©2017 p. Yu.S. Linchuk

Yuriy Fedkovych Chernivtsi National University

ON A GENERALIZATION OF LEIBNITZ'S RULE FOR THE SECOND-ORDER DERIVATIVE ON THE CASE OF FUNCTIONALS

Одержано опис усіх лінійних функціоналів на просторі функцій, аналітичних у довільній області, які задовольняють співвідношення, що є узагальненням правила Лейбніца знаходження похідної другого порядку від добутку функцій.

We obtain the description of all linear functionals satisfying a generalization of Leibnitz's rule for the second-order derivative for two functions on the space of analytic functions in an arbitrary domain.

Let G be an arbitrary domain of the complex plane. Let $\mathcal{H}(G)$ denote the space of all analytic functions in G equipped with the topology of compact convergence. By $\mathcal{H}^*(G)$ we denote the set of all linear functionals on $\mathcal{H}(G)$.

Generalizing the formula for the differentiation of the product of two functions Rubel [1] posed and solved the problem of finding all pairs of linear continuous functionals L and M on the space $\mathcal{H}(G)$ that satisfy the relation

$$L(fg) = L(f)M(g) + L(g)M(f)$$
 (1)

for arbitrary functions f and g of $\mathcal{H}(G)$. Such pairs of functionals Rubel called derivation pairs of functionals. Later Nandakumar, [2] and Zalcman, [3] solved Rubel's problem in the class of linear functionals on the space $\mathcal{H}(G)$ by different ways.

In [4] Nandakumar and Kannappan (see also [5]) solved the problem of finding all pairs of linear functionals L and M on $\mathcal{H}(G)$ that satisfy the following functional equation

$$L(fg) = L(f)L(g) - M(g)M(f) \qquad (2)$$

for any $f,g \in \mathcal{H}(G)$. Note that all continuous linear functionals L and M on $\mathcal{H}(G)$ satisfying (2) was completely characterized in [6]. An generalization of Rubel's equation was solved in [7]. In [8] all Rubel's derivation triples was completely characterized. In [9] was solved generalized Rubel's equation.

In the light of the above-mentioned results there naturally arises the problem of finding of all linear functionals L, M, N on $\mathcal{H}(G)$ that satisfy the relation

$$L(fg) = L(f)M(g) + L(g)M(f) + N(f)N(g)$$
(3)

for any f and g of $\mathcal{H}(G)$. The purpose of this paper is to solve this problem. Note that in the case when N = 0 equation (3) coincides with Rubel's equation (1).

Lemma 1. Let G be an arbitrary domain of the complex plane. Let L, M, N be arbitrary functionals on $\mathcal{H}(G)$. Then there exists a nonzero polynomial of the degree at most 3 which is a zero of L, M, N.

Proof. The system

$$\begin{cases} aL(z^3) + bL(z^2) + cL(z) + dL(1) = 0; \\ aN(z^3) + bN(z^2) + cN(z) + dM(1) = 0; \\ aM(z^3) + bM(z^2) + cM(z) + dN(1) = 0 \end{cases}$$
(4)

is homogeneous and the number of equations is less than the number of unknown quantities. Therefore, (4) has a non-trivial solution with respect to a, b, c, d. Let (a_1, b_1, c_1, d_1) be a non-trivial solution of (4). Then the polynomial $h(z) = a_1 z^3 + b_1 z^2 + c_1 z + d_1$ is the desired one. Lemma is proved.

Lemma 2. Let functionals $L, M, N \in \mathcal{H}^*(G)$ satisfy (3) and let $L \neq 0$. Let there exists $h \in \mathcal{H}(G)$ such that L(h) = M(h) = N(h) = 0. Then L(fh) = M(fh) = N(fh) = 0 hold for any $f \in \mathcal{H}(G)$.

Proof. The equality (3) and properties of h imply that L(fh) = 0 for any $f \in \mathcal{H}(G)$. Let f be an arbitrary function of $\mathcal{H}(G)$. Replacing

in (3) pf instead of f and setting g = pf we get N(fh) = 0 for any $f \in \mathcal{H}(G)$. Since $L \neq 0$, there exists $g_0 \in \mathcal{H}(G)$ such that $L(g_0) \neq 0$. Replacing in (3) fh instead of f and setting $g = g_0$ we get M(fh) = 0 for any $f \in \mathcal{H}(G)$. Lemma is proved.

Lemma 3. Let $L, M, N \in \mathcal{H}^*(G)$ be arbitrary functionals satisfying (3) and $L \neq 0$. Then there exists a polynomial p of the degree 3 such that L(p) = M(p) = N(p) = 0.

The correctness of the assertion of Lemma 3 follows from Lemmas 1–2.

Assume that the functionals $L, M, N \in \mathcal{H}^*(G)$ satisfy (3). If L = 0, then N = 0, M is an arbitrary functional on $\mathcal{H}(G)$ and these functionals satisfy (3).

Now we find all solutions of (3) such that $L \neq 0$. Let z_i , $i = \overline{1,3}$ be arbitrary different points of the domain G. For the further we define the following sets of linear functionals on $\mathcal{H}(G)$:

$$S_{3} = \{K \in \mathcal{H}^{*}(G) : Kf = k_{1}f(z_{1}) + k_{2}f(z_{2}) + k_{3}f(z_{3}), z_{i} \in G, k_{i} \in \mathbb{C}, i = \overline{1,3}\},$$

$$S_{2} = \{K \in \mathcal{H}^{*}(G) : Kf = k_{1}f(z_{1}) + k_{2}f'(z_{1}) + k_{3}f(z_{2}), z_{1}, z_{2} \in G, k_{i} \in \mathbb{C}, i = \overline{1,3}\},$$

$$S_{1} = \{K \in \mathcal{H}^{*}(G) : Kf = k_{1}f(z_{1}) + k_{2}f'(z_{1}) + k_{3}f''(z_{1}), z_{1} \in G, k_{i} \in \mathbb{C}, i = \overline{1,3}\}.$$

Theorem 1. Let functionals $L, M, N \in \mathcal{H}^*(G)$ satisfy (3) and let $L \neq 0$. Then L, M, N belong to the one of the classes S_1, S_2, S_3 .

Proof. Assume that the functionals L, M, N of $\mathcal{H}^*(G)$ satisfy (3), and let $L \neq 0$. Then, according to Lemma 3 there exists a polynomial p of the degree 3 such that L(p) = M(p) = N(p) = 0. Without loss of generality we can assume that the coefficient of z^3 of p is equal to 1. We now consider the possible cases of the presence of roots of the polynomial p.

(i) Let p has three different roots z_1, z_2, z_3 . We first consider the case when $z_1, z_2, z_3 \in G$. Take an arbitrary function $f \in \mathcal{H}(G)$ and consider the function $f_1(z) = f(z) - s(z)$, where

$$s(z) = f(z_1) \frac{(z - z_2)(z - z_3)}{(z_1 - z_2)(z_1 - z_3)} + f(z_2)$$

$$\cdot \frac{(z-z_1)(z-z_3)}{(z_2-z_1)(z_2-z_3)} + f(z_3) \frac{(z-z_1)(z-z_2)}{(z_3-z_1)(z_3-z_2)}.$$

Since $f_1 \in \mathcal{H}(G)$ and z_j $j = \overline{1,3}$ are zeros of $f_1(z)$, $f_1(z) = p(z)f_2(z)$ if $z \in G$, where f_2 is a function of $\mathcal{H}(G)$. Therefore,

$$f(z) = p(z)f_2(z) + s(z).$$

Using Lemma 2 and the property of the polynomial p we get

$$L(f) = l_1 f(z_1) + l_2 f(z_2) + l_3 f(z_3), \quad (5)$$

$$M(f) = m_1 f(z_1) + m_2 f(z_2) + m_3 f(z_3), \quad (6)$$

$$N(f) = n_1 f(z_1) + n_2 f(z_2) + n_3 f(z_3), \quad (7)$$

where $l_i, m_i, n_i \in \mathbb{C}$, $i = \overline{1,3}$. Thus, in this case the functionals L, M, N belong to the class S_3 .

Now consider the case when two roots of p lie in G but the third root lies outside of the domain G. For the definiteness we assume that $z_1, z_2 \in G$, $z_3 \notin G$. Take an arbitrary function $f \in \mathcal{H}(G)$ and represent f in the form

$$f(z) = (z - z_1)(z - z_2)g(z) + f(z_1)\frac{z - z_2}{z_1 - z_2} + f(z_2)\frac{z - z_1}{z_2 - z_1},$$

where g is some function of $\mathcal{H}(G)$. Since $z_3 \notin G$, it follows that for all $z \in G$

$$f(z) = p(z)\frac{g(z)}{z - z_3} + f(z_1)\frac{z - z_2}{z_1 - z_2} + f(z_2)\frac{z - z_1}{z_2 - z_1}.$$

Since $\frac{g(z)}{z-z_3}$ belongs to $\mathcal{H}(G)$, as in the previous case we have

$$L(f) = l_1 f(z_1) + l_2 f(z_2),$$

$$M(f) = m_1 f(z_1) + m_2 f(z_2),$$

$$N(f) = n_1 f(z_1) + n_2 f(z_2),$$

where $l_i, m_i, n_i \in \mathbb{C}$, $i = \overline{1,2}$. Thus, in this case the functionals L, M, N belong to the class S_3 , where $l_3 = m_3 = n_3 = 0$ and an arbitrary point $z_3 \in G$ is different from z_1 and z_2 .

The case when one of the points z_1 , z_2 , z_3 lies in G but other two points lie outside of the

domain G is similar to the previous case. Here we obtain that L, M, N belong to the class S_3 .

If $z_1, z_2, z_3 \notin G$, then L = M = N = 0, but it's not possible.

(ii) Now consider the case when among the roots z_1, z_2, z_3 of p are exactly two equal roots. For the definiteness we assume that $z_3 = z_1$ and $z_1 \neq z_2$. Suppose that $z_1, z_2 \in G$. Take an arbitrary $f \in \mathcal{H}(G)$ and consider the function

$$f_1(z) = f(z) - f(z_1) - f'(z_1)(z - z_1) - \frac{f(z_2) - f(z_1) - f'(z_1)(z_2 - z_1)}{(z_2 - z_1)^2} (z - z_1)^2.$$

Since $f_1 \in \mathcal{H}(G)$ and $f_1(z_1) = f'_1(z_1) = 0$ and $f_1(z_2) = 0$, $f_1(z) = p(z)f_2(z)$ if $z \in G$. Herewith $f_2 \in \mathcal{H}(G)$. Therefore

$$f(z) = p(z)f_2(z) + f(z_1) + f'(z_1)(z - z_1) + \frac{f(z_2) - f(z_1) - f'(z_1)(z_2 - z_1)}{(z_2 - z_1)^2} (z - z_1)^2.$$

Similar to the case (i) we obtain that

$$L(f) = l_1 f(z_1) + l_2 f'(z_1) + l_3 f(z_2),$$
 (8)

$$M(f) = m_1 f(z_1) + m_2 f'(z_1) + m_3 f(z_2), \quad (9)$$

$$N(f) = n_1 f(z_1) + n_2 f'(z_1) + n_3 f(z_2), \quad (10)$$

where $l_i, m_i, n_i \in \mathbb{C}$, $i = \overline{1,3}$. Thus, the functionals L, M, N belong to S_2 . In the case $z_1 \in G$, $z_2 \notin G$ we can represent an arbitrary function $f \in \mathcal{H}(G)$ in the form

$$f(z) = p(z)\frac{f_2(z)}{z - z_2} + f(z_1) + f'(z_1)(z - z_1).$$

If $z_2 \in G$, $z_1 \notin G$ we use the following representation:

$$f(z) = p(z) \frac{f_2(z)}{(z - z_1)^2} + f(z_2),$$

and in both these cases $f_2 \in \mathcal{H}(G)$. Using these representations we get that in each of these cases the functionals L, M, N belong to the class S_2 . The case $z_1, z_2 \notin G$ is not possible, since $L \neq 0$.

(iii) Let $p(z) = (z - z_1)^3$, $z_1 \in G$. Take an arbitrary function $f \in \mathcal{H}(G)$. Using Taylor's formula we get

$$f(z) = p(z)f_2(z) + f(z_1) + f'(z_1)(z - z_1) +$$

$$+\frac{f''(z_1)}{2}(z-z_1)^2,$$

where $f_2 \in \mathcal{H}(G)$, $z \in G$. Then, similar to previous cases we obtain that L, M, N can be represent in the following form

$$L(f) = l_1 f(z_1) + l_2 f'(z_1) + l_3 f''(z_1), \quad (11)$$

$$M(f) = m_1 f(z_1) + m_2 f'(z_1) + m_3 f''(z_1), (12)$$

$$N(f) = n_1 f(z_1) + n_2 f'(z_1) + n_3 f''(z_1), \quad (13)$$

where $l_i, m_i, n_i \in \mathbb{C}$, $i = \overline{1,3}$. Thus, L, M, N belong to the class S_1 . The case $z_1 \notin G$ is not possible, since $L \neq 0$. Theorem is proved.

Let us find further the conditions under which the functionals L, M, N from the fixed class S_i , $i = \overline{1,3}$ satisfy (3).

Lemma 4. Let the functionals L, M, N are represented by the formulas (5) - (7), where z_1, z_2, z_3 are different points of the domain $G, l_i, m_i, n_i \in \mathbb{C}, i = \overline{1,3}$. In order that functionals L, M, N satisfy (3) it is necessary and sufficient that the following conditions

$$l_1 m_2 + l_2 m_1 + n_1 n_2 = 0, l_1 m_3 + l_3 m_1 + n_1 n_3 = 0,$$

$$l_2 m_3 + l_3 m_2 + n_2 n_3 = 0, (14)$$

$$2l_3 m_3 + n_3^2 = l_3, 2l_2 m_2 + n_2^2 = l_2,$$

$$2l_1 m_1 + n_1^2 = l_1$$

hold.

Proof. Necessity. Let $p_i(z) = \prod_{j=1, j \neq i}^{3} \frac{z-z_j}{z_i-z_j}$, $i = \overline{1,3}$. Setting $f = p_k$, $g = p_l$, $k, l = \overline{1,3}$, $k \neq l$ in (3) we obtain first three conditions of (14). Setting $f = g = p_i$, $i = \overline{1,3}$ in (3) we obtain other three conditions of (14). The necessity part is proved. By the direct calculation we can obtain the sufficiency part of Lemma 4. Lemma is proved.

Lemma 5. Let the functionals L, M, N are represented by the formulas (8) - (10), where z_1, z_2 are different points of the domain $G, l_i, m_i, n_i \in \mathbb{C}, i = \overline{1,3}$. In order that the functionals L, M, N satisfy (3) it is necessary and sufficient that the following conditions

$$l_1m_2 + l_2m_1 + n_1n_2 = l_2 \ l_1m_3 + l_3m_1 + n_1n_3 = 0,$$

$$l_2 m_3 + l_3 m_2 + n_2 n_3 = 0, (15)$$

 $2l_3m_3+n_3^2=l_3, 2l_2m_2+n_2^2=0, 2l_1m_1+n_1^2=l_1$ hold.

Proof. Necessity. Let $p_1(z) = \frac{(z_2-z)(z+z_2-2z_1)}{(z_1-z_2)^2}$, $p_2(z) = \frac{(z-z_1)(z-z_2)}{z_1-z_2}$, $p_3(z) = \frac{(z-z_1)^2}{(z_2-z_1)^2}$. Setting $f = p_k$, $g = p_l$, $k, l = \overline{1,3}$ in (3) we get (15). The necessity part is proved. By the direct calculation we can obtain the sufficiency part of Lemma 5. Lemma is proved.

Lemma 6. Let the functionals L, M, N are represented by the formulas (11) - (13), where $z_1 \in G$, $l_i, m_i, n_i \in \mathbb{C}$, $i = \overline{1,3}$. In order that the functionals L, M, N satisfy (3) it is necessary and sufficient that the following conditions

 $l_1m_2+l_2m_1+n_1n_2=l_2, l_1m_3+l_3m_1+n_1n_3=l_3,$

$$l_2 m_3 + l_3 m_2 + n_2 n_3 = 0, (16)$$

$$2l_3 m_3 + n_3^2 = 0, 2l_2 m_2 + n_2^2 = 2l_3,$$

$$2l_1 m_1 + n_1^2 = l_1.$$

hold.

Proof. Necessity. Let $p_1(z) = 1$, $p_2(z) = z - z_1$, $p_3(z) = \frac{(z-z_1)^2}{2}$. Setting $f = p_k$, $g = p_l$, $k, l = \overline{1,3}$, in (3) we get (16). The necessity part is proved. By a direct calculation we can obtain the sufficiency part of Lemma 6. Lemma is proved.

Theorem 1 and Lemmas 4–6 imply the main result of this paper.

Theorem 2. In order that L, M, N of $\mathcal{H}^*(G)$ satisfy (3) it is necessary and sufficient that either these functionals are defined as in Lemmas 4–6, or L = N = 0 and M is an arbitrary functional of $\mathcal{H}^*(G)$.

In the light of the above-proved theorem, there naturally arises an interesting problem of the description of all linear operators A, B, C on the space $\mathcal{H}(G)$ such that

$$(A(fg))(z) = (Af)(z)(Bg)(z) +$$

$$+(Aq)(z)(Bf)(z) + (Cf)(z)(Cq)(z)$$
 (17)

for any $f, g \in \mathcal{H}(G)$, $z \in G$. Notice that in case C = 0 all solutions of corresponding equation (17) in the class of linear continuous operators

that act in spaces of analytic functions in arbitrary simply connected domains were described in [10]. In [11] Rubel's operator equation was solved in the class of linear operators that act in spaces of analytic functions in domains. In [12] all pairs of linear operators that act in the spaces of functions analytic in domains and satisfying the operator analog of the cosine addition theorem were described. In [13] a generalized Rubel's operator equation was solved.

Note that in this paper implemented generalized method for solving of the Rubel-type equations in the class of linear functionals on the space $\mathcal{H}(G)$, which can be found in [9]. In [14] some operator equation generalizing the Leibniz rule for the second derivative in other space was solved.

REFERENCES

- 1. Rubel L. A. Derivation pairs on the holomorphic functions // Funkcial. Ekvac. 1967. №10. P. 225-227.
- 2. *Nandakumar N. R.* A note on derivation pairs // Amer. Math. Soc. 1969. **21.** P.535-539.
- 3. Zalcman L. Derivation pairs on algebras of analytic functions // J. Func. Anal. 1967. №5. P. 329-333.
- 4. Kannappan Pl., Nandakumar N.R. On a cosine functional equation for operators on the algebra of analytic functions in a domain // Aeq. Math. -2001. -61. №3. P.233-238.
- $5.\ Kannappan\ Pl.$ Functional equations and inequalities with applications, Springer, New York, 2009.
- 6. Nandakumar N.R. A note on the functional equation M(fg) = M(f)M(g) + L(f)L(g) on $\mathcal{H}(G)$ // Rend. Sem. Fac. Sci. Univ. Cagliari. 1998. **68.** P.13-17.
- 7. Linchuk Yu.S. The generalized Rubel equation // Nauk. Visn. Chernivets'kogo Univ. 2011. $\mathbf{1.}$ $\mathbb{N}_{2}4.$ P.88-90.
- 8. Linchuk Yu.S. On a generalization of Rubel's equation // Int. J. Math. Anal. 2015. $\bf 9.$ $\bf N^{2}5.$ P.231-236.
- 9. Linchuk S.S., Linchuk Yu.S. On generalized Rubel's equation // Aequat. Math. 2017. 91. N_2 3. P.537-545.
- 10. Linchuk Yu.S. Operator generalization of one Rubel's result // Ukr. Math. J. 2012. **63.** \mathbb{N} 12. P.1945-1952.
- 11. Linchuk Yu.S. On Rubel's problem in the class of linear operators on the space of analytic functions

- // Complex Anal. Oper. Theory. 2014. **8**. **N**º8. P.1741-1745.
- 12. Linchuk Yu. S. On Rubel type operator equations on the space of analytic functions // To appear in Rend. del Circ. Mat. di Palermo, Series 2.
- 13. Linchuk Yu. S. On a generalized Rubel's operator equation // Miskolc math. notes. 2016. 17 . N_2 2. P. 925–930
- 14. König H., Milman V. An operator equation generalizing the Leibniz rule for the second derivative // Geometric aspects of functional analysis. Lecture Notes in Math., 2050, Springer, Heidelberg. 2012. 279-299.