
It is clear that (1) has a center at O(0,0) if
there exists a diffeomorphism & : U — V, & =
{X - 90($7y)7 Y = ¢($7y)}7 CI)(())O) - (070)7
which brings system (1) to a system with the
axis of symmetry.

In [12] is described an algorithm based on
application of Gréebner bases in the search for
a bilinear transformation, which is invertible in
a neighbourhood of the origin and transform a
given system to one which is symmetric in a
line. This algorithm is applied to find center
conditions for some cubic systems.

In this section we shall consider a general
mechanism to produce center by rational
reversibility. We seek a transformation of the
form

alX + bly QQX + bQY 9

v Q3X+63Y—1’ y= Q3X+63Y—1 ( )
with a;by —b1as 7£ 0 and aj, bj S R, j - 1, 2,3
The condition a0y — bias # 0 guarantees that
(2) is invertible in a neighborhood of O(0, 0)
and the singular point is mapped to X =Y =

115



0. Applying the transformation (2) to (1) we
obtain a system of the form

. P(X,Y)
X = R(X,)Y)’

whose orbits in some neighborhood of 0(0,0)
are the same as those of the system

. 4 . .
X = % U;XiYi=P(X,Y),
i+5=0
. 4 . .
Y= 3 VyX'Vi=Q(X,Y),

i+7=0

(3)

where Uy, Vi; are polynomials in the coeffici-
ents of the original system and the parameters
ai, ag, as, by, by, by of the transformation.

The requirement is to show that
ai,ag, as,by,bo,b3 can be chosen so that
the system (3) is symmetric in the Y-axis,
i.e. the transformation (2) brings in some
neighborhood of 0(0,0) the system (1) to one
equivalent with a polynomial system

X =Y+ M(X%Y), )
Y = —-X(1+ N(X2Y)).

The obtained system has an axis of symmetry
X = 0 and therefore 0(0,0) is a center for (1).
The system (4) is equivalent to the system (3)
if the following conditions are satisfied:

Vio =0, Usy = Vo = 0, Uiz = Vou — 0,

Ui =Vo1r =0, U =0, Voo =0
and

Voa = az[sb] + rb3 + bibo((k + )03
+(m + n)biby + (1 + p)b3)] = 0,

Vae = as|(2p — 3k — q)ayazb?
+daybias + nazb? + cabias
+(3(r + ) — 2(m + n))azb]
+mabs + (2b + ¢ — 2g)asbibyas
+(2f — 2a — d)agbias + a3l =0,

()
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Usg = 2aa2byas + [(m — s)ay

+(p — q@)az + 2(c — g)aslayazbs

‘HCCL?[)Q + a%(lbl — nbg + Tbg)

+2a§a3(bbl — dby + fbg) =0,

= (gaz + 2ga3)bi + [2(a + d)as
+{m + 2n — 3s8)as]b3b,

+[(31 — 3k + 2p — 2q)ay

+2(b + c)as|bibi + [2fas + pay

—(2m +n — 3r)ay]bl = 0,

Vos = (kaa — gaz)bi + [(m — s)ay
—(a+ d)as]btbs + [(p — g)as
—(b + C)ag]blbg + [lal—

—(n —r)ag — fas)by = 0,

Vor = qaiby + (m + 2n — 3s)a2agby
+(d — a)aaszbs + (31 — 3k
+2p — 2q)ayazby + [pby + (3r—
—2m — n)bslal + (2b — g)aiazasby
+(f — 2a)by — (b — c)by|adas = 0,

%2 = aagb% + (C — g)blbgag
+{(bay — day + faz)b3 — az = 0,

Vao = gai + (a + d)aiay
+(b+ c)arai + fa3 + 2as = 0,

U12

U11 = [dbl + (2[) +c— 2g)bg]agbl
+eay + (2f — 2a — d)ay)b3
+3as = O,

Un=02+b2—-1=0,

U10 = a161 + a262 — O,
Vip=aj+a3—1=0.

Next we shall study the compatibility of
(5). If (5) is compatible, then the cubic system
(1) with a weak focus at O(0,0) is rationally
reversible and a singular point O(0,0) is a
center.

4. Rationally reversible cubic systems

In this section we prove the Theorem 2 by
studying the compatibility of (5). It is easy to
verify that the equations Uy = 0, Vig = 0 of
(5) admit the following parametrization

a; = (2u)/(u? + 1), az = (u?—1)/(u?®+ 1),
by = (20)/(v? + 1), by = (v* —1)/(v? + 1),

where u and v are some real parameters. In
this case Ujg = j1j2 = 0, where j; = wv +u —
v+1, p=uwv—u+tv+l

Next assume j; = 0, then v = (1+u)/(1—wu)
and U;p = 0. The case j, = 0 is equivalent
with j; = 0 if we take into consideration that

j2(u7 U) - jl(_u7 _U)‘
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3.1. a3 — 0. In this case Vyu = 0 and V,y, =
0.

If w=0or u= —1, then from the equations
of (5) we obtain respectively the following two
series of conditions for the existence of a center:

1)
a=d=f=k=1l=p=q=0;
2)

b=c=g=k=1l=p=¢q=0.

Assume u(u 4+ 1) # 0, then the equations of
(5) yields the following series of conditions for
the existence of a center:

3)
= [(d = f)(u® — Tu + Tu? — 1)
+0(20u® — 6u® — 6u)|/[2(u? — 1)3],
c=[f(1 —u®) +0(12u® — 2u® — 2u)
+Ad = 7f)(u® — uh)]/[2u(uw® — 1)7],
= [(d+ )1 —u®) + (Td = f){u' —u?)
+0(2u® — 12u® + 2u)] /[4u{u? — 1)?],

[=[(m—s)(2u” — 14u® + 14u® — 2u)
+h(20u® + 20u? — ® — 54ut — 1))/
[2u®(u? — 1)2],
q = [3k(u* — 6u® + 1) + 8pu(u® — 1)?
[—6u((m g(] —6u®+ 1)(u? —1)]/
n= [Sk(u — 6u® + 1) (u® — 200 + H4u?

—20u? + 1) + 2u(4pu® — 4pu + 3su®
—18su? + 3u)(u* — 6u? + 1) (u? — 1)
—mu{3u? — 1)(u? — 3)(u* — 142>
L) — 1))/ [3207 0 — 1)7),

r = [k(u* — 6u? + 1)(u® — 4u® + 22u*
—4u® + 1) + 2m(ut — 6u? + 1)3(1 — u?)
+8pu?(u® — 8ub + 14u* — Su? + 1)

+2su(u? + 1)*(u? — 1)]/[32u®(u? — 1)3)].

3.2. az # 0. In this case from the equation
Voa = 0 of (5) we get
az = [a(u® — 1)* + u?(8bu — 4(d — [)(u? — 1))
—2(c — g)u(u? — 1))/ (u? + 1)
If w =0 or u= —1, then from the equations

of (5) we obtain respectively the following two
series of conditions for the existence of a center:

4)
f=—-2a, d= —3a, p=alb—c),
k=ag, s=0, |l =—2ab, q= —2ag;
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n = 2a?,

5)

:—2[) C:—Sb, q:b(a—d), m:2b27
fbf, r=20, k=—2ab, p= —2bf.

Assume u(u+ 1) # 0, then the equations of
(5) yields the following series of conditions for
the existence of a center:

6)

= [(60 + 2c)u{10u? — 3u* — 3)
+2d(u® — 1ut + 11u? — 1)
+5f(Tut —u® — Tu? +1)]/
[4(u’ + 1) (w? — )],
g = [14bu(u? — 6u® + 1) + 2cu(5u’
—14u? +5) + (3f — 2d) (u® — 15u*
+15u? — 1)]/[8u(u* + 1)),
= [(2df — 3f% + 4s)(u® + 1)
+4(bd — 5bf + cd — Acf)(u'® — u)
+ 2(4s — 14b* — 24bc — 10¢? + 4d>
— 24df + 31 /%) (u'® + u?) + (2560°
4 336bc | 1122 — 962 | 362df — 391 f2
+4s)(u!® + ut) + 8(157 f2 — 106b?
—140be — 42¢2 1 20d2 — 124df) (u | uF)
+2(1536b2 + 1752bc + 456¢% — 464d?
1 1866df — 1851 2 — 4s) (u!2 + u®)
+4(1389f% — 1994b* — 15920c — 334c¢?
+428d? — 1528df — 4s)u'® + 4(65b f
— 31bd — 23cd + 50¢f) (u'" — u?)
+8(67bd — 152bf + 39cd — 93¢ f)
(u® — uB) + 8(287cf — 181bd + 476bf
—129¢d)(u'® — u™) + 8(760bd — 13850 f
+332cd — 617cf)(utt — u®)]/
[Bu(u® + 1)*(u® + 1) (w* — 1)],
I = [(2df — 3f? — 8s)(u'® + 1)
+4(bd — 5bf + cd — dcf + 4q) (u'® — u)
+4(32s — Th* — 12bc — 5c* + 2d* — 17df
+ 212 (u™ + u?) + 4(123bf — 41bd
— 33cd + Ticf — 28q) (u'® — u?)
+4(158b% + 204bc + 54c? — 44d? + 196df
— 1952 — 64s)(u'? + u?) + 4(479bd
—913bf + 247cd — 442¢f + 36¢) (ut! — u®)
+4(96s — 969b% — 868bc — 187c? + 254d?
ZRT9Af | TATF2) (W | u) | 4(2543bf
—1527bd — 615¢d + 1016¢f — 60g) (u® — u")
+2(3656b2 + 2832bc + 552¢* — 848d?
| 2798df — 2280 f2 — 248s)u®]/
(1280 (u* + 1)%(u? — 1)],
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p = [3(2df — 3f% — 8s)(u** + 1)
+12(bd — 5bf + cd — 4cf + 4q) (u*
+ 2(4440* + T44bc + 348¢* — 248d?
4 OTRAf — 11012 1 1208) (12 + u?)
+4(24s — 21b* — 36bc — 152 + 6d>
—49df + 60 f%) (u?? + u?) + 4(24s
— 152152 — 2836bc — 1123¢2 + 4622
—2589df | 3612/2)(u® | uf)
+4(237bf — 119bd — 95¢cd + 222c f
~4g) (P — wP) + 4(763bd — 1857hf
+61led — 1598¢f — 60q)(u'? — u®)
+ 4127470 f — 4535bd — 3735¢d
+9252¢f — 76¢) (ul" — u")

+ (45984b2 + 629120bc + 185922
126082 + 62394df — 71367 f2
4 248) (' 1 u®) + 8(133310d — 29307b
+7427cd — 15456¢f — 44q) (u*® — u)
+8(5910d? — 23421b* — 230120bc — 557Hc?
— 23257df + 22740 % — 245)(u'* + u!°
+8(615690f — 33111bd — 14927¢d
+28154cf — 28q) (u'? — u'l) + 4(764040?
+66616bc + 14932¢* — 1802443
4 66126df — 615152 — 120s)u'2]/
1280 (ud + 1)1 (2 + D)3 — 1)),

r=[(2df — 3f% —8s)(u* — 1)
+4(bd — 5bf + cd — 4Acf + 4q) (u®® + u)
+ (1045 — 2862 — 48be — 2062 |+ 8d?
—62df + 75 %) (u** — u?)
+2(146b2 + 208bc + T8¢ — T6d>
+292df — 2672 + 565)(u*?* — u?)
+2(1691 f2 — 634b* — 1200bc — 5822
+252d? — 1164df — 565)(u?® — u®)

4 8(38bf — 19bd — 15¢d | 31cf — 8q)

(W 1 u®) + 8(1150d — 213bf

+75cd — 178¢f — 20¢) (u?* + u®)

4 8(1486b f — 4T1bd — 483¢d | 1331¢f

~8g)(u® +u7) + (1082867 1 18992be

1650002 — 31124 + 18250df — 23445 2

—888) (! — u®) + 4(3223bd — 20523b

+5471cd — 12300cf — 4q) (u'™ + u®)

+ (18768d? — 712560% — 793920bc

— 20808¢? — 80118df + 83069 /2 — 200s)

(1" — ul®) | 16(8q — T94Tbd | 15622b

—3847cd + 7511cf)(u® + u'l)

+ 4(446180% + 40224bc + 92222

— 107482 + 40200df — 37909 f2 — 565)

(™ = u'2) - 16(12157bd — 22291b f

+5381cd — 10054cf + 20q)ut?]/
[256ut (ut + 1)2(u® + 1)1,

_u)

m = [f(2d = 3f)(@® + 1) + 4(bd — 5bf
+ed —4def + 2q) (ut® — u) + 2(5088b3
+ 5496bc + 14162 — 1456d? + 5850df
— 5787 ) (u'? + u®) + 2(4d* — 14D?
— 24bc — 10c¢% — 32df + 39 %) (u'® + u?)
+ (32002 + 528bc + 2402 — 160d?
+586df — 711 2)(u!® + ut) + 8(453 f2
— 25002 — 396bc — 122¢2 + 52d?
— 348df) (uM + 1) + 4(4203 2 — 602612
— 4920bc — 1038¢? + 1324d? — 4720df )u'®
+ 8(2356bd — 4289bf + 1032cd — 1917cf
+2q) (u't — ) + 4(6g — 39bd + 81bf
—3led + Taef) (ut™ — u®) + 8(119bd
—304bf + 9led — 233cf + 4q) (u*® — u®)
4 8(dg — 577bd + 1508bf — 397cd | 883¢f)
(W —u")/[16u (ut + 1)%(w® + 1)),
n = [3(2df — 3f% — 8s)(u!® + 1)
+12(bd — 50f + cd — dcf + 4q)(u'®
+4(3060% + 388bc + 1062 — 84d>
+ 380df — 397f2 — 96s)(u'? + u?)
+4(48s — 21b* — 36bc — 152 + 6d>
—39df 1+ 53/2) (M + u?) + A(144s
— 1467b* — 1356bc — 305¢2 + 378d?
—1369df 1 1227 f2)(u!® 1 )
+2(5112b% + 4144bc + 856¢% — 1200d?
1 4106df — 35232 — 360s)u®
4 4(265bf — 99bd — Ted + 174¢f — 529)
(! —u?) + 4(789bd — 15790 f
+413cd — 782¢f + T6q) (u't — u®)
+4(3773bf — 2181bd — 917cd
+1592¢f — 116q)(u® — u")|/
(6402 (ut + 1) (u? — 1)?].

— )

In this way we have finished the proof of
Theorem 2 and the following theorem is valid
Theorem 3. If at least one of the following
six sertes of conditions 1) — 6) is satisfied, then
the cubic system (1) has a center at the origin.

It is easy to see that the center conditions
1) is symmetric with 2) and 4) is symmetric
with 5).
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