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INVARIANT METHODS FOR STUDYING STABILITY OF
UNPERTURBED MOTION IN TERNARY DIFFERENTIAL SYSTEMS

WITH POLYNOMIAL NONLINEARITIES

The centro-a�ne invariant conditions for Lyapunov stability of unperturbed motion in ternary
di�erential systems with polynomial nonlinearities were determined and the centro-a�ne invari-
ant conditions when a ternary di�erential system of the Lyapunov-Darboux form with quadratic
nonlinearities have a holomorphic integral were obtained. On the base of the integral the stability
of unperturbed period motion was studied.

1. Centro-a�ne invariant polynomials
in ternary di�erential systems

Let us consider the ternary di�erenti-
al system with polynomial nonlinearities of
perturbed motion (see, for example, [1] or [2])

dxj

dt
= ajαx

α +
l∑

i=1

ajα1···αmi
xα1 · · · xαmi

(j, α, α1, α2, . . . , αmi
= 1, 3; l <∞),

(1)

where ajα1α2...αmi
is a symmetric tensor in lower

indices in which the total convolution is done
and Γ = {m1,m2, ...,ml} (mi ≥ 2) is a �nite
set of distinct natural numbers.

We will examine the centro-a�ne group
GL(3,R) for system (1) given by transformati-
ons q:

x̄j = qjαx
α (∆ = det(qjα) ̸= 0) (j, α = 1, 3). (2)

Coe�cients and variables in (1) and (2)
takes values from the �eld of real numbers R.

Observe that the transformation (2)
preserves the form of the system (1)

dx̄j

dt
= ājαx̄

α +
l∑

i=1

ājα1···αmi
x̄α1 · · · x̄αmi

(j, α, α1, α2, . . . , αmi
= 1, 3; l <∞),

(3)

where the coordinates of the vector x̄ =
(x̄1, x̄2 ,̄ x3) are determined by relations (2) and
the coe�cients from the right-hand sides of (3)
are some linear functions in the coe�cients of

system (1) and rational in the parameters qjα
of the transformation (2).

The phase variable vector x = (x1, x2, x3)
of system (1), which change by formulas
(2), in the theory of invariants [3] is called
contravariant. The vector u = (u1, u2, u3),
which change by formulas ur = pjruj (r, j =
1, 3), where prjq

j
s = δrs is the Kroniker

symbol, is called covariant. Any vector y =
(y1, y2, y3), which change by formulas (2) is
called cogradient of the vector x.

We will denote the set of coe�cients of
system (1) by a and of the system (3) by ā.
De�nition 1. We say (see [3]) that a

polynomial κ(x, u, a) of the coe�cients of
system (1) and of the coordinates of vectors x
and u is called mixt comitant of the system
(1) with respect to the group GL(3,R), if the
following holds

κ(x̄, ū, ā) = ∆−gκ(x, u, a)

for all q from GL(3,R), for every coordinates
of vectors x and u, as well, any coe�cients of
system (1).

Here g is an integer number called the wei-
ght of comitant.

If the mixt comitant κ does not depend
on coordinates of vector u, then following [4],
we call it comitant. If κ does not depend on
coordinates of vector x it will be called, as in
[3], contravariant. If κ does not depend of x
and u, then we call it invariant of the system
(1) with respect to the group GL(3,R).
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It was shown in [5] that the expressions

κ1 = xαuα, κ2 = aαβx
βuα,

κ3 = aαγa
β
αx

γuβ, θ1 = aαα, θ2 = aαβa
β
α,

θ3 = aαγa
β
αa

γ
β, δ4 = aαγa

β
pa

γ
quαuβurε

pqr

(4)

in the coordinates of the vectors x, u and of
the tensor ajα, compose a functional base of the
mixt comitants of the linear part of di�erential
system (1), where εpqr is the unit trivector with
coordinates ε123 = −ε132 = ε312 = −ε321 =
ε231 = −ε213 = 1 and εpqr = 0 (p, q, r = 1, 3)
for all other cases.

An important role in studying ternary
systems with polynomial nonlinearities (1) has
the comitant

σ1 = aαµa
β
δ a

γ
αx

δxµxνεβγν (5)

(ε123 = −ε132 = ε312 = −ε321 = ε231 = −ε213 =
1 and εβγν = 0 (β, γ, ν = 1, 3)) from [4], which
is a particular integral of the system

dxj

dt
= ajαx

α (j, α = 1, 3) (6)

of the �rst approximation ([1], [2]) for (1).
In [6] it was proved the following assertion.
Lemma 1. The following equivalences hold :

σ1(x) ≡ 0 ⇐⇒ δ4(u) ≡ 0 (7)

and conversely

σ1(x) ̸≡ 0 ⇐⇒ δ4(u) ̸≡ 0, (8)

where δ4 is from (4) and σ1 is from (5).

2. Centro-a�ne invariant conditions
for stability of unperturbed motion

As it follows from [2], the zero values of the
variables xj(t) (j = 1, 3) correspond to the to
unperturbed motion of perturbed system (1).
As consequence, we have the following de�ni-
tion of stability by Lyapunov [2]:

If for any small positive value ε, however
small, one can �nd a positive number δ such
that at t = t0, for all perturbation xj(t0) sati-
sfying

n∑
j=1

(xj(t0))
2 ≤ δ (9)

the inequality
n∑
j=1

(xj(t))2 < ε

is valid, then the unperturbed motion xj =
0 (j = 1, 3) is called stable, otherwise it is
called unstable.

Geometrically this de�nition has the
following interpretation:

If the motion is stable, then for sphere ε one
can �nd another sphere δ such that starting at
any point M0 inside or on the surface of the
sphere δ, the image pointM will always remain
inside the sphere ε, never reaching its external
surface.

If the perturbed motion is unstable, then
irrespective of how close to the reference ori-
gin the point M0 may be, in time, at least one
trajectory of the representative point M will
cross the sphere ε from inside to outside.

If the unperturbed motion is stable and the
value δ can be found however small such that
for any perturbed motions satisfying (9) the
condition

lim
t→∞

∑n
j=1(x

j(t))2 = 0

is valid, then the unperturbed motion is called
asymptotically stable.
Lemma 2. The characteristic equation of

system (1) and (6) is

ϱ3 + L1,3ϱ
2 + L2,3ϱ+ L3,3 = 0, (10)

where
L1,3 = −θ1, L2,3 = (θ21 − θ2)/2,

L3,3 = −(θ31 − 3θ1θ2 + 2θ3)/6,
(11)

and θi (i = 1, 3) are from (4).
According to Lyapunov theorems on stabi-

lity of unperturbed motion by sign of the ei-
genvalues of the di�erential system in the �-
rst approximation and Hurwitz theorem to the
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root analysis of the characteristic equation (see
[2]), there were proved the following theorems:

Theorem 1. If the centro-a�ne invari-
ants of (1) satisfy the following conditions

L1,3 > 0, L2,3 > 0, L3,3 > 0,
L1,3L2,3 − L3,3 > 0,

then the unperturbed motion x1 = x2 = x3 = 0
of the system is asymptotically stable, where
Li,3 (i = 1, 3) are the coe�cients of the
characteristic equation (10) of system (1).
Theorem 2. If at least one of the centro-

a�ne invariant expression (11) of system (1)
is negative, then the unperturbed motion x1 =
x2 = x3 = 0 of this system is unstable.

3. Lyapunov form of the ternary di-
�erential system

Let be given the system

dxj

dt
= αjαx

α + ajαβx
αxβ ≡ P j(x), (12)

(j = 1, 3), which can be obtained from (1) for
Γ = {1, 2}.
Lemma 3 [5]. Suppose in (5) that σ1 ≡ 0.

Then by a centro-a�ne transformation

x̄1 = x2, x̄2 = x1 +
a32
a31
x2, x̄3 = x3,

when a31 ̸= 0, we obtain that the quadratic
part of system (12) preserves the form, and the
coe�cients from the linear part of this system
satisfy one of the following conditions:

a12 = a13 = a21 = a23 = a31 = a32 = 0,

a33 = a22;
(13)

a12 = a13 = a21 = a23 = a31 = a32 = 0,

a33 = a11;
(14)

a12 = a13 = a21 = a23 = a31 = a32 = 0,

a22 = a11;
(15)

a12 = a13 = a21 = a31 = a32 = 0,

a23 ̸= 0, a33 = a11;
(16)

a12 = a13 = a21 = a31 = a32 = 0,

a22 = a11, a
2
3 ̸= 0;

(17)

a12 = a21 = a23 = a31 = a32 = 0,

a13 ̸= 0, a33 = a22;
(18)

a12 = a21 = a31 = a32 = 0,

a13 ̸= 0, a22 = a11;
(19)

a21 = a23 = a31 = a32 = 0,

a12 ̸= 0, a33 = a22;
(20)

a21 = a31 = a32 = 0, a12 ̸= 0,

a23 =
a13(a

2
2 − a11)

a12
, a33 = a11;

(21)

a31 = a32 = 0, a13 =
a23(a

1
1 − a33)

a21
,

a21 ̸= 0, a12 =
(a11 − a33)(a

2
2 − a33)

a21
;

(22)

a21 = a31 = 0, a32 ̸= 0, a13 =
a12(a

3
3 − a11)

a32
,

a23 =
(a11 − a22)(a

1
1 − a33)

a32
.

(23)

Lemma 4. Suppose that for the linear part
of system (12) σ1 ≡ 0, where σ1 is from (5).
Then the characteristic equation (10) of this
system has real eigenvalues.

Proof. The roots of the characteristic
equation (10) of system (12), under conditions
(13)-(23) are given in Table 1:

Table 1.

System (12) Eigenvalues
under conditions of (10)

(13) ϱ1 = a11, ϱ2,3 = a22

(14) ϱ1,2 = a11, ϱ3 = a22

(15) ϱ1,2 = a11, ϱ3 = a33

(16) ϱ1,2 = a11, ϱ3 = a22

(17) ϱ1,2 = a11, ϱ3 = a33

(18) ϱ1 = a11, ϱ2,3 = a22

(19) ϱ1,2 = a11, ϱ3 = a33

(20) ϱ1 = a11, ϱ2,3 = a22

(21) ϱ1,2 = a11, ϱ3 = a22

(22) ϱ1,2 = a33,
ϱ3 = a11 + a22 − a33

(23) ϱ1,2 = a11,
ϱ3 = −a11 + a22 + a33

ISSN 2309-4001.Áóêîâèíñüêèé ìàòåìàòè÷íèé æóðíàë. 2016. � Ò. 4, � 3�4. 135



From Table 1, it follows that all eigenvalues
ϱi (i = 1, 3) are real. Lemma 4 is proved.

Lemma 5. Suppose that in (5) σ1 ̸≡ 0.
Then system (12), by means of a centro-a�ne
transformation, can be brought to the form

ẋ1 = x2 + a1αβx
αxβ,

ẋ2 = x3 + a2αβx
αxβ,

ẋ3 = −L3,3x
1 − L2,3x

2−
−L1,3x

1 + a3αβx
αxβ,

(24)

where Li,3 (i = 1, 3) are from (11).

Proof. Consider the substitution

x1 = κ1, x2 = κ2, x3 = κ3, (25)

with κi (i = 1, 3) given in (4).
From (25) we have

Det(κ1,κ2,κ3) ≡ δ4 =

=

∣∣∣∣∣∣
u1 u2 u3

aα1
1 uα1 aα1

2 uα1 aα1
3 uα1

aα1a
β
αuβ aα2a

β
αuβ aα3a

β
αuβ

∣∣∣∣∣∣ ,
where δ4 is from (4) and

x1=[(aα1
2 a

α
3a

β
αuα1uβ−aα1

3 a
α
2a

β
αuα1uβ)x̄

1+

+(aα2a
β
αuβu3 − aα3a

β
αuβu2)x̄

2+

+(aα1
3 uα1u2 − aα1

2 uα1u3)x̄
3]/δ4,

x2=[(aα1
3 a

α
1a

β
αuα1uβ−aα1

1 a
α
3a

β
αuα1uβ)x̄

1+

+(aα3a
β
αuβu1 − aα1a

β
αuβu3)x̄

2+

+(aα1
1 uα1u3 − aα1

3 uα1u1)x̄
3]/δ4,

x3=[(aα1
1 a

α
2a

β
αuα1uβ−aα1

2 a
α
1a

β
αuα1uβ)x̄

1+

+(aα1a
β
αuβu2 − aα2a

β
αuβu1)x̄

2+

+(aα1
2 uα1u1 − aα1

1 uα1u2)x̄
3]/δ4.

(26)

Substituting (25) and (26) in (12) and taki-
ng into account Lemma 1 (δ4 ̸≡ 0 ⇔ σ1 ̸≡ 0),
we obtain the system (24). The initial notati-
on of variables and coe�cients in the quadratic
parts of (24) are preserved. Lemma 5 is proved.
Lemma 6. The characteristic equation (10)

of system (24) with σ1 ̸≡ 0 has purely imagi-
nary eigenvalues if and only if the system has

the form

ẋ1 = x2 + a1αβx
αxβ,

ẋ2 = x3 + a2αβx
αxβ,

ẋ3 = −L1,3L2,3x
1 − L2,3x

2−
−L1,3x

3 + a3αβx
αxβ (L2,3 > 0),

(27)

where Li,3 (i = 1, 3) are of the form (11).
Proof. By Lemma 3, it is necessary to

examine only the case when σ1 ̸≡ 0.
Assume the characteristic equation (10) has

purely imaginary eigenvalues ϱ1 = αi, ϱ2 =
−αi (α ̸= 0 is real), then the third root, evi-
dently is real ϱ3 = β. By means of the V iète
theorem for eigenvalues of (10), we can write

ϱ1 + ϱ2 + ϱ3 = −L1,3,
ϱ1ϱ2 + ϱ1ϱ3 + ϱ2ϱ3 = L2,3,
ϱ1ϱ2ϱ3 = −L3,3.

Taking into account the last equalities, we get
β = −L1,3, α2 = L2,3, L3,3 = L1,3L2,3.
Since α is real and nonzero α ̸= 0, we have

L2,3 > 0. Substituting the last conditions in
(24), we obtain (27).

The su�ciency of these conditions is con�-
rmed as follows. Assume system (24) is of the
form (27), then the characteristic equation (10)
can be written as

(ϱ2 + L2,3)(ϱ+ L1,3) = 0.
Because L2,3 > 0, the equation has two purely
imaginary eigenvalues and one real eigenvalue.
Lemma 6 is proved.
Lemma 7. By a centro-a�ne transformati-

on the system (27) with σ1 ̸≡ 0 can be brought
to the Lyapunov form [1, §33]

ẋ1 = −λx2 + a1αβx
αxβ,

ẋ2 = λx1 + a2αβx
αxβ,

ẋ3 = x2 − L1,3x
3 + a3αβx

αxβ,
(28)

where L1,3 is from (11), and
λ2 = L2,3 (L2,3 > 0).

Proof. We will examine the linear part of
the ternary di�erential system (28) in the
Lyapunov form. According to [1, §33], the li-
near part of this system must have the form

Ẋ1 = −λX2 + ...,

Ẋ2 = λX1 + ...,

Ẋ3 = aX1 + bX2 + cX3 + ...,

(29)
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where by dots we mean the quadratic part
of the system. The coe�cients λ, a, b, c are
expressions in Li,3 (i = 1, 3) and the new vari-
ables X1, X2, X3 have the form

X1 = α1x
1 + α2x

2 + α3x
3,

X2 = β1x
1 + β2x

2 + β3x
3,

X3 = γ1x
1 + γ2x

2 + γ3x
3,

(30)

where

∆ =

∣∣∣∣∣∣
α1 α2 α3

β1 β2 β3
γ1 γ2 γ3

∣∣∣∣∣∣ ̸= 0. (31)

In these conditions, we observe that substi-
tution (30) form a centro-a�ne transformati-
on. Substituting (30) and (31) in the Lyapunov
form (29) and comparing with the system (27),
we obtain a system of nine algebraic equation
in 12 unknowns.

Solving this system, we have

X1 = −L2
1,3λx

1 + λx3,
X2 = L1,3L2,3x

1 + (L2
1,3 + L2,3)x

2 + L1,3x
3,

X3 = 2L2,3x
1 + L1,3x

2 + x3,

where λ2 = L2,3, and

∆ = −2L2,3λ(L
2
1,3 + L2,3) ̸= 0 (L2,3 > 0).

This transformation brings the system (27) to
a system with the linear part in the Lyapunov
form

Ẋ1 = −λX2 + ...,

Ẋ2 = λX1 + ...,

Ẋ3 = X2 − L1,3X
3 + ...,

for which, preserving in the quadratic part the
initial notations of variables and coe�cients,
we obtain (28). Lemma 7 is proved

4. Invariant conditions for stability of
unperturbed periodic motions

We will use the followingGL(3,R)-invariant
polynomials for system (12) from [5�6]:

η = aαβγx
βxγxδyµεαδµ, P1 = aααβx

β,

P2 = aαβa
β
αγx

γ, P3 = aαγa
β
αa

γ
βδx

δ,
(32)

where η is a comitant of two cogradient vectors
x = (x1, x2, x3) and y = (y1, y2, y3) which are
linear independent.

It is easy to verify
Lemma 8 [6]. Suppose that in system (12)

η ≡ 0. Then the quadratic parts of this system
have a common linear factor.

The di�erential systems (12), with property
stated in Lema 8, will be called the di�erential
systems of the Darboux form [6]. If the linear
part of system (12) has the Lyapunov form and
the quadratic one - the Darboux form, then
such systems will be called Lyapunov-Darboux
di�erential systems.

In [6] it was proved the following assertion
Theorem 3. Let η ≡ 0. Then system (12)

has a GL(3,R)-invariant integrating factor
µ−1 = σ1φ with σ1 from (5), where

φ = −2L3,3 + 3L2,3P1 + 4L1,3P2 + 4P3 (33)

are GL(3,R)-invariant particular integrals of
this system with Li,3 (i = 1, 3) from (11) and
Pi (i = 1, 3) from (32).
Lemma 9. By a centro-a�ne transformati-

on, the system (12) can be brought to the
Lyapunov-Darboux form

dx1

dt
= −λx2 + 2x1(gx1+

+hx2 + kx3) ≡ P 1,

dx2

dt
= λx1 + 2x2(gx1+

+hx2 + kx3) ≡ P 2,

dx3

dt
= x2 − L1,3x

3 + 2x3(gx1+

+hx2 + kx3) ≡ P 3,

(34)

if and only if the following centro-a�ne invari-
ant conditions hold

σ1 ̸≡ 0, η ≡ 0, L1,3L2,3 = L3,3

(λ2 = L2,3, L2,3 > 0, L1,3 > 0),
(35)

where σ1 is from (5), Li,3 (i = 1, 3) is from
(11) and η is from (32).

The proof of Lemma 9 follows directly from
Lemmas 6�8 and [1].

We determinate the Lie algebra of the
operators admissible by system (34) [5]. We
assume that the coordinate of the operator

X = ξi
∂

∂xi
(i = 1, 3),

ISSN 2309-4001.Áóêîâèíñüêèé ìàòåìàòè÷íèé æóðíàë. 2016. � Ò. 4, � 3�4. 137



have the form

ξi = Aiβx
β + Aiβγx

βxγ (β, γ = 1, 3),

and satisfy the determinant equations

(ξ1)x1P
1 + (ξ1)x2P

2 + (ξ1)x3P
3 =

= ξ1P 1
x1 + ξ2P 1

x2 + ξ3P 1
x3 ,

(ξ2)x1P
1 + (ξ2)x2P

2 + (ξ2)x3P
3 =

= ξ1P 2
x1 + ξ2P 2

x2 + ξ3P 2
x3 ,

(ξ3)x1P
1 + (ξ3)x2P

2 + (ξ3)x3P
3 =

= ξ1P 3
x1 + ξ2P 3

x2 + ξ3P 3
x3 .

Then solving this system for (34), we obtain
the following operators

X1 = {λL1,3x
1 − λ2x2+

+2[(−k − hL1,3 + gλ)(x1)2+

+(gL1,3 + hλ)x1x2]} ∂

∂x1
+

+{λ2x1 + λL1,3x
2 + 2(−k − hL1,3+

+gλ)x1x2 + 2(gL1,3 + hλ)(x2)2} ∂

∂x2
+

+{λx2 + 2(−k − hL1,3 + gλ)x1x3+

+2(gL1,3 + hλ)x2x3} ∂

∂x3
,

X2 = [λ2x1 + λL1,3x
2+

+2(−gL1,3 − hλ)(x1)2+

+2(gλ− k − hL1,3)x
1x2]

∂

∂x1
+

+[λL1,3x
1+λ2x2−2(gL1,3+hλ)x

1x2+

+2(gλ− k − hL1,3)(x
2)2]

∂

∂x2
+

+[−λx1 + 2(−gL1,3 − hλ)x1x3−

−2(k + hL1,3 − gλ)x2x3]
∂

∂x3
,

X3 = {−λL1,3 + 2[(k + hL1,3)x
1−

−gL1,3x
2 + kλx3]}(x1 ∂

∂x1
+

+x2
∂

∂x2
+ x3

∂

∂x3
).

(36)

By means of the commutators [Xi, Xj] =
XiXj−XjXi we can verify that these operators
form a Lie three-dimensional commutative
algebra.

According to [7] and using the operators
Xα = ξiα

∂
∂xi

(α = 1, 2; i = 1, 3) (ignoring a
constant factor) we obtain the Lie integrating
factor of the form

µ−1 =

∣∣∣∣∣∣
ξ11 ξ21 ξ31
ξ12 ξ22 ξ32
P 1 P 2 P 3

∣∣∣∣∣∣
or

µ−1 = [λL1,3 − 2((k + hL1,3)x
1−

−gL1,3x
2 + kλx3)]σ1.

(37)

Using this expression and the Theorem on
integrating factor, we have

Theorem 4. One of the �rst integrals of
system (34) has the form

F1 ≡
f1
f 2
2

= C1, (38)

where

f1 = (x1)2 + (x2)2,

f2 = −λL1,3 + 2(k + hL1,3)x
1−

−2gL1,3x
2 + 2λkx3.

(39)

Corollary 1. For system (34) we have

φ = 12λf2, (40)

where φ is of the form (33).

Corollary 2. The �rst integral (38) with
f2 ̸≡ 0 (φ ̸≡ 0) can be written as a holomorphic
integral of the form

F̃1 = (x1)2 + (x2)2 + F (x1, x2, x3), (41)

where F (x1, x2, x3) contains terms of degree at
least two in variables x1, x2, x3.

By Lemma 9, Theorem 4, Corollaries 1
and 2, there were established the centro-
a�ne invariant conditions for the existence
of a holomorphic integral (41) for di�erenti-
al system (12). Taking into account this, the
Lyapunov Theorem on stability of unperturbed
motion [1, §40, p. 160] and the holomorphic
integral (41) we obtain the following main
result.
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Theorem 5. Suppose for system (12) the
centro-a�ne invariant conditions (35) hold,
the comitant φ from (33) is a non-constant
function and is not identically zero, and condi-
tion L1,3 > 0 from (11) is satis�ed. Then
the system has a periodic solution contai-
ning an arbitrary constant and varying the
constant one can obtain a continuous sequences
of periodic motions which describe the studi-
ed unperturbed motion. This motion is stable
and any other unperturbed motion will tend
asymptotically to one of the periodic motions.

Assume that L1,3 = 0, then the di�erential
system (34) admits the following operators

X1 = [2hx1x2 + 2(k − gλ)x1x3−

−λx2] ∂
∂x1

+

+[2h(x2)2 + λx1+

+2(k − gλ)x2x3]
∂

∂x2
+ [2hx2x3+

+2(k − gλ)(x3)2 + x2]
∂

∂x3
,

X2 = [2(k − gλ)x1x2 − 2hλ2x1x3−

−λ2x1] ∂
∂x1

+

+[2(k − gλ)(x2)2 − λ2x2−

−2hλ2x2x3]
∂

∂x2
+ [2(k − gλ)x2x3−

−2hλ2(x3)2 + λx1]
∂

∂x3
,

X3 = (x1 + λx3)(x1
∂

∂x1
+

+x2
∂

∂x2
+ x3

∂

∂x3
),

(42)

which form a Lie commutative algebra.
Using the �rst two operators and ignoring a

constant factor, similarly to the previous case,
we obtain the Lie integrating factor

µ−1 = ((x1)2 + (x2)2)(x1 + λx3)2. (43)

By means of this expression and the Lie
Theorem on integrating factor [7], we have the
following assertion.

Theorem 6. The di�erential system (34)
with L1,3 = 0 has a general integral composed
of the following two �rst integrals

F1 ≡
(x1)2 + (x2)2

(x1 + λx3)2
= C1,

F2 ≡
λ2 + 2(λg − k)x2 + 2λ2hx3

x1 + λx3
+

+2k arctg
x2

x1
= C2.

(44)

Remark 1. The Lie algebra (42), the Lie
integrating factor (43), the �rst integral (44) of
the system (34), ignoring constant factor, can
be obtained from the Lie algebra (36), the �-
rst integrating factor (37) and the �rst integral
(38), respectively, by substituting L1,3 = 0.
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