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ON THE THEORY OF GENERALIZED EVEN TOEPLITZ KERNELS ON
THE FINITE INTERVAL

Доведено iнтегральне зображення парних узагальнених ядер Теплiца на скiнченному iн-
тервалi. Це доведення базується на спектральнiй теорiї вiдповiдного диференцiального опе-
ратора, що дiє в гiльбертовому просторi, побудованому за таким ядром.

A proof of integral representation of the generalized even Toeplitz kernels on the finite interval
is given. This proof is based on the spectral theory of corresponding differential operator which
acts in the Hilbert space constructed from the kernel of this sort.

Introduction. In the article [6] M.G. Krein
using the method of directional functionals
obtained the integral representation positi-
ve definite kernels K(x, y) (x, y ∈ R1).
Yu.M. Berezansky in [1] developed general
approach to the integral representation of posi-
tive definite kernels, which is based on the
theory of generalized eigenfunction expansi-
on of differential (and other) operators in
space constructed from K(x, y)(x, y ∈ R1).
This approach gives a possibility to prove the
integral representation Toeplitz kernels [see
2]. In the article [7] the author is consideri-
ng the integral representation of even Toepli-
tz kernels. In [5] the integral representation of
generalized Toeplitz kernels is proved. In this
article we are proving integral representation of
generalized even Toeplitz kernels. This proof is
based on the books [1-4] and the article [5].

Let I = (−l, l), 0 < l < ∞ and I ×
I ∋ (x, y) 7→ K(x, y) ∈ R1 be a bounded
measurable (with respect to Lebesgue measure
dxdy) even real-valued kernel. Recall that this
kernel K is called positive definite if for every
f ∈ C∞

fin(I),∫∫
I×I

K(x, y)f(y)f(x)dxdy ≥ 0.

It is obvious that in this inequality, it is possi-
ble to take f to be continuous with compact
support or integrable on I with respect to dx,
etc.

This kernel is called a even Toeplitz kernel

if the even real-valued function (−2l, 2l) ∋ t 7→
k(t) ∈ C1 exists such that

K(x, y) = k(x− y), x, y ∈ I

(such a function k is said to be a positive defi-
nite function). For even Toeplitz kernel the
following integral representation

K(x, y) = k(x− y) =

∫
R1
+

cos
√
λ(x− y)dσ(λ),

x, y ∈ I

where dσ(λ) is a nonnegative bounded Borel
measure on R1

+. In the case I = R1, this
measure is determined by K uniquely (see [6],
p. 284).

Formulation of result. Let I be an
interval of the for I = (−l, l) and let I1 = I ∩
[0,∞), I2 = I ∩ (−∞, 0). Denote ∀ α, β = 1, 2,

Iαβ = {t = x− y | x ∈ Iα, y ∈ Iβ}, (1)

i. e. I11 = I22 = (−l, l), I12 = [0, 2l), I21 =
(−2l, 0).

Consider a bounded even positive definite
kernel

I × I ∋ (x, y) 7→ K(x, y) ∈ R1.

This even kernel is, by definition, a generali-
zed Toeplitz (e.g.T.) kernel, if there exist four
continuous functions Iαβ ∋ t → kαβ(t) ∈ R1

such that

K(x, y) = kαβ(x− y) (2)
(x, y) ∈ Iα × Iβ, α, β = 1, 2.
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Any positive definite kernel is Hermitian
(K(x, y) = K(y, x), (x, y) ∈ I × I), therefore
representation (2) gives:

kαα(t) = kαα(−t), t ∈ Iαα, α = 1, 2;

k12(t) = k21(−t), t ∈ I12.
(3)

For every α, β = 1, 2, the restriction K �
(Iα × Iβ) is a continuous function kαβ(x − y)
hence the function k is continuous on I × I.

Theorem. For every real-valued generali-
zed Toeplitz even kernel, the following integral
representation takes place:

K(x, y) =

=

∫
R1
+

cos
√
λ(x−y)

2∑
α,β=1

kα(x)kβ(y)dσ(λ), (4)

(x, y) ∈ I × I.

Here kα is the characteristic functi-
on of the interval Iα, α = 1, 2, and
dσ(λ) = (dσαβ(λ))

2
α,β=1 is finite nonnegative

matrix-valued Borel "spectral"measure on
R1

+ (dσ11(λ) and dσ22(λ) are nonnegative
finite scalar measures, dσ12(λ) = dσ21(λ)
has bounded variation on R1

+). Conversely,
every even kernel of form (4) with a fi-
nite nonnegative measure dσ(λ) is a even
real-valued a generalized Toeplitz kernel.

Proof of theorem. Using a given e.g.T kernel
K we introduce a quasiscalar product

⟨f, g⟩Hk
=

∫∫
I×I

K(x, y)f(y)g(x)dxdy, f, g ∈ L2,

(5)

where L2 = L2(I, dx), dx is the Lebesgue
measure. Identifying all f ∈ L2 for which
⟨f, f⟩Hk

= 0 with zero and then completing
the set of the corresponding classes

f̂ = {h ∈ L2 | ⟨f − h, f − h⟩Hk
= 0}, f ∈ L2

(6)

we obtain a space Hk in which our operators
will act. Vectors from Hk are denoted by
F,Y , . . . .

Consider the rigging (chain)

W−2
2,0 (I) ⊃ L2 ⊃ W 2

2,0(I), (7)

where W 2
2,0(I) is the subspace of the Soboler

space W 2
2 (I) consisting of functions u ∈ W 2

2 (I)
for which u(0) = 0; u′(0) = 0. This rigging
is quasinuclear, i.e. the imbedding W 2

2,0(I) 	
L2 is quasinuclear. Using (7) it is possible to
construct a quasinuclear rigging

Hk,− ⊃ Hk ⊃ Hk,+, (8)

where the space Hk,+ consists of classes
û, u ∈ W 2

2,0(I), with the corresponding scalar
product. This scalar product ⟨û, v̂⟩Hk

, is equal
to (uN , vN)W 2

2,0(I)
, where uN is a special unique

vector from W 2
2,0(I) belonging to û. For details

of the above construction see [3, Chapter 5, §5,
Subsect 5.1] or in [1, Chapter 8, §1].

Denote by kαβ(x, y) the characteristic
function of set Iα×Iβ and introduce the kernels

Kαβ(x, y) = kαβ(x, y)K(x, y), (9)
(x, y) ∈ I × I, α, β = 1, 2.

Using (2) we can write:

K(x, y) =
2∑

α,β=1

Kαβ(x, y) =

=
2∑

α,β=1

kαβ(x, y)kαβ(x− y), (x, y) ∈ I × I.

(10)

Representation () permit to rewrite
expression (5) in the form

⟨f, g⟩Hk
=

2∑
α,β=1

∫ ∫
Iα×Iβ

kαβ(x− y)f(y)g(x)dxdy,

(11)
f, g ∈ L2(I, dx).

Introduce now operators connected with our
problem. Denote by C∞

0 (I) the set of all functi-
ons u, u′ from C∞(I) which are equal to zero
in some neighborhoods of the points −∞, 0,∞.
On such finite functions, we define the operator

Dom(A′) = C∞
0 (I) ∋ u→ A′u =

= − d2

dx
=: (ℑu)(x).

(12)
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Lemma. The operator A′ Hermitian with
respect to quasiscalar product (5) i. e.

⟨A′u, v⟩Hk
= ⟨u,A′v⟩Hk

, u, v ∈ C∞
0 (I) (13)

and

⟨A′u, u⟩Hk
≥ 0. (14)

Proof. Using representation (11) for (5) we
get

⟨A′u, v⟩Hk
=

=
2∑

α,β=1

∫ ∫
Iα×Iβ

kαβ(x− y)u′′(y)v(x)dxdy,

u, v ∈ C∞
0 (I).

(15)

Fix some α, β and function u, v ∈ C∞(I),
and consider the integral

−
∫ ∫
Iα×Iβ

kαβ(x− y)u′′(y)v(x)dxdy. (16)

Extend in an arbitrary way the function
kαβ(x, y) from Iαβ onto R1 as a bounded functi-
on and extend the functions u(y) and v(x) to
be zero for y ∈ R1\Iβ, x ∈ R1\Iα. Because the
functions u, u′ from C∞

0 (I) are equal to zero in
some neighborhoods of the points −∞, 0,∞,
these extended u, v belongs to C∞

fin(I) and we
can rewrite integral (16) in following way:

−
∫ ∫
Iα×Iβ

kαβ(x− y)u′′(y)v(x)dxdy =

= −
∫
R1

∫
R1

kαβ(x− y)u′′(y)v(x)dxdy =

=−
∫
R1

kαβ(t)

∫
R1

u′′(x− t)v(x)dx

dt =
= −

∫
R1

kαβ(t)

∫
R1

u(x− t)v′′(x)dx

dt =
= −

∫ ∫
Iα×Iβ

kαβ(x− y)u(y)v′′(x)dxdy

(17)

(we used above two integration by parts
formula). Applying equality (17) to each term
(15) give (13).

As so each term (15)

−
∫ ∫
Iα×Iβ

kαβ(x− y)u′′(y)u(x)dxdy =

= −
∫
R1

∫
R1

kαβ(x− y)u′′(y)u(x)dxdy =

=−
∫
R1

kαβ(t)

∫
R1

u′′(x− t)u(x)dx

dt =
=

∫
R1

kαβ(t)

∫
R1

u′(x− t)u′(x)dx

dt =
=

∫ ∫
Iα×Iβ

kαβ(x− y)u′(y)u′(x)dxdy ≥ 0,

we get (14). �
The Hermitness of A′ in ⟨ ·, ·⟩Hk

gives that
this operator in a natural way can be extended
to smooth classes (6); A′û = (A′u)∧. So, as a
result we have, in the Hilbert spaceHk, densely
defined Hermitian operator A′, and A′ ≥ 0,
let A be its closure, A = (A′)∧. Operator
A be self-ajoint, as so g.T. kernels are real-
valued and bounded. For the application of the
spectral projection theorem to operator A, it is
necessary to construct an extension of rigging
(8).

Turn C∞
0 (I) into a linear topologi-

cal space by introducing the convergence
C∞

0 (I) ∋ un → u ∈ C∞
0 (I) which is uniform

for the functions and all their derivatives that
have uniformly bounded supports.

Consider the space of classes

D = (C∞
0 (I))∧ (18)

and endow it with the quotient topology via
the map u → û. As result, we construct an
extension of chain (8)

Hk,− ⊃ Hk ⊃ Hk,+ ⊃ D; (19)

the in bedding D 	 Hk,+ is dense and conti-
nuous.

Chain (19) is standardly connected with the
operator A : D ⊂ Dom(A) and the restriction
A � D acts continuously from D into Hk,+.
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In our general situation when K may be
degenerate we apple some corollary of this
theorem (Theorem 5.1 from [3], Chapter 5, §5);
we use only is special case for a single selfadjoi-
nt operator and the spaces Y+ = Y0 = Y− =
L2, H+ = W 2

2,0(R1, dx). The above menti-
oned Theorem 5.1 in the necessary special case
asserts the following.

Proposition 1. For the kernel K, the
following representation holds:

K =

∫
R1
+

Ω(λ)dρ(λ). (20)

Here Ω(λ) ∈ H−⊗H−, H−=W
−2
2,0 (R1, dx), is

an elementary positive definite kernel and the
norm ∥Ω(λ)∥H−⊗H− is bounded with respect to
λ; the measure ρ is a Borel nonnegative finite
measure on the axis R1

+. The integral in (20)
convergent in the norm of the space H− ⊗H−.

The positive definiteness of the kernel
Ω(λ), λ ∈ R1

+, mean that ∀u ∈ H+ =
W 2

2,0(R1, dx)

(Ω(λ), u⊗ u)L2⊗L2 ≥ 0. (21)

The elementary character of Ω(λ) consists
in validity of the following equality:

(Ω(λ), v ⊗ (A′u))L2⊗L2 =

= (Ω(λ), (A′v)⊗ u)L2⊗L2 = λ(Ω(λ), v ⊗ u),

u, v ∈ C∞
0 (R1).

(22)

Observe that, in terms of the tensor
product, expression (5) has the form

⟨f, g⟩Hk
= (K, g ⊗ f)L2⊗L2 , f, g ∈ L2.

Proof of Proposition 1. In the beginning we
will consider nondegenerated kernel K. In this
case we obtain representation (20) from the
spectral projection theorem (see [4] chapter
15, §2, Theorem 2.1). We apply this theorem
to the operator B standardly connected wi-
th the chain (19), now f̂ = f and, therefore
D = C∞

0 (I).
Using this theorem, it is possible to assert

that the following statement takes place.

Proposition 2. On the axis R1
+ there exists

a Borel nonnegative finite measure ρ for which
the following Parseval equality holds:

⟨u, v⟩Hk
=

∫
R1
+

⟨P (λ)u, v⟩Hk
dρ(λ),

u, v ∈ Hk,+ =W−2
2 (R1, q(x)dx).

Here P (λ) is defined, for ρ-almost every
λ ∈ R1

+ and it is an operator-valued functi-
on values of which are operators from Hk,+

into Hk,−. The corresponding Hilbert-Schmidt
norm ∥P (λ)∥H.S. ≤ 1.

The operator P (λ) "prosects" onto
generalized eigenvectors of the operator B
corresponding to the "eigenvalue" λ in the
following sense: ∀u ∈ Hk,+

⟨P (λ)u,A′v⟩Hk
= λ⟨P (λ)u, v⟩Hk

,

v ⊂ D = C∞
0 (R1) (B � C∞

0 (R1) = A′).

This operator is nonnegative with respect
to chain (19), i.e.

⟨P (λ)u, u⟩Hk
≥ 0, u ∈ Hk,+.

Then Proposition 1 follows from Propositi-
on 2 in the case of a nondegenerate K see [5].

Note that, for a degenerate e.g.T. kernel K,
the proof of Proposition 1 is the same as above
but technically it is more complicated.

The proof of Theorem 1 is based on Proposi-
tion 1 and the following assertion.

Let Y ∈ R1 and ξ ∈ W−2
2 (Y) be a generali-

zed solution of the equation (ℑξ = λξ, ℑ = ℑ+

is given (12), λ ∈ R1
+), i.e. the following equali-

ty holds:

(ξ,ℑv)L2(Y) = λ(ξ, v)L2(Y), v ∈ C∞
0 (Y).

(23)

Then, automatically, ξ ∈ C∞(Ȳ) and has the
form

ξ(x) = C cos
√
λx+ C sin

√
λx,

x ∈ Ȳ , λ ∈ R1
+,

(24)

where C ∈ R1 is some constant.
This result is a special case of the theorem

about smoothness, up to the boundary, of
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a generalized solution of ordinary differenti-
al equation (see [4], Chapter 16, §6, Theorem
6.1).

Proof of Theorem. Denote by Hα,+ the
subspace of H+ = W 2

2,0(I) consisting of functi-
ons from H+, which are equal to zero on I\Iα,
and let

Hαβ,+ = Hα,+ ⊗Hβ,+ ⊂ H+ ⊗H+, α, β=1, 2.

Let

Hα,− ⊃ L2(Iα) ⊃ Hα,+, α = 1, 2 (25)

be the rigging connected with the spaces
L2(Iα) and Hα,+.

Fix λ ∈ R1
+ and denote by Ωαβ(λ) the

restriction of the generalized function Ω(λ) ∈
H− ⊗H− to Hαβ,+, i.e.

(Ωαβ(λ), vα ⊗ ūβ)L2(Iα)⊗L2(Iβ) =

= (Ω(λ), vα ⊗ ūβ)L2⊗L2 ,

vα ∈ Hα,+, uβ ∈ Hβ,+, α, β = 1, 2. (26)

Evidently, we have the equality

(Ω(λ), v ⊗ ū)L2⊗L2 =

=
2∑

α,β=1

(Ωαβ(λ), kα(x)v(x)kβ(y)u(y))L2(Iα)⊗L2(Iβ),

u, v ∈ H+.
(27)

We will find the expression for Ωαβ(λ);
below α, β = 1, 2 are fixed. Note at first that
the bilinear form
Hβ,+ ⊗Hα,+ ∋ ⟨uβ, vα⟩ 7→ a(uβ, vα) :=

:= (Ωαβ(λ), vα ⊗ ūβ)L2(Iα)⊗L2(Iβ)

(28)

is continuous. Indeed, because
∥Ω(λ)∥H−⊗H− , λ ∈ R1

+, is bounded, we
have using definition (26):

|a(uβ, vα)| ≤ C∥uβ∥Hβ,+
· ∥vα∥Hα,+ .

Using chains (25) we can assert that there
exist such continuous operators R : Hβ,+ →
Hα,+ and S : Hα,+ → Hβ,− that we have the
representations

a(uβ, vα) = (Ruβ, vα)L2(Iα) = (uβ, Svα)L2(Iβ),

uβ ∈ Hβ,+, vα ∈ Hα,+.
(29)

From (29), (28), (26) and (22) we can
conclude that ξ = Ruβ ∈ Hα,− is a generalized
solution, inside Iα of the equation ℑξ = λξ.
Namely, we have the corresponding equality
(23): ∀vα ∈ C∞

fin(Y) ⊂ C∞
0 (I)

(ξ,ℑuα)L2(Iα) = λ(ξ, vα)L2(Iα).

Therefore, the above-mentioned assertion
gives that Ruβ = ξ ∈ C∞

fin(Ī) and, according
to (24)

(Ruβ)(x) = C1(uβ)
[
cos

√
λx+ sin

√
λx
]
,

x ∈ Īα, uβ ∈ Hβ,+.

(30)

Quite analogously we get the representation

(Svα)(y) = C2(vα)
[
cos

√
λy + sin

√
λy
]
,

y ∈ Īβ, vα ∈ Hα,+.

Equality (29) gives that

C1(uβ)

[ ∫
Iα

cos
√
λxvα(x)dx+

+

∫
Iα

sin
√
λxvα(x)dx

]
=

= C2(vα)

[ ∫
Iβ

cos
√
λyuβ(y)dy+

+

∫
Iβ

sin
√
λyvβ(y)dy

]
.

(31)

From (31) it is to conclude that some
constants r ∈ R1

C1(uβ) = τ

∫
Iβ

uβ(y)[cos
√
λy + sin

√
λy]dy;

uβ(y) ∈ Hβ+,
(32)

substituting C(uβ) into (30) and using (28),
(29) we get:

(Ωαβ(λ), vα⊗uβ)L2(Iα)⊗L2(Iβ) =

= τ

∫ ∫
Iα×Iβ

(
cos

√
λx+ sin

√
λx
)
(cos

√
λy+

+sin
√
λy)vα(x)uβ(y)dxdy,

uβ ∈ Hβ,+; vα ∈ Hα,+.
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This equality means that Ωαβ(λ) is a smooth
function Ωαβ(λ;x, y) and

Ωαβ(λ;x, y) = ταβ(λ)
(
cos

√
λx+

+sin
√
λx
)
(cos

√
λy + sin

√
λy),

x ∈ Īα, y ∈ Īβ, α, β = 1, 2.

(33)

Let u, v ∈ H+ = W 2
2,0(I). Then representa-

tions (27) and (33) give:

(Ω(λ), v ⊗ u)L2⊗L2 =

=
2∑

α,β=1

ταβ(λ)

∫ ∫
Iα×Iβ

(
cos

√
λx+

+sin
√
λx
)(

cos
√
λy+

+sin
√
λy
)
v(x)u(y)dxdy =

=

∫∫
I×I

(
2∑

α,β=1

(
cos

√
λx+sin

√
λx
)
(cos

√
λy+

+ sin
√
λy)kα(x)kβ(y)ταβ(λ)

)
v(x)u(y)dxdy.

(34)

The arbitrariness of the functions u, v ∈
W 2

2 (I) in (34) shows that Ω(λ) is an
ordinary kernel Ω(λ;x, y), and regard that
Ω(λ;−x,−y) = Ω(λ;x, y) we get

Ω(λ;x, y) =
2∑

α,β=1

(cos
√
λx cos

√
λy+

+sin
√
λx sin

√
λy)ταβ(λ), x, y ∈ I.

(35)

Note that the matrix τ(λ) = (ταβ(λ))
2
α,β=1 is

nonnegative definite for every λ ∈ R1. Indeed,
from (34) and (21) we can conclude:

2∑
α,β=1

ταβ(λ)CαCβ = (Ω(λ), u⊗ u)L2⊗L2 ≥ 0,

where

Cα =

∫
Iα

(cos
√
λx+ sin

√
λx)u(x)dx,

u ∈ H+, α = 1, 2.

The nonnegativeness of τ(λ) gives:

τ11(λ) ≥ 0, τ22(λ) ≥ 0,

|τ12(λ)|2 ≤ τ11(λ)τ22(λ), λ ∈ R1
+.

(36)

Using the measure ρ from Proposition 1 we
introduce the matrix-valued nonnegative Borel
measure dσ(λ) on R1

+ :

dσ(λ) = τ(λ)dρ(λ) := (ταβ(λ)dρ(λ))
2
α,β=1 =

= (dσαβ(λ))
2
α,β=1.

(37)

After substituting representation (35) into
(20) we get (4).

The convergence of integrals (4) follows
from (36), (37). The inverse statement is evi-
dent: every integral (4) has form (2) with conti-
nuous kαβ(t) and is a bounded positive definite
kernel, because ∀f ∈ C∞

fin(I)∫
I

∫
I

K(x, y)f(y)f(x)dxdy =

=

∫∫
I×I

(∫
R1
+

(cos
√
λx cos

√
λy+

+sin
√
λx sin

√
λy)×

×
2∑

α,β=1

kα(x)kβ(y)dσαβ(λ)

)
f(x)f(y)dxdy=

=

∫
R1
+

( 2∑
α,β=1

∫
Iα

cos
√
λxf(x)dx×

×
∫
Iβ

cos
√
λyf(y)dy

)
dρ(λ)+

+

∫
R1
+

( 2∑
α,β=1

∫
Iα

sin
√
λxf(x)dx×

×
∫
Iβ

sin
√
λyf(y)dy

)
dρ(λ) =

=

∫
R1
+

∣∣∣∣ ∫
I

cos
√
λxf(x)dx

∣∣∣∣2dρ(λ)+
+

∫
R1
+

∣∣∣∣ ∫
I

sin
√
λxf(x)dx

∣∣∣∣2dρ(λ) ≥ 0.

Theorem is proved.
Remark. The proof of this theorem shows

that it holds true for a more general situation,
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namely, if the functions Iαβ ∋ t → kαβ(t) ∈
C1 are only measurable. In this case, the
corresponding integral (4) is, as before conti-
nuous. It is proved that the difference between
K and this integral is a positive definite kernel
(defined for almost all x, y).
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