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Наведено результати класифікації груп породжених 3-становими автоматами над 2- 

літерним алфавітом, що діють суттєво вільно на границі бінарного дерева.

We report on the complete classification of groups generated by 3-state automata over 2-letter 
alphabet that act essentially freely on the boundary of the binary rooted tree.
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In tr o d u c t io n  Groups generated by Mealy 
type automata represent an important and 
interesting class of groups with connecti
ons to different branches of mathemati
cs, such as dynamical systems (including 
sym bolic dynamics and holomorphic dynami
cs), computer science, topology and probabili
ty. For more details about this class o f groups 
we refer the reader to survey papers [12, 3].

In the whole class of groups generated 
by automata, there is an important subclass 
of self-similar groups. These are the groups 
generated by initial automata that are 
determined by all states of a non initial 
automaton. The natural characteristic of such 
groups, which we will call complexity, is the 
pair (m , n) o f two integers, m  >  2 ,n  >  2 , 
where m  is a number of states and n is a 
cardinality of the alphabet. There are 6 groups 
of com plexity (2 , 2) and the most com pli
cated of them is the lamplighter group L  =  
(Z /2 Z )  \ Z  [12]. It is shown in [4] and [17] 
that there is not more than 115 different 
(up to isomorphism) groups o f com plexity 
(3, 2), although the number of corresponding 
automata up to symmetry is 194. Even though 
the complete characterization o f (3, 2)-groups 
is not achieved yet, a lot of information about 
these groups has been obtained. The motivati
on for this note is twofold: partially it comes 
from the necessity to understand this class of 
groups better, and additionally, it represents 
the venture in the search o f new interesti

ng examples of self-similar groups that might 
potentially serve as answers to questions posed 
at the end of the paper.

Groups generated by finite automata defi
ned over the m -letter alphabet, in particular 
self-similar groups, naturally act on the m - 
regular rooted tree T  =  Tm (m  a cardinality of 
alphabet) and on its boundary, which topologi
cally is homeomorphic to the Cantor set. This 
action preserves the uniform Bernoulli measure 
p  on the boundary. Therefore one can study 
a topological dynamical system (G, d T ) or 
metric dynamical system (G ,d T ,p ) .  Ergodici- 
ty o f the latter is equivalent to the level transi
tivity of the action o f G  on T .

The important class of actions are topologi
cally free actions and essentially free acti
ons. These types of actions play especially 
important role in various studies in dynami
cal systems, operator algebras, and modern di
rections of group theory like theory of cost or 
rank gradient [7, 2]. Self-similar groups acting 
essentially freely on dT  can potentially be used 
to construct new examples o f scale-invariant 
groups [18], and have connection to the class 
o f hereditary just-infinite groups [9].

The opposite to the notion o f a free action 
are totally nonfree actions considered recently 
in [21, 20, 10]. These are the actions, for whi
ch stabilizers of different points are different. 
Surprisingly many groups generated by finite 
automata, in particular those of them that are 
branch or weakly branch) act totally nonfree.
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Totally non free actions are also important for 
the theory o f operator algebras and for rapi
dly developing now theory of invariant random 
subgroups [21, 1, 5, 6].

The goal of this note is to report on the 
progress o f the project of description of all 
(3, 2)-groups acting essentially freely on the 
boundary of the tree. Or main result is:

T h e o r e m  1. Among all groups generated 
by 3-state automata over 2-letter alphabet the 
only groups that act essentially freely on the 
boundary of  the tree T2 are:

• Trivial group;

• Group Z /2 Z  of  order 2;

• Klein group (Z /2 Z )  x (Z /2 Z ) ;

• (Z /2 Z )  x (Z /2 Z )  x (Z /2 Z ) ;

• Free abelian groups Z  and Z 2;

• Infinite dihedral group D ^ ;

• Baumslag-Solitar groups B S (1 ,3) a,nd 
B S  ( 1 , - 3 ) ;

• Extension ( (Z /2 Z )  I Z ) x (Z /2 Z )  of  the 
lamplighter group by Z /2 Z ;

• Free group F 3 of  rank 3;

• Free product (Z /2 Z )  * (Z /2 Z )  * (Z /2 Z )  of  
three groups of  order 2 ;

• Lamplighter group (Z /2 Z )  I Z ;

• Extension  Z 2 x (Z /2 Z )  of  the Z 2 group by 
Z /2 Z ;

• Metabelian group ((2 Z  [| ]) x (Z /2 Z ))  x Z ;

• Extension  ( ( Z /2 Z )2 ? Z ) x (Z /2 Z )  of  a rank 
2 lamplighter group (Z /2 Z )2 I Z  by Z /2 Z .

The paper is organized as follows. In Secti
on 1 we recall main notions from a theory of 
groups generated by automata, and discusses 
various types o f free actions. The strategy of 
proof o f the main Theorem is surveyed in Secti
on 2. Finally, we conclude the paper with open 
questions in Section 3.

N o ta t io n  a n d  P re lim in a r ie s  Let X  be a 
finite set of cardinality d and let X  * denote

the free monoid generated by X , which consi
sts o f finite words over X . This monoid can be 
naturally endowed with a structure o f a rooted 
d-ary tree T  by declaring that v is adjacent to 
v x  for any v E X  * and x  E X . The empty word 
corresponds to the root of the tree and X n 
corresponds to the n-th level of the tree. We 
will be interested in the groups o f automorphi
sms and semigroups o f homomorphisms of 
X *. Any such homomorphism can be defined 
via the notion o f initial autom aton (see, for 
example, [12]).

Now we describe shortly the notations used 
in the classification o f (3, 2)-groups [4]. Every 
3-state automaton A  with set o f states S  =  
{ 0 , 1 , 2 } acting on the 2-letter alphabet X  =  
{ 0 ,1 }  is assigned a unique number from 1 to 
5832 according to a certain lexicographic order 
on the set of all automata in this class. Denote 
by A n the automaton numbered by n and by 
Gn the group generated by A n.

On the set of all (3,2)-autom ata one can 
naturally define an equivalence relation o f mi
nimal symmetry . Namely, two automata A  and 
B  are minimally symmetric if their minimizati
ons coincide up to symmetry and taking the 
inverse. At present ([4, 17]), it is known that 
there are no more than 115 non-isomorphic 
(3, 2)-autom aton groups out of 194 classes of 
(3 ,2)-autom ata that are pairwise not mini
mally symmetric.

In this note, since we are looking for essenti
ally free actions of groups, we will actually di
stinguish non minimally symmetric automata 
generating isomorphic groups. So we will work 
with 194 classes of not minimally symmetric 
automata.

There are different ways to define the 
freeness of a group action. The definition 
below works in the general context of arbitrary 
topological (or, respectively, measure) space, 
but we will work only in the context o f actions 
o f self-similar groups on the boundary dT  o f a 
rooted tree T .

Let G  be a countable group acting on a 
complete metric space Y . Denote by Y-  the 
set of points with nontrivial stabilizer and by 
Y+ the set o f points with trivial stabilizer.
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D e fin it io n  1.

1. The action ( G , Y ) is topologically free 
if  Y-  is a meager set (i.e., it can 
be represented as a countable union of  
nowhere dense sets).

2. Suppose the action ( G , Y ) has a G-  
invariant (not necessarily finite) Borel 
measure p. The system ( G ,Y ,p )  is said 
to be essentially free if p (Y - ) =  0.

First of all, we note that in our case of 
groups generated by finite state automata that 
act spherically transitively on the tree the 
notions of topological freeness and essential 
freeness are identical [13, 10].

In order to establish that a group does not 
act topologically (and essentially) freely on d T , 
one can just find an element g G G  and a vertex 
v G X * fixed by g such that g\v is identity 
(because in this case all points in the cylindri
cal set cv (consisting o f vertices in T  =  X * that 
have v as a prefix), which is open (and has posi
tive measure), will have g in their stabilizers.

D e fin it io n  2. For a vertex v G X * the set 
of  all g G G that fix v and such that g\v is 
identity forms a subgroup tr iv c(v ) of G called 
the trivializer of  v.

D e fin it io n  3. The action of  a group G on a 
rooted tree is called locally nontrivial if  trivi- 
alizers o f  all vertices o f  the tree are trivial.

As observed above, if the action is not 
locally trivial, it cannot be topologically or 
essentially free. It is not hard to prove the 
converse in the case o f countable group and 
topological freeness.

P r o p o s it io n  1 ([11], Proposition 4.2.). The 
action of  a countable group on the boundary of  
a tree is topologically free if and only if  it is 
locally nontrivial.

This observation constitutes one of the main 
tools to determine that a self-similar group 
does not  act essentially freely on the boundary 
of a tree. O f course, one can simply apply a 
brute force to find such an element, but in case 
of self-replicating groups (see, for example, [4])

it can be made almost autom atic in many cases 
by using the the following procedure.

Suppose G  =  (a1 ,a 2, . . .  ,an) is a
group generated by automaton with states 
a 1 ,a 2 , . . .  ,an. First, we calculate the finite 
generating set { s j , j  G J }  o f the stabilizer 
o f the first level of the tree S tabc(1) in G. 
This is a subgroup of finite index and a 
Reidemeister-Schreier procedure can be used 
for that [14].

Let Fa  denote the free group generated 
by elements a 1 ,a 2 , . . . ,an. The wreath recursi
on that defines an automaton induces an 
embedding

Fa ^  Fa \ S y m (X )

defined by

Fa g g ^  (g\o, g\i, . . . , g\d-i)\(g) G LA\Sym (X )
( 1)

where g\i denotes the section o f g at vertex 
i G X * (see [12]).

W ith a slight abuse o f notation, we will 
denote by Sj also a word over A  U A - 1 in Fa 
that is mapped to sj G G  under the canonical 
epimorphism Fa ^  G. Then we decompose 
each Sj G Fa  as a pair ( s j \0,Sj\1) G Fa x  Fa 
using the wreath recursion embedding (1). The 
first components Sj\o o f above pairs generate a 
subgroup H  of Fa. After applying the Nielsen 
reduction to the generators of this subgroup, 
keeping track of second coordinates, we obtain 
the generating set o f ( ( s j \0,Sj\1), j  G J ) <  
Fa x  Fa  whose projection onto the first coordi
nate is Nielsen reduced [14]:

ti =  (b i ,w i ) , . . . , ti =  (bm,w m), (2)
tm+1 =  ( 1 ,r i ) ,  . . . ,tm+l =  ( 1,ri), ( )

where {b 1 , . . . , b m}  is a Nielsen reduced 
generating set for H , wi G Fa  and m  + 1 =  \J\. 
We will call such a representation for Stab^(1) 
the Mikhailova system for G. The reason for 
such name is explained below.

If any o f ri , i =  1 , . . .  ,l represents a non
identity element of G , then the correspondi
ng pair ( 1,r i) will represent a non-identity 
element o f G  that belongs to the trivializer of 
vertex 1. Thus, the action of G  on dT2 would 
not be essentially free.
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Showing that the group actually does act 
essentially freely is usually much harder. The 
main tool here is the Proposition 2 below. This 
proposition is similar to Proposition 1, but it 
additionally uses self-similarity of a group. We 
first introduce a notion of a rigid stabilizer.

D e fin it io n  4. Let G be a group acting on the 
rooted tree X *.

• The rigid stabilizer of a vertex v E X * 
in G is a subgroup R istc(v ) of  G that 
consists o f  elements that act nontrivially 
only on the vertices that have v as a prefix.

• The rigid stabilizer of a level n of  X * 
in G is a subgroup R ist^(n) of  G that 
is generated by rigid stabilizers of  all the 
vertices o f  this level.

P r o p o s it io n  2 ([11], Proposition 4.5.). For a 
group G generated by finite automaton, acti
ng on a binary tree T2, the action on dT2 is 
essentially free i f and only i f the rigid stabili
zer of  the first level R istc(1 ) is trivial.

The problem  is that it is harder to show that 
the rigid stabilizer is trivial, than to find an 
element witnessing its non-triviality. The main 
m ethod here is based on finding the presentati
on of a group. We now go back to Equation (2). 
In the case when H  coincides with Fa we get 
m  =  n and this equation is transformed to 
(after reordering the generators, if necessary):

t 1 (a1, w 1) , ■ ■ ■ , t l (an, wn) , (3)
tn+1 =  ( 1 , r i ) ,  ■ ■ ■ ,tn+l =  ( 1,r i), ( )

We can further assume that all r f s  represent 
identity element in G  (otherwise, as stated 
above, the action of G  is not essentially free). 
Suppose additionally that

{w1 ,w 2, ■■■,wn) =  F a ■

Then the map 0 : ai ^  Wi extends to an 
automorphism of Fa . In this case we say 
that the definition of the group G  by a fi
nite automaton belongs to the diagonal type. 
This condition does not depend on how the 
pairs of elements are reduced by the Nielsen

transformations. Note, that the case when 0  
is the identity automorphism one obtains a 
subgroup of Fa x  Fa that was used by Mi
khailova in [15] to to prove that the inclusion 
problem for direct products o f free groups is 
algorithmically unsolvable.

The following proposition is formulated 
in [11] and follows immediately from Proposi
tion 2.

P r o p o s it io n  3 ([11], Proposition 5.1).
Suppose that G is a group generated by fini
te automaton acting on a binary tree such that 
its first-level stabilizer can be reduced by the 
Nielsen transformations to the diagonal type. 
Let 0  be the above-constructed automorphi
sm of  the free group Fa. Then the action is 
essentially free if  and only if  0  induces an 
automorphism of  the group G.

Another useful proposition that allows us to 
establish essential freeness of the action in the 
case o f groups generated by finite bireversible 
automata, i.e. invertible automata, whose dual, 
and dual to the inverse are invertible as well.

P r o p o s it io n  4 ([19], Corollary 2.10). A  
group generated by a bireversible automaton 
acts topologically and essentially freely on the 
boundary of  the tree.

S tr a te g y  fo r  c la ss ifica tio n  a n d  m ost 
in te re s tin g  n ew  e x a m p les .

Our systematic search heavily uses results 
o f [4], in conjunction with computations 
performed using AutomGrp package [16] for 
GAP system [8]. In the first step we compute 
Mikhailova systems for all automata and fi
lter out those automata, for which Mikhailova 
system produces a non-identity element in the 
rigid stabilizer. For the remaining automata 
we apply a brute force in an attempt to find 
such elements up to length 5 using the functi
on FindGroupElement of AutomGrp package. 
This reduction leaves 57 automata that might 
generate groups acting essentially freely.

Finally, we investigate these cases 
separately. Most o f the remaining automata 
generate groups that were either descri
bed in [4], or can be reduced to such 
groups in one or another way. However,
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two automata, namely A 2193 (wreath recursion 
a =  (c,b)a ,b  =  (a ,a )a ,c  =  (a, a), where 
a denotes a nontrivial permutation o f the 
letters in X  =  (0 ,1 } )  and A 2372 (wreath 
recursion a =  (b,b)a,b =  ( c ,a )a , c  =  (c ,a))  
generated groups that have not been studied 
extensively before. We completely describe 
the structure and the presentations o f these 
groups in the following two theorems and 
using the presentations we prove that they act 
essentially freely on the boundary of the tree.

T h e o r e m  2. The group G 2193 =  {a, b, c) =  
(a2,b- 1c,b - 1a ,ac - 1a) is solvable of  derived 
length 3 and has the following structure:

G  =  L 2 x (Z /2 Z )  =  ( (Z /2 Z )2 X Z )  x (Z /2 Z ) ,

where the isomorphism is induced by sendi
ng the first two generators a2, b-1 c o f  G to 
generators of  the base group (Z /2 Z )2 in L 2, 
the generator b-1 a to the generator of  Z  in L 2, 
a,nd the generator ac-1 a of  G to the generator 
of  Z /2 Z  in L 2 x (Z /2 Z )  acing on L 2.

Moreover, G 2193 has the following 
presentation:

G =  {a ,b ,c  | a =  (b c) =  1

a2 (a2) [b-la)) - i c )(b 1a)i(b c)

b- 1c, (b- 1c ) (b 1a) 1, i E Z ,

(ba2)2 =  (ca2)2 =  1) (4)

T h e o r e m  3. The group G 2372 has the 
following structure:

G  =  L  x {a) =  ( K  x {v)) x {a)

=  ( (1  Z [3 ]) x (Z /2 Z ) )  x Z

where the action of  a on 2Z [2] corresponds 
to the multiplication by 3, and the action on v 
is defined by va =  v x 0, v a =  v x - 1.

Moreover, G 2372 has the following finite 
presentations

G 2372 =  {a ,b ,c  I (ac 1)a =  (ac 1 )3

(ab ) =  1, (ac )1 ab- l ca 1

b a =  ab (ac ) ) (5

Finally, to prove that G 2193 and G 2372 act 
essentially freely on dT  we use the presentati
ons constructed in the above theorems and 
Proposition 3.

O p e n  q u estion s

Q u e s tio n  1. Is there a self-similar group that 
acts neither essentially freely, nor totally non- 
freely on the boundary of  a rooted tree?

Q u e stio n  2. Does total non-freeness of  acti
on of  a self-similar group on dT  imply weak 
branchness?

Q u e stio n  3. Classify all (4 ,2)-groups and 
(2, 3)-groups that act essentially freely on the 
boundaries of  corresponding rooted trees.

Q u e stio n  4. Are there self-similar groups 
acting essentially freely on the boundary of  
rooted tree that are essentially new examples 
of  scale-invariant groups?

Q u e stio n  5. Is there an example of  a 
nonamenable self-replicating group acting 
essentially freely on the boundary of  the tree?
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