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ON THE THEORY OF GENERALIZED EVEN TOEPLITZ KERNELS ON
THE FINITE INTERVAL

Hosemeno inTerpaJibie 300parkeHHsT MApHUX y3araJbHEHUX siaep Temmina Ha CKiHIeHHOMY iH-
tepsaJi. [le moBenennss 6a3yeThbes Ha CHEKTPaJIbHIN Teopil BiAIOBiIHOTO qudEpPEHITaIHLHOTO Ole-
parTopa, 110 i€ B riIp0epTOBOMY MPOCTOPi, TOOYIOBAHOMY 33 TAKUM SIJTPOM.

A proof of integral representation of the generalized even Toeplitz kernels on the finite interval
is given. This proof is based on the spectral theory of corresponding differential operator which
acts in the Hilbert space constructed from the kernel of this sort.

Introduction. In the article [6] M.G. Krein
using the method of directional functionals
obtained the integral representation positi-
ve definite kernels K(z,y) (z,y € RY).
Yu.M. Berezansky in [1] developed general
approach to the integral representation of posi-
tive definite kernels, which is based on the
theory of generalized eigenfunction expansi-
on of differential (and other) operators in
space constructed from K(x,y)(z,y € RY).
This approach gives a possibility to prove the
integral representation Toeplitz kernels |[see
2|. In the article [7] the author is consideri-
ng the integral representation of even Toepli-
tz kernels. In [5] the integral representation of
generalized Toeplitz kernels is proved. In this
article we are proving integral representation of
generalized even Toeplitz kernels. This proof is
based on the books [1-4] and the article [5].

Let I = (=,l), 0 <l < oo and [ X
I > (z,y) = K(z,y) € R' be a bounded
measurable (with respect to Lebesgue measure
dxdy) even real-valued kernel. Recall that this
kernel K is called positive definite if for every

fe ),

|| K@.wsw) f@ydsdy =0

IxI

It is obvious that in this inequality, it is possi-
ble to take f to be continuous with compact
support or integrable on [ with respect to dz,
etc.

This kernel is called a even Toeplitz kernel

if the even real-valued function (—21,21) > t —
k(t) € C' exists such that

(such a function k is said to be a positive defi-
nite function). For even Toeplitz kernel the
following integral representation

K(z,) = ko =) = [ cos VA= y)da().
R
r,yel
where do(\) is a nonnegative bounded Borel

measure on R!. In the case I = R!, this

measure is determined by K uniquely (see [6],
p. 284).

Formulation of result. Let I be an
interval of the for I = (—[,1) and let I, = I N
[0,00), Iy = IN(—00,0). Denote V o, 5 = 1,2,

ILg={t=x—ylzel,, yecls} (1)
1. e. IH = 122 = (-l,l), 112 = [0,2[)7 ]21 =
(—21,0).

Consider a bounded even positive definite

kernel

IxI3(z,y)~ K(z,y) € R".

This even kernel is, by definition, a generali-
zed Toeplitz (e.g.T.) kernel, if there exist four
continuous functions I,z 3 t — kup(t) € R
such that

K(I,y) = kaﬁ(x - y)
(x,y) € I, x I, o, =1,2.

(2)
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Any positive definite kernel is Hermitian
(K(z,y) = K(y,z), (x,y) € I x I), therefore
representation (2) gives:

kao(t) = kaa(—1), t € Ina, a=1,2;
k?lg(t) = k’gl(—t), te ]12.
For every o, = 1,2, the restriction K |

(I, x Ig) is a continuous function k.g(x — y)
hence the function k is continuous on I x I.

(3)

Theorem. For every real-valued generali-
zed 'Toeplitz even kernel, the following integral
representation takes place:

K (l’ y) =
/COS\/_QJ Y) Z Ea( (y)do(N), (4)
R}k a,f=1
(x,y) eI xI.
Here k., iIs the -characteristic functi-
on of the interval I,, o = 1,2, and

do(A) = (doag(N))?Z s, is finite nonnegative
matrix-valued Borel "spectral"measure on
RY (doy1(A) and doss(N) are nonnegative
finite scalar measures, dojp(\) = do9(N)
has bounded variation on R} ). Conversely,
every even kernel of form (4) with a fi-
nite nonnegative measure do(\) is a even
real-valued a generalized Toeplitz kernel.

Proof of theorem. Using a given e.g.T kernel
K we introduce a quasiscalar product

/ny

IxI

(x)dzdy, f,g€ L?

()

where L? = L[*(I,dz), dzr is the Lebesgue
measure. Identifying all f € L? for which
(f, f)m, = 0 with zero and then completing
the set of the corresponding classes
f=Anel’ | (f—hf~hu =0} feL
(6)
we obtain a space Hj in which our operators

will act. Vectors from Hj; are denoted by

FY,....

Consider the rigging (chain)
Wsg (1) D L D Wiy (I), (7)

where W3 (I) is the subspace of the Soboler
space W3 (I) consisting of functions u € W (1)
for which u(0) = 0; «/(0) = 0. This rigging
is quasinuclear, i.e. the imbedding W3y(I) O
L? is quasinuclear. Using (7) it is possible to
construct a quasinuclear rigging

Hk7, D H.,D Hk7+, (8)

where the space Hj . consists of classes
U, u € WQQ,O(I ), with the corresponding scalar
product. This scalar product (u,0) g, , is equal
to (un, UN)WQQ,O(I)’ where uy is a special unique
vector from W3 () belonging to @. For details
of the above construction see |3, Chapter 5, §5,
Subsect 5.1] or in [1, Chapter 8, §1].

Denote by kug(x,y) the characteristic
function of set I, x I3 and introduce the kernels

Ka[?(Iay) = kaﬂ(x7y)K(xay)7 <9>
(x,y) e Ix 1, a,f=1,2.

Using (2) we can write:

K(z,y) = Y Kap(,y)
a,f=1
2
= Z kaﬁ(x7y)ka,3(x - y)7 (x,y) €l xI
a,f=1
(10)
Representation () permit to rewrite

expression (5) in the form
<f7 g>Hk

(11)
f.9€ L*(I.d).

Introduce now operators connected with our
problem. Denote by C§°(I) the set of all functi-
ons u,u’ from C°(I) which are equal to zero
in some neighborhoods of the points —oo, 0, co.
On such finite functions, we define the operator

Dom(A") = C§°(I) 2 u — Alu =
2 12
:_%zwwm@. 12
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Lemma. The operator A’ Hermitian with
respect to quasiscalar product (5) i. e.

(A'u,vyg, = (u, Av)p,, wu,ve CP(I) (13)
and
(A'u,u)p, > 0. (14)

Proof. Using representation (11) for (5) we
get

<A/Uv U>Hk =
= kap(x — y)u"(y)o(x)dzdy,
agllié ’ <15)
u,v e C(1).

Fix some «, # and function u,v € C*(I),
and consider the integral

_ / / kas(@ — Y (y)o(e)dedy.  (16)

IaXlg

Extend in an arbitrary way the function
kop(,y) from 1,5 onto R! as a bounded functi-
on and extend the functions u(y) and v(zx) to
be zero for y € R\ I, x € R'\I,. Because the
functions w, v’ from C§° (/) are equal to zero in
some neighborhoods of the points —oo, 0, 0o,
these extended u, v belongs to C%,(I) and we
can rewrite integral (16) in following way:

- / / kag(x — y)u" (y)o(x)dedy =

:j/ykwm—wM@wWMMyz
:_/ kas(t) /u”(w—t)v(x)dfﬂ dt = (17
= _/kaﬁ(t) \R/u(x — )" (x)dx |dt =

:%/]kw@—wme@MMy

IQXIQ

(we used above two integration by parts
formula). Applying equality (17) to each term
(15) give (13).

100

As so each term (15)

N / / kap(z — y)u" (y)u(r)drdy =

[aXIB

=~ [ [ fualr = gy (e dndy —

R R1

_ / s (1) (R/ (& — tyu(e)de |dt =
_ / s (1) (‘R/ o (o — td (2)da | dt =

= // kop(x — y)u'(y)u'(x)dzdy > 0,

[aXI/B

we get (14). O

The Hermitness of A" in (-, )y, gives that
this operator in a natural way can be extended
to smooth classes (6); A'a = (A'u)". So, as a
result we have, in the Hilbert space Hy, densely
defined Hermitian operator A’, and A" > 0,
let A be its closure, A = (A)". Operator
A be self-ajoint, as so g.T. kernels are real-
valued and bounded. For the application of the
spectral projection theorem to operator A, it is
necessary to construct an extension of rigging

(8).

Turn C§°(I) into a linear topologi-
cal space by introducing the convergence
C°(I) 3 up, — u € C§°(I) which is uniform
for the functions and all their derivatives that
have uniformly bounded supports.

Consider the space of classes

D = (Cg=(1))" (18)

and endow it with the quotient topology via
the map v — 4. As result, we construct an
extension of chain (8)

Hk7_ D H,D Hk7+ DD, (19)

the in bedding D O Hj 4 is dense and conti-
nuous.

Chain (19) is standardly connected with the
operator A : D C Dom(A) and the restriction
A | D acts continuously from D into Hy ;.
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In our general situation when K may be
degenerate we apple some corollary of this
theorem (Theorem 5.1 from 3], Chapter 5, §5);
we use only is special case for a single selfadjoi-
nt operator and the spaces Y, = Yy =Y. =
L?, Hi = W3 (R dx). The above menti-
oned Theorem 5.1 in the necessary special case
asserts the following.

Proposition 1. For the kernel K, the
following representation holds:

K= / Q) dp(N). (20)

Here Q(\) € H-®H_, H_ =W, (R, dx), is
an elementary positive definite kernel and the
norm ||Q(N)||g_gm_ is bounded with respect to
A; the measure p is a Borel nonnegative finite
measure on the axis RY. The integral in (20)
convergent in the norm of the space H_ ® H_.

The positive definiteness of the kernel
Q(A\), A € Ry, mean that Vu € H, =
W3 (R, dx)

(QN),u ® u)r2gr2 > 0. (21)

The elementary character of €2(\) consists
in validity of the following equality:

(@A), v® (A'u))r20r2 =
= (QN), (A"v) @ u) 202 = AMQN), v @ u),
u,v € C°(RY).
(22)

Observe that, in terms of the tensor
product, expression (5) has the form

<f7 g)Hk = (K7g ® f)L2®L27

Proof of Proposition 1. In the beginning we
will consider nondegenerated kernel K. In this
case we obtain representation (20) from the
spectral projection theorem (see [4] chapter
15, §2, Theorem 2.1). We apply this theorem
to the operator B standardly connected wi-
th the chain (19), now f = f and, therefore
D =Cg ().

Using this theorem, it is possible to assert
that the following statement takes place.

f,g€ L
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Proposition 2. On the axis R} there exists
a Borel nonnegative finite measure p for which
the following Parseval equality holds:

(o), = [PV, o) o),
u,v € Hk,++: W5 2(RY, q(z)dw).

Here P(\) is defined, for p-almost every
A € R and it is an operator-valued functi-
on values of which are operators from Hj
into Hy, . The corresponding Hilbert-Schmidt
norm ||P(\)||gs. < 1.

The operator P(\) '"prosects" onto
generalized eigenvectors of the operator B
corresponding to the "eigenvalue" A in the
following sense: Vu € Hj,

(P(Nu, A'v) g, = MP(N)u,v)q,,
vC D=CPRY) (B COPMRY) =A).

This operator is nonnegative with respect
to chain (19), i.e.

<P(/\)U, U)Hk >0, ue Hk,_;_.

Then Proposition 1 follows from Propositi-
on 2 in the case of a nondegenerate K see [5].

Note that, for a degenerate e.g.T. kernel K,
the proof of Proposition 1 is the same as above
but technically it is more complicated.

The proof of Theorem 1 is based on Proposi-
tion 1 and the following assertion.

Let Y € R! and &£ € Wy () be a generali-
zed solution of the equation (J¢ = \¢, & = S
is given (12), A € RL), i.e. the following equali-
ty holds:

(&, 30) 2y = MEv) 2wy, v € G (D).
(23)

Then, automatically, & € C*()) and has the
form
&(x) = C cos V Az + Csin vz,

_ 24
reY, NeRL, (24)

where C' € R! is some constant.
This result is a special case of the theorem
about smoothness, up to the boundary, of
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a generalized solution of ordinary differenti-
al equation (see [4], Chapter 16, §6, Theorem
6.1).

Proof of Theorem. Denote by H, . the
subspace of Hy = W3 (1) consisting of functi-
ons from H,, which are equal to zero on I\1,,
and let

Ha57+ = Ha7+ ® H57+ C H+ ® H+, a, ﬂ:]_, 2
Let

H, DL*(I,) D Huyy, a=1,2  (25)

be the rigging connected with the spaces
L*(I,) and H, ..
Fix A € RL and denote by Qu5(\) the

restriction of the generalized function Q(X) €
H_®H_to Huyp 4, ie.

(Qap(A); Vo ® Ug) 12(1)012(15) =
(QUA), va ® tig) 2L,
'Ua E Ha’+, u5 G H[B}+’ 057/8 = 172

(26)
Evidently, we have the equality
(QN), v ®@ ) r202 =

= ) (Qas(N), kal@)v(@)ks(0)u(y) 21012015
a,B=1

u,v € Hy.

(27)
We will find the expression for Q,5(\);
below «, f = 1,2 are fixed. Note at first that

the bilinear form
Hp . ® Ho v 3 (ug, va) — a(ug, v,) =

= (Qap(N), Vo © ) 12 (1) L2 (1)

is continuous. Indeed, because

1QMN||_em_, A € RL, is bounded, we
have using definition (26):

(28)

|a(ug, va)| < Clluglla, , - [[vall -

Using chains (25) we can assert that there
exist such continuous operators R : Hg, —
H,i and S: H,; — Hp_ that we have the
representations

(Ruﬁava>L2(Ia) = (Uﬁasva)m([ﬁ),
U/B - HB’_A'_, Va - Ha7+.

a(ug, V)
(29)

102

From (29), (28), (26) and (22) we can
conclude that { = Rug € H,, _ is a generalized
solution, inside I, of the equation J§ = .
Namely, we have the corresponding equality
(23): Yo, € C3;,(Y) C C5°(1)

(f, %Ua)m(za) = /\(57Ua)L2(1a)-

Therefore, the above-mentioned assertion
gives that Rug = § € C%,(I) and, according
to (24)

(Rug)(z) = C1(ug)| cos VAz + sin \/Xx} :
x €1, ug € Hg 4.
(30)

Quite analogously we get the representation

(Sva)(y) = Ca(va) [cos \/Xy + sin \/Xy} ,
y € lg, vy € Hy s
Equality (29) gives that

C' (up) { / cos V Az, (z)dz+

I

+ / sin \/Xa:va(a;)dx]

Io

Catva)| [ cos Vayusto)as

(31)

From (31) it is to conclude that some
constants r € R!

Ch(ug) = 7 / ws(y)[cos vy + sin v Ag)dy:

ug(y) € Hpy,
(32)

substituting C(ug) into (30) and using (28),
(29) we get:
(Qaﬁ()‘)v'an®u,8)L2(Ia)®L2(Iﬂ) =

=T // (cos VA + sin \/Xx) (cos VAy+

I,XXII:}

+ sin VAy)va (@) us(y)dady,
Uﬁ S Hﬁ7+; Vo € Ha7+.
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This equality means that Q,5()) is a smooth
function Q.5(\; z,y) and

Qas(N\;2,9) = Tag()\)(COS Vz+
+ sin \/Xx) (cos V Ay + sin VAy),
v€l,, yels a,f=1,2.

Let u,v € Hy = W§y(I). Then representa-
tions (27) and (33) give:

(Q()\) V& U)L2®L2 =

// COS\/_:JH—

ﬁ: ToxIg

+ sin \/X{B) ( cos \/Xy—l-
+ sin \/Xy)v(x)u(y)dxdy =

(cos VAz+ sin \/Xx) (cos V Ay +

a,f=1

(33)

(2

o 5in VA ko (2) s (4)7as (V) ) v(@)uly)dady.
(34)

The arbitrariness of the functions u,v €

WZ(I) in (34) shows that Q()\) is an
ordinary kernel Q(\;x,y), and regard that
QA =z, —y) = Q(\; 2, y) we get
2
QN z,y) = Z (cos V' Az cos vV Ay+

a,f=1
+sin VAz sin VAy)Tas(N), z,y € 1.

Note that the matrix 7(A) = (7as()))2 5 is
nonnegative definite for every A € R!. Indeed,
from (34) and (21) we can conclude:

2

> 70s(NCaCls = (QAN),u @ u)p2gr2 > 0,

a,f=1

where

Co = /(cos VAz + sin vz )u(x)dz

1o

uve Hy, a=1,2.

The nonnegativeness of 7'()\) gives:
7'11(/\) > 0 ’7'22( )
T2 (V) < 71 (\)722(N),

>\ € R.. (36)
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Using the measure p from Proposition 1 we
introduce the matrix-valued nonnegative Borel
measure do(\) on RY :

do(X) = 7(N)dp(\) = (Tap(N)dp(N))g p—1 =
= (doas(N))a,5=1-
(37)

After substituting representation (35) into
(20) we get (4).

The convergence of integrals (4) follows
from (36), (37). The inverse statement is evi-
dent: every integral (4) has form (2) with conti-
nuous k,g(t) and is a bounded positive definite
kernel, because Vf € CF, (1)

//ny
_ / / ( /< Vi cos vy +

1
IxI R+

+sin V Az sin \/Xy) X
T /fa(l’)kﬂ(y)daaﬁ(M)f(x)f(y)dl’dy:

a,B=1
Z /COS\/_xf Ydxx

J(x,

/cosx/_yf( )dy)dp( )+

Ig

o

+

/sm\/_yf( )dy>dp( ) =

Ig

(x)dxdy =

X

Z/sm\/_xf )dxx

aﬂl

/ cos VA f(x)dx 2d,0()\)—|—

g
RL 1

2
+R{I/sm\/wa(x)dx

Theorem is proved.
Remark. The proof of this theorem shows
that it holds true for a more general situation,

dp(A) =0
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namely, if the functions I, 3 t — kapg(t) €
C! are only measurable. In this case, the
corresponding integral (4) is, as before conti-
nuous. It is proved that the difference between
K and this integral is a positive definite kernel
(defined for almost all z,y).
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