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L I M I T  C Y C L E  B I F U R C A T I O N S  O F  A  L I E N A R D  S Y S T E M  W I T H  
C U B I C  R E S T O R I N G  A N D  P O L Y N O M I A L  D A M P I N G  F U C T IO N S

In this paper, applying a canonical system with field rotation parameters and using geometric 
properties of the spirals filling the interior and exterior domains of limit cycles, we solve the limit 
cycle problem for a Lienard system with cubic restoring and polynomial damping functions.

1. In tr o d u c t io n . We consider Lienard 
equations

x  +  f  (x) x  +  g(x )  =  0 ( 1)

and the corresponding dynamical systems in 
the form

x  =  y, y  =  - g (x) -  f  ( x )y- (2)

There are many examples in the natural 
sciences and technology in which such equati
ons and related systems are applied [1]—[10]. 
They are often used to model either mechani
cal or electrical, or biomedical systems, and in 
the literature, many systems are transformed 
into Lienard type to aid in the investigations. 
They can be used, e .g ., in certain mechani
cal systems, where f  (x)  represents a coeffici
ent of the damping force and g(x)  represents 
the restoring force or stiffness, when modeling 
wind rock phenomena and surge in jet engi
nes [2], [8]. Such systems can be also used to 
model resistor-inductor-capacitor circuits with 
nonlinear circuit elements. Recently, e .g ., the 
Lienard system (2) has been shown to descri
be the operation o f an optoelectronics circuit 
that uses a resonant tunnelling diode to dri
ve a laser diode to make an optoelectronic 
voltage controlled oscillator [10]. There are also 
some examples o f using Lienard type systems 
in ecology and epidemiology [7].

In this paper, we suppose that system (2), 
where g(x)  is cubic and f  (x) is arbitrary 
polynomial, has an anti-saddle (a node or a 
focus, or a center) at the origin and write it

in the form

x  =  y,
y =  - x  (1 +  Pi x  +  P2 x 2) +  (3)

y  (00 +  ai  x  +  . . .  +  a 2k x 2k).

2. L im it c y c le  b ifu rc a t io n s  o f  a  s p e 
cia l L ien a rd  p o ly n o m ia l  sy stem . By means 
o f our bifurcationally geometric approach [11] -  
[13], we will consider the Lienard system (3). 
Its finite singularities are determined by the 
algebraic system

x  (1 +  Pi x  +  P2 x 2) =  0, y  =  0. (4)

It always has an anti-saddle at the origin and, 
in general, can have at most three finite si
ngularities which lie on the x-axis: a saddle and 
two anti-saddles or two saddles and an anti
saddle, or a saddle-node and an anti-saddle, or 
a saddle and an anti-saddle, or a unique anti
saddle at the origin. At infinity, system (3) has 
two singular points: a node at the “ends” of 
the x -axis and a saddle at the “ends” of the 
y-axis. For studying the infinite singularities, 
the methods applied in [1] for Rayleigh’s and 
van der P ol’s equations and also Erugin’s two- 
isocline m ethod developed in [11] can be used; 
see [12], [13].

Following [11], we will study limit cycle 
bifurcations o f (3) by means o f a canonical 
system containing field rotation parameters
of (3) [1], [11].

T h e o r e m  1. The special Lienard polynomial 
system (3) with limit cycles can be reduced to 
the canonical form,
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x  =  У =  P  ( x , y)i 
y =  —x  (1 +  x  ±  x 2)

+  y (ao +  x  + +  x 2k 1 +  a 2k x 2k) (5)

=  Q ( x , y ) ,

x y, y  =  —x  (1 +  ві  x  +  P2 x 2), (6)

and consider the corresponding equation

dy —x  (1 +  в 1 x  +  в 2 x 2) _
dx y

=  F  (x ,y ) .  (7)

Since F (x , - y )  =  —F (x , y ), the direction fi
eld of (7) (and the vector field of (6) as well) is 
symmetric with respect to the x-axis. It follows 
that for arbitrary values of the parameters 3 1 
and 3 2 system (6) has centers as anti-saddles 
and cannot have limit cycles surrounding these 
points. Therefore, without loss of generality, 
the even parameter (32 o f system (3) can be 
supposed to be equal, e .g ., to ± 1: (32 =  ± 1.

Let now all the parameters a i with even 
indexes and the odd parameter 3 1 vanish in 
system (5),

x y,
y =  —x  (1 ±  x 2)

+ y  (ai  x  +  a 3 x 3 +  . . .  +  a 2k-i  x 2k-1),

and consider the corresponding equation

(8)

dy —x (1 ±  x ) +  y ( a 1x  + . . .  + a 2k - 1x  1)
dx y

=  G (x , y ) .
(9)

Since G ( —x , y )  =  —G (x ,y ) ,  the direction fi
eld of (9) (and the vector field of (8) as 
well) is symmetric with respect to the y-axis. 
It follows that for arbitrary values of the 
parameters a 1 } a 3, . . .  , a 2k - 1 system (6) has 
centers as anti-saddles and cannot have limit 
cycles surrounding these points. Therefore, wi
thout loss o f generality, all the odd parameters 
a i of system (3) can be supposed to be equal,
e. g., to 1: a 1 =  a 3 a 2k—1 =  1-

Inputting the odd parameter f31 into 
system (8),

where 31 is fixed and a 0, a 2, . . .  , a 2k are field 
rotation parameters of  (5).

Proof. Let all the parameters a i , i =  
0 ,1 , . . .  , 2k, vanish in system (5),

x  =  y =  R ( x , y ), 
y =  —x  (1 +  в 1 x  ±  x 2) 

+  y (x  +  x 3 +  . . .  +  x 2k-1 ) 
=  S ( x , y ) ,

( 10)

and calculating the determinant

A Pl =  R S в  — SR'r.ві Gi x 2У,

we can see that the vector field of ( 10) is 
rotated symmetrically (in opposite directions) 
with respect to the x -axis and that the fini
te singularities (centers and saddles) o f ( 10) 
moving along the x -axis (except the center at 
the origin) do not change their type or join 
in saddle-nodes. Therefore, we can fix the odd 
parameter 3 1 in system (5), fixing the position 
o f its finite singularities on the x-axis.

To prove that the even parameters a 0, 
a 2 , . . . ,  a 2k rotate the vector field of (5), let 
us calculate the following determinants:

A ao PQ'a0 — QPL0 =  y 2 >  0 ,

A a 2 =  PQ'  — Q P L x 2y 2 >  0 ,

A a2k =  P Q'a2k — Q PL2k =  x 2ky 2 >  0

By definition of a field rotation 
parameter [1], [11], for increasing each of the 
parameters a 0, a 2, . . .  , a 2k, under the fixed 
others, the vector field o f system (5) is rotated 
in the positive direction (counterclockwise) 
in the whole phase plane; and, conversely, 
for decreasing each of these parameters, the 
vector field o f (5) is rotated in the negative 
direction (clockwise).

Thus, for studying limit cycle bifurcations 
o f (3), it is sufficient to consider the canonical 
system (5) containing only its even parameters 
a 0, a 2 , . . . ,  a 2k which rotate the vector fi
eld o f (5) under the fixed parameter 3 1 . The 
theorem is proved. □

By means of the canonical system (5), let 
us study global limit cycle bifurcations o f (3) 
and prove the following theorem.
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T h e o r e m  2. The special Lienard polynomial 
system (3) can have at most k +  1 limit cycles 
in (k : 1) -distribution.

Proof. According to Theorem 1, for the study 
of limit cycle bifurcations o f system (3), it is 
sufficient to consider the canonical system (5) 
containing the field rotation parameters a 0, 
a 2, . . .  , a 2k of (3) under the fixed parameter Pi . 

Let all these parameters vanish:

x  =  У,
y  =  —x  (1 ±  x 2) ( 11)

+ y  (x +  x 3 +  . . .  +  x 2k - i ).

Suppose that (11) has three finite singulariti
es: a saddle, S, and two anti-saddles, O  at the 
origin and A  on the x-axis (all other cases are 
considered absolutely similarly). System (11) is 
symmetric with respect to the y -axis and has 
centers as anti-saddles. Its center domains are 
bounded by separatrix loops o f the saddle S 
lying on the x -axis between O  and A.  If to 
input the parameter Pi into ( 11), we will get 
again system ( 10) the vector field of which is 
rotated symmetrically (in opposite directions) 
with respect to the x-axis. The finite singulari
ties S, O, and A  of (10) do not change their 
type and the center domains o f O and A  will 
be bounded by separatrix loops of the saddle 
S  of (10) [1], [11].

Let us input successively the field rotation 
parameters a 0, a 2, . . . , a 2k into system ( 10) 
beginning with the parameters at the hi
ghest degrees of x  and alternating with 
their signs; see [12], [13]. So, begin with 
the parameter a 2k and let, for definiteness,
a 2k >  0:

x  =  y ,
y  =  —x  (1 +  Pi x  ±  x 2) ( 12)

+  y (x  +  x 3 +  . . .  +  x 2k-i  +  a 2k x 2k).

In this case, the vector field of (12) is rotated in 
the positive direction (counterclockwise) turni
ng the center O  at the origin into a nonrough 
(weak) unstable focus. The other center A  
becomes a rough unstable focus [1], [11].

Fix a 2k and input the parameter a 2k - 2 <  0 
into ( 12):

x  =  y ,

y =  —x  (1 +  p i x  ±  x 2) ( )
+  y (x  +  x 3 +  . . .  +  a 2k - 2x 2k - 2 

+  x 2k - i +  a 2k  x 2k ) .

Then the vector field of (13) is rotated in the 
opposite direction (clockwise) and the focus O 
immediately changes the character o f its stabi
lity (since its degree of nonroughness decreases 
and the sign of the field rotation parameter 
at the lower degree o f x  changes) generati
ng a stable limit cycle. The focus A  will also 
generate a stable limit cycle for some value of 
a 2k - 2 after changing the character o f its stabi
lity. Under further decreasing a 2k - 2 , both limit 
cycles will expand disappearing on separatrix 
loops o f (13) [1], [11].

Denote the limit cycle surrounding the ori
gin by r , the domain outside the cycle by D i , 
the domain inside the cycle by D 2 and consider 
logical possibilities of the appearance of other 
(semi-stable) limit cycles from a “trajectory 
concentration” surrounding this singular point. 
It is clear that, under decreasing the parameter 
a 2k - 2, a semi-stable limit cycle cannot appear 
in the domain D 2 , since the focus spirals filli
ng this domain will untwist and the distance 
between their coils will increase because of the 
vector field rotation [12], [13].

By contradiction, we can also prove that 
a semi-stable limit cycle cannot appear in 
the domain D i . Suppose it appears in this 
domain for some values of the parameters 
a*2k, >  0 and a ^ k _ 2 <  0 . Return to system (10) 
and change the inputting order for the field 
rotation parameters. Input first the parameter 
a 2k - 2 <  0 :

x  =  У,
y  =  —x  (1 +  Pi x  ±  x 2) (14)

+  y (x  +  . . .  +  a 2k - 2x 2k - 2 +  x 2 k - i ).

Fix it under a 2k - 2 =  a *2k _ 2. The vector fi
eld o f (14) is rotated clockwise and the origin 
turns into a nonrough stable focus. Inputting 
the parameter a 2k  >  0 into (14), we get again 
system (13) the vector field of which is rotated 
counterclockwise. Under this rotation, a stable 
limit cycle r  will appear from a separatrix loop 
for some value o f a 2k . This cycle will contract,
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the outside spirals winding onto the cycle wi
ll untwist and the distance between their coi
ls will increase under increasing a 2k to the 
value a2k. It follows that there are no values of 
a 2k- 2 <  0 and a 2k >  0 for which a semi-stable 
limit cycle could appear in the domain D 1.

This contradiction proves the uniqueness 
of a limit cycle surrounding the origin O  in 
system (13) for any values o f the parameters 
a 2k-2 and a 2k of different signs. Obviously, 
if these parameters have the same sign, 
system (13) has no limit cycles surrounding 
the origin at all. On the same reason, this 
system cannot have more than one limit cycle 
surrounding the other its singular point A.

Let system (13) have the unique limit cycle 
r  surrounding the origin O and a unique li
mit cycle surrounding A.  Fix the parameters 
a 2k >  0 , a 2k-2 <  0 and input the third 
parameter, a 2k-4 >  0 , into this system:

x y,

y  =  —x  (1 +  в 1 x  ±  x 2) +
y (x  +  x 3 +
a x 2k-2a 2k 2 x

. . .  +  a2k-4x2k 4 +
+  x 2k-1 +  a 2k x 2k).

(15)

The vector field o f (15) is rotated 
counterclockwise, the focus at the origin 
O  changes the character o f its stability and 
the second (unstable) limit cycle, r 2, immedi
ately appears from this point. The limit cycle 
surrounding A  can only disappear in this point 
(because o f its roughness) under increasing 
the parameter a 2k-4. Under further increasing 
a 2k-4, the limit cycle r 2 will join  with R  
forming a semi-stable limit cycle, r 12, which 
will disappear in a “trajectory concentration” 
surrounding the origin. Can another semi
stable limit cycle appear around the origin in 
addition to r 12? It is clear that such a limit 
cycle cannot appear either in the domain D 1 
bounded on the inside by the cycle R  or in 
the domain D 3 bounded by the origin and r 2 
because of the increasing distance between 
the spiral coils filling these domains under 
increasing the parameter a 2k-4 [12], [13].

To prove the impossibility of the appearance 
of a semi-stable limit cycle in the domain D 2 
bounded by the cycles R  and r 2 (before their

joining), suppose the contrary, i.e ., that for 
some set of values o f the parameters, a 2k >  0 , 
a 2k- 2 <  0 , and a 2k_4 >  0 , such a semi
stable cycle exists. Return to system (10) again 
and input first the parameters a 2k-4  >  0 and 
a 2k >  0:

x  =  У, 
y  =  —x  (1 +  3 1 x  ±  x 2)

+  y (x  +  x 3 +  . . .  +  a 2k-4x 2k-4+  
x 2k-3 +  a 2k x 2k).

(16)

Both parameters act in a similar way: they 
rotate the vector field o f (16) counterclockwi
se turning the origin into a nonrough unstable 
focus.

Fix these parameters under a 2k-4  =
a 2k- 4, a 2k =  a 2k and input the parameter 
a 2k-2 <  0 into (16) getting again system (15). 
Since, by our assumption, this system has 
two limit cycles surrounding the origin for 
a 2k-2 >  a 2k_ 2, there exists some value o f the 
parameter, a 2k_2 (a 2k_ 2 <  a 2l _ 2 <  0), for 
which a semi-stable limit cycle, r 12, appears 
in system (15) and then splits into a stable 
cycle, R , and an unstable cycle, T2, under 
further decreasing a 2k-2. The formed domain 
D 2 bounded by the limit cycles R , r 2 and fi
lled by the spirals will enlarge since, on the 
properties of a field rotation parameter, the 
interior unstable limit cycle r 2 will contract 
and the exterior stable limit cycle R  wi
ll expand under decreasing a 2k-2. The di
stance between the spirals of the domain D 2 
will naturally increase, which will prevent the 
appearance of a semi-stable limit cycle in this 
domain for a 2k-2 <  a^ _ 2 [12], [13].

Thus, there are no such values o f the 
parameters, a 2k >  0 , a 2k_ 2 <  0 , a 2k_ 4 >  0 , 
for which system (15) would have an additi
onal semi-stable limit cycle surrounding the 
origin O. Obviously, there are no other values 
o f the parameters a 2k, a 2k-2, and a 2k-4 for 
which system (15) would have more than two 
limit cycles surrounding this singular point. On 
the same reason, additional semi-stable limit 
cycles cannot appear around the other singular 
point A  of (15). Therefore, three in (2 : 1)- 
distribution is the maximum number of limit 
cycles in system (15).

Науковий вісник Чернівецького нац. ун-ту. Математика. 2012. -  Т. 2, № 2-3. 33



Suppose that system (15) has two limit 
cycles, r  and r 2, surrounding the origin O 
and a unique limit cycle surrounding A  (this 
is always possible if a 2k ^  —a 2k-2 ^  a 2k-4 >  
0). Fix the parameters a 2k, a 2k-2, a 2k-4 and 
consider a more general system inputting the 
fourth parameter, a 2k-6 <  0, into (15):

x V,
y  =  —x  (1 +  x  ±  x 2)

+  y (x  +  x 3 +
x 2k-5

+  a 2k - 6x <2k 6 +  
2k+  . . .  +  a 2k x  )■

x  =  V>
V =  —x  (1 +  Pi x  ±  x 2) +  

y (x  +  x 3 + +  a 2k - 6x 2k 6 +  . . .  +
( 18)

2k-2 2k-3 2k&2k - 2x  +  x  +  a 2k x  ).

(17)

For decreasing a 2k-6, the vector field o f (17) 
will be rotated clockwise and the focus at the 
origin will immediately change the character 
of its stability generating a third (stable) li
mit cycle, r 3. W ith further decreasing a 2k-6, 
r 3 will join  with r 2 forming a semi-stable 
limit cycle, r 23, which will disappear in a 
“trajectory concentration” surrounding the ori
gin; the cycle r  will expand disappearing on a 
separatrix loop of (17).

Let system (17) have three limit cycles 
surrounding the origin O : G , r 2, r 3. Could 
an additional semi-stable limit cycle appear 
with decreasing a 2k-6 after splitting of whi
ch system (17) would have five limit cycles 
around the origin? It is clear that such a li
mit cycle cannot appear either in the domain 
D 2 bounded by the cycles G and r 2 or in 
the domain D 4 bounded by the origin and r 3 
because o f the increasing distance between the 
spiral coils filling these domains after decreasi
ng a 2k-6. Consider two other domains: D i 
bounded on the inside by the cycle G  and D 3 
bounded by the cycles r 2 and r 3. As before, we 
will prove the impossibility of the appearance 
of a semi-stable limit cycle in these domains by 
contradiction.

Suppose that for some set o f values of the 
parameters 0 2k >  0 , a 2k_ 2 <  0 , a 2k_ 4 >  0 , 
and a 2k_ 6 <  0 such a semi-stable cycle exi
sts. Return to system (10) again, input first 
the parameters a 2k-6 <  0 , a 2k-2 <  0 and then 
the parameter a 2k >  0 :

Fix the parameters a 2k- 6 , a 2k-2  under 
the values a2k_ 6, a2k_ 2 , respectively. W i
th increasing a 2k, a separatrix loop formed 
around the origin will generate a stable limit 
cycle, W  Fix a 2k under the value Olk and input 
the parameter a 2k-4  >  0 into (18) getting 
system (17).

Since, by our assumption, (17) has three li
mit cycles for a 2k-4  <  a 2k_ 4, there exists some 
value of the parameter a 2l _ 4 (0 <  Oppk_ 4 <  
a 2k- 4) for which a semi-stable limit cycle, T23, 
appears in this system and then splits into an 
unstable cycle, r 2, and a stable cycle, r 3, with 
further increasing a 2k- 4 . The formed domain 
D 3 bounded by the limit cycles r 2, r 3 and also 
the domain D i bounded on the inside by the 
limit cycle r  will enlarge and the spirals filling 
these domains will untwist excluding a possi
bility o f the appearance of a semi-stable limit 
cycle there [12], [13].

All other combinations o f the parameters 
a 2k, a 2k- 2 , a 2k- 4 , and a 2k-6  are considered 
in a similar way. It follows that system (17) 
can have at most four limit cycles in (3 : 1)- 
distribution.

If we continue the procedure o f successive 
inputting the even parameters, a 2k, . . .  , a 2, a 0, 
into system ( 10), it is possible first to obtain 
k limit cycles surrounding the origin (a 2k ^

a 2k-2 ^  a 2k-4 ^  a 2k-6 ^  a 2k-8 ^
. . .) and then to conclude that the canonical 
system (5) (i.e ., the special Lienard polynom i
al system (3) as well) can have at most k + 1  li
mit cycles in (k : 1)-distribution. The theorem 
is proved. □

A c k n o w le d g e m e n ts . This work was 
supported by the D A A D , M PG  (Germany), 
IHES (France), and NW O (Netherlands).

REFERENCES

1. Bautin N.N., Leontovich E.A Methods and 
Examples of the Qualitative Analysis of Dynamical 
Systems in a Plane.— Moscow: Nauka, 1990 (in Rus
sian).

34 Науковий вісник Чернівецького нац. ун-ту. Математика. 2012. -  Т. 2, № 2-3.



2. Agarwal A., Ananthkrishnan N. Bifurcation 
analysis for onset and cessation of surge in axial flow 
compressors / /  Int. J. Turbo Jet-Eng.— 2000.— 17.— 
P. 207—217.

3. Gasull A., Torregrosa J. Small-amplitude limit 
cycles in Lienard systems via multiplicity / /  J. Dif
ferential Equations.— 1999.— 159.— P. 186—211.

4. Jing J., Han M., Yu P., Lynch S. Limit cycles in 
two types of symmetric Lienard systems / /  Internat. J. 
Bifur. Chaos Appl. Sci. Engrg.— 2007.— 17.— P. 2169— 
2174.

5. Lins A., deMelo W., Pugh C.C. On Lienard’s 
equation / /  Lecture Notes in Mathematics.— Berlin: 
Springer, 1977.— 597.— P. 335—357.

6. Lloyd N.G. Lienard systems with several limit 
cycles / /  Math. Proc. Cambridge Philos. Soc.— 1987.— 
102.— P. 565—572.

7. Moreira H.N. Lienard-type equations and the 
epidemiology of maleria / /  Ecological Model.— 1992.— 
60.— P. 139—150.

8. Owens D.B., Capone F.J., Hall R.M., Brandon 
J.M., Chambers J.R. Transonic free-to-roll analysis of 
abrupt wing stall on military aircraft / /  J. Aircraft.— 
2004.- 41.— P. 474—484.

9. Rychkov G.S. The maximal number of limit 
cycles of the system y =  — x, X =  y — 2=0 ai x 2i+1
is equal to two / /  Differ. Equ.— 1975.— 11.— P. 301— 
302.

10. Slight T.J., Romeira B., Liquan W, Figueiredo 
J.M.L., Wasige E., Ironside C.N.A. Lienard oscillator 
resonant tunnelling diode-laser diode hybrid integrated 
circuit: model and experiment / /  IEEE J. Quantum 
Electronics.— 2008.— 44.— P. 1158—1163.

11. Gaiko V.A. Global Bifurcation Theory and Hil
bert’s Sixteenth Problem.— Boston: Kluwer, 2003.

12. Gaiko V.A. Limit cycles of Lienard-type 
dynamical systems / /  Cubo.— 2008.— 10.— P. 115— 
132.

13. Gaiko V.A. On the geometry of polynomial 
dynamical systems / /  J. Math. Sci.— 2009.— 157.— 
P. 400—412.

Науковий веник Чертвецького нац. ун-ту. Математика. 2012. -  Т. 2, № 2-3. 35


