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Êè¨âñüêèé íàöiîíàëüíèé óíiâåðñèòåò iìåíi Òàðàñà Øåâ÷åíêà

EXTRAPOLATION PROBLEM FOR FUNCTIONALS OF STATIONARY
PROCESSES WITH MISSING OBSERVATIONS

Äîñëiäæó¹òüñÿ çàäà÷à îïòèìàëüíîãî ëiíiéíîãî îöiíþâàííÿ ôóíêöiîíàëà âiä íåâiäîìèõ çíà-
÷åíü ñòàöiîíàðíîãî ñòîõàñòè÷íîãî ïðîöåñó çà äàíèìè ñïîñòåðåæåíü ïðîöåñó ç øóìîì. Çíàéäå-
íi ôîðìóëè äëÿ îá÷èñëåííÿ ñåðåäíüîêâàäðàòè÷íî¨ ïîõèáêè òà ñïåêòðàëüíî¨ õàðàêòåðèñòèêè
îïòèìàëüíî¨ îöiíêè ôóíêöiîíàëà çà óìîâè, ùî ñïåêòðàëüíi ùiëüíîñòi ïðîöåñiâ âiäîìi. Ó âè-
ïàäêó, êîëè âèãëÿä ñïåêòðàëüíèõ ùiëüíîñòåé íåâiäîìèé, àëå çàäàíi ìíîæèíè äîïóñòèìèõ
ñïåêòðàëüíèõ ùiëüíîñòåé, çàñòîñîâàíî ìiíiìàêñíèé ìåòîä îöiíþâàííÿ. Äëÿ çàäàíèõ ìíîæèí
äîïóñòèìèõ ñïåêòðàëüíèõ ùiëüíîñòåé âèçíà÷åíi íàéìåíø ñïðèÿòëèâi ñïåêòðàëüíi ùiëüíîñòi
òà ìiíiìàêñíi ñïåêòðàëüíi õàðàêòåðèñòèêè îïòèìàëüíî¨ ëiíiéíî¨ îöiíêè ôóíêöiîíàëà.

The problem of optimal linear estimation of the functional which depends on unknown values of
a stochastic stationary process from observations of the process with noise is considered. Formulas
for calculating the mean-square error and the spectral characteristic of the optimal linear estimate
of the functional are proposed under the condition of spectral certainty, where the spectral densities
of the processes ξ(t) and η(t) are exactly known. The minimax (robust) method of estimation is
applied in the case where the spectral densities are not known exactly, but sets of admissible
spectral densities are given. Formulas that determine the least favorable spectral densities and
minimax spectral characteristics are proposed for some special sets of admissible densities.

E�ective methods of solution of the
problems of interpolation, extrapolation and �-
ltering of stationary sequences and processes
were developed by A. N. Kolmogorov [15].
Further analysis can be found in the works
by Yu. A. Rozanov [32], E. J. Hannan [10],
H. Wold [36,37], T. Nakazi [28], N. Wiener
[35], A. M. Yaglom [38,39].

The crucial assumption of most of the
methods of estimation of the unobserved values
of stochastic processes is that the spectral
densities of the considered stochastic processes
are exactly known. However, in practice,
complete information on the spectral densi-
ties is impossible in most cases. In order to
solve the problem one can �nd parametric
or nonparametric estimates of the unknown
spectral densities. Then, one of the traditional
estimation methods is applied. With the help
of some examples K. S. Vastola and H. V. Poor
[34]. have demonstrated that this procedure
can result in signi�cant increasing of the value
of error.

In the paper by Ulf Grenander [9], whi-
ch deals with the problem of extrapolation for

stationary processes, a new method of esti-
mation, called minimax, was introduced. The
purpose of this method is to search the esti-
mates which are optimal for all densities from
a certain class of admissible spectral densities.
These estimates are called minimax since they
minimize the maximum value of the error.

Several models of spectral uncertainty and
minimax-robust methods of data processi-
ng can be found in the survey paper by
S. A. Kassam and H. V. Poor [14]. J. Franke
[5], J. Franke and H. V. Poor [6] investi-
gated the minimax extrapolation and �lteri-
ng problems for stationary sequences with the
help of convex optimization methods. This
approach makes it possible to �nd equati-
ons that determine the least favorable spectral
densities for di�erent classes of densities.

The results of research of the problems of
the linear optimal estimation of the functi-
onals which depend on the unknown values of
stationary sequences and processes are given in
papers by M. Moklyachuk [19] � [22]. A mini-
max technique of estimation for vector-valued
stationary stochastic processes was developed

122 ISSN 2309-4001. Áóêîâèíñüêèé ìàòåìàòè÷íèé æóðíàë. 2016. � Ò. 4, � 1�2.



by M. Moklyachuk and A. Masyutka
in papers [23]�[25]. Solution of estimation
problems for periodically correlated stochastic
processes were proposed by M. Moklyachuk
and I. Dubovetska [4,8]. Estimation problems
for functionals which depend on the unknown
values of stochastic processes with stationary
increments were investigated by M. Luz
and M. Moklyachuk [16]�[18]. The problem
of interpolation of stationary sequence wi-
th missing values was investigated by M.
Moklyachuk and M. Sidei [26,27].

Prediction of stationary processes with
missing observations was investigated in
papers by P. Bondon [1,2], Y. Kasahara,
M. Pourahmadi and A. Inoue [13,29],
R. Cheng, A. G. Miamee, M. Pourahmadi
[3]. The problem of interpolation of stationary
sequences was considered in the paper of
H. Salehi [33].

In this paper we deal with the problem
of the mean-square optimal linear estimation
of the functional Aξ =

∫∞
0
a(t)ξ(t)dt, which

depends on the unknown values of a stochastic
stationary process ξ(t) from observations of
the process ξ(t) + η(t) at time points t ∈
R−\S, S =

∪s
l=1[−Ml − Nl, . . . , −Ml], Ml =∑l

k=0(Nk + Kk), N0 = 0, K0 = 0. First we
consider the case when spectral densities are
known, and apply the Hilbert space method to
the solution of the estimation problem. We use
minimax-robust method of estimation to solve
the problem for the given classes of admissi-
ble spectral densities in the case when spectral
densities are not exactly known.
Classical extrapolation problem of

stationary processes
Consider two uncorrelated stochastic

processes {ξ(t), t ∈ R} and {η(t), t ∈ R} with
zero �rst moments Eξ(t) = 0, Eη(t) = 0,
and correlation functions of the form
Rξ(k) = 1

2π

∫∞
−∞ eikλf(λ)dλ, Rη(k) =

1
2π

∫∞
−∞ eikλg(λ)dλ, where f(λ) and g(λ) are

spectral densities of the functions ξ(t) and
η(t), such that the minimality condition holds
true ∫ ∞

−∞

|γ(λ)|2

f(λ) + g(λ)
dλ <∞, (1)

where γ(λ) =
∫∞
0
α(t)eitλdt is nontrivial

function of exponential type. Under this condi-
tion the error-free extrapolation is impossible
[32].

Stationary stochastic processes ξ(t) and η(t)
admit the spectral decomposition [12]

ξ(t) =

∫ ∞

−∞
eitλZξ(dλ), η(t) =

∫ ∞

−∞
eitλZη(dλ),

(2)
where Zξ(dλ) and Zη(dλ) are the orthogonal
stochastic measures.

Consider the problem of the mean-square
optimal linear extrapolation of the functional
Aξ =

∫∞
0
a(t)ξ(t)dt, which depends on the

unknown values of the process ξ(t), based
on the observed values of the process ξ(t) +
η(t) at time points t ∈ R−\S, where S =∪
l = 1s[−Ml −Nl, . . . ,−Ml].
Let the function a(t) which de�nes the

functional Aξ satisfy conditions (3)∫ ∞

0

|a(t)| dt <∞,

∫ ∞

0

t |a(t)|2 dt <∞. (3)

It follows from the spectral decomposition
of the process ξ(t) that the functional Aξ can
be represented in the form

Aξ =

∫ ∞

−∞
A(eiλ)Zξ(dλ),

A(eiλ) =

∫ ∞

0

a(t)eitλdt.

Denote by Âξ the optimal linear estimate of
the functional Aξ from the observations of the

process ξ(t)+η(t). Let ∆(f, g) = E
∣∣∣Aξ − Âξ

∣∣∣2
be the mean-square error of the estimate Âξ.

Consider the Hilbert space H =
L2(Ω,F , P ) generated by random variables ξ
with 0 mathematical expectations, Eξ = 0,
�nite variations, E|ξ|2 < ∞, and inner
product (ξ, η) = Eξη. Denote by Hs(ξ+η) the
closed linear subspace generated by elements
{ξ(t) + η(t) : t ∈ R−\S} in the Hilbert space
H = L2(Ω,F , P ). Let L2(f + g) be the Hilbert
space of complex-valued functions that are
square-integrable with respect to the measure
whose density is f(λ) + g(λ), and Ls2(f + g)
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be the subspace of L2(f + g) generated by
functions {eitλ, t ∈ R−\S}.

We seek the mean-square optimal linear
estimate Âξ of the functional Aξ in the form

Âξ =

∫ ∞

−∞
h(eiλ)(Zξ(dλ) + Zη(dλ)),

where h(eiλ) ∈ Ls2(f + g) is called spectral
characteristic of the estimate.

The mean-square error ∆(h; f) of the esti-
mate Âξ can be calculated by the formula

∆(h; f, g) =
1

2π

∫ ∞

−∞

∣∣A(eiλ)− h(eiλ)
∣∣2 f(λ)dλ+

1

2π

∫ ∞

−∞

∣∣h(eiλ)∣∣2 g(λ)dλ.
According to the Hilbert space projection

method proposed by A. N. Kolmogorov [15],
the optimal linear estimation of the functional
Aξ is a projection of the element Aξ of the
space H on the space Hs(ξ + η), which can be
found from the following conditions:

1)Âξ ∈ Hs(ξ + η),

2)Aξ − Âξ⊥Hs(ξ + η).

Therefore, the spectral characteristic h(eiλ)
and the mean-square error ∆(h; f, g) of the
estimate Âξ can be calculated by the formulas

h(eiλ) = A(eiλ)
f(λ)

f(λ) + g(λ)
− C(eiλ)

f(λ) + g(λ)
,

(4)

C(eiλ) =
s∑
l=1

∫ −Ml

−Ml−Nl
(B−1Ra)(t)eitλdt

+

∫ ∞

0

(B−1Ra)(t)eitλdt,

∆(h; f, g) =

1

2π

∫ ∞

−∞

∣∣A(eiλ)g(λ) + C(eiλ)
∣∣2

(f(λ) + g(λ))2
f(λ)dλ

+
1

2π

∫ ∞

−∞

∣∣A(eiλ)f(λ)− C(eiλ)
∣∣2

(f(λ) + g(λ))2
g(λ)dλ

= ⟨Ra⃗,B−1Ra⃗⟩+ ⟨Qa⃗, a⃗⟩,

(5)

where < A,C >=
∑s

l=1

∫ −Ml

−Ml−Nl
A(t)C(t)dt +∫∞

0
A(t)C(t)dt is the inner product in the

space L2(T ), (Bx)(t), (Rx)(t) and (Qx)(t) are
linear operators in the space L2(T ),

(Bx)(t) =

1

2π

s∑
l=1

−Ml∫
−Ml−Nl

x(u)

∞∫
−∞

eiλ(u−t)
1

f(λ) + g(λ)
dλdu

+
1

2π

∫ ∞

0

x(u)

∞∫
−∞

eiλ(u−t)
1

f(λ) + g(λ)
dλdu,

(Rx)(t) =

1

2π

s∑
l=1

−Ml∫
−Ml−Nl

x(u)

∞∫
−∞

eiλ(u−t)
f(λ)

f(λ) + g(λ)
dλdu

+
1

2π

∫ ∞

0

x(u)

∞∫
−∞

eiλ(u−t)
f(λ)

f(λ) + g(λ)
dλdu,

(Qx)(t) =

1

2π

s∑
l=1

−Ml∫
−Ml−Nl

x(u)

∞∫
−∞

eiλ(u−t)
f(λ)g(λ)

f(λ) + g(λ)
dλdu

+
1

2π

∫ ∞

0

x(u)

∞∫
−∞

eiλ(u−t)
f(λ)g(λ)

f(λ) + g(λ)
dλdu,

x(t) ∈ L2(T ), t ∈ T,

and the function a(t) is such that a(t) = 0, t ∈
S, and a(t) = a(t), t ≥ 0.

The following theorem holds true.

Theorem 1. Let the processes ξ(t) and η(t) be
uncorrelated stationary processes with spectral
densities f(λ) and g(λ) which satisfy the mi-
nimality condition (1). The spectral characteri-
stic h(eiλ) and the mean-square error ∆(f, g)
of the optimal linear estimate of the functional
Aξ which depends on the unknown values of
the process ξ(j) based on observations of the
process ξ(t) + η(t), t ∈ R−\S can be calculated
by formulas (3), (5).

Consider the problem of the mean-square
optimal linear extrapolation of the functional

ANξ =

∫ N

0

a(t)ξ(t)dt,
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which depends on the unknown values of
the process ξ(t) based on observations of the
process ξ(t) + η(t) at time points t ∈ R−\S.

The linear estimate ÂNξ of the functional
ANξ is of the form

ÂNξ =

∫ ∞

−∞
hN(e

iλ)(Zξ(dλ) + Zη(dλ)),

where hN(e
iλ) ∈ Ls2(f + g) is the spectral

characteristic.
Consider the function aN(t) such that

aN(t) = a(t), t ∈ S, aN(t) = a(t), t ∈ T∩[0, N ],
aN(t) = 0, t ∈ T\[0, N ].

Then the spectral characteristic hN(eiλ) of
the estimate ÂNξ can be calculated by the
formula

hN(e
iλ) = AN(e

iλ)
f(λ)

f(λ) + g(λ)
− CN(e

iλ)

f(λ) + g(λ)
,

(6)

CN(e
iλ) =

s∑
l=1

∫ −Ml

−Ml−Nl
(B−1RaN)(t)e

itλdt+∫ ∞

0

(B−1RaN)(t)e
itλdt,

where AN(eiλ) =
∫ N
0
a(t)e−itλdt.

The mean-square error ∆(hN ; f, g) of the
estimate ÂNξ can be calculated by the formula

∆(hN ; f, g) = E
∣∣∣ANξ − ÂNξ

∣∣∣2 =
⟨Ra⃗N ,B

−1Ra⃗N⟩+ ⟨Qa⃗N , a⃗N⟩.
(7)

We obtain the following corollary.

Corollary 1. Let the processes ξ(t) and
η(t) be uncorrelated stationary processes wi-
th spectral densities f(λ) and g(λ) which sati-
sfy the minimality condition (1). The spectral
characteristic hN(e

iλ) and the mean-square
error ∆(hN ; f, g) of the optimal linear esti-
mate of the functional ANξ which depends on
the unknown values of the process ξ(j) based
on observations of the process ξ(t) + η(t), t ∈
R−\S can be calculated by formulas (6), (7).

Consider the case when the stationary
process ξ(t) is observed without noise. Then

the spectral characteristic of the estimate Âξ
is of the form

h(eiλ) = A(eiλ)− C(eiλ)f−1(λ), (8)

C(eiλ) =
s∑
l=1

∫ −Ml

−Ml−Nl
(B−1a)(t)eitλdt+∫ ∞

0

(B−1a)(t)eitλdt.

The mean-square error of the estimate of
the functional can be calculated by formula

∆(h; f) =< B−1a, a > . (9)

The following theorem holds true.

Theorem 2. Let ξ(t) be a stationary
stochastic process with the spectral density
f(λ), which satis�es the minimality condition∫ π
−π f

−1(λ)dλ <∞. The spectral characteristic

h(eiλ) and the mean-square error ∆(f, g) of the

optimal linear estimate Âξ of the functional
Aξ which depends on the unknown values of
the process ξ(j) based on observations of the
process ξ(t) at time points t ∈ R−\S, where
S =

s∪
l=1

[−Ml −Nl, . . . ,−Ml], can be calculated

by formulas (8),(7).

Minimax method of extrapolation
The results from the section above can

be applied to the solution of the introduced
problem only in the case when spectral densi-
ties of the processes are exactly known. In
the case when the full information on spectral
densities is impossible, but it is known that
spectral densities belong to the speci�ed class
of admissible densities, the minimax approach
will be useful. The purpose of this method is
to �nd estimate that minimize the maximum
values of the mean-square errors of the esti-
mates for all spectral densities from the given
class of admissible spectral densities.

Let us introduce de�nitions [21].

De�nition 1. For a given class of spectral
densities D = Df × Dg the spectral densiti-
es f0(λ) ∈ Df , g0(λ) ∈ Dg are called least
favorable in the class D for the optimal li-
near extrapolation of the functional Aξ if the
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following relation holds true

∆(f0, g0) = ∆ (h (f0, g0) ; f0, g0)

= max
(f,g)∈Df×Dg

∆(h (f, g) ; f, g) .

De�nition 2. For a given class of spectral
densities D = Df ×Dg the spectral characteri-
stic h0(eiλ) of the optimal linear extrapolation
of the functional Aξ is called minimax-robust
if there are satis�ed conditions

h0(eiλ) ∈ HD =
∩

(f,g)∈Df×Dg

Ls2(f + g),

min
h∈HD

max
(f,g)∈D

∆(h; f, g) = max
(f,g)∈D

∆
(
h0; f, g

)
.

Making use of the de�nitions above and
the results from the previous section, we can
formulate the following lemmas.

Lemma 1. Spectral densities f0(λ) ∈ Df ,
g0(λ) ∈ Dg satisfying the minimality conditi-
on (1) are the least favorable in the class D =
Df ×Dg for the optimal linear extrapolation of
the functional Aξ, if the Fourier coe�cients of
the functions (f0(λ) + g0(λ))

−1, f0(λ)(f0(λ) +
g0(λ))

−1, f0(λ)g0(λ)(f0(λ) + g0(λ))
−1 determi-

ne the operators B0,R0,Q0, which determine a
solution to the constrain optimization problem

max
(f,g)∈Df×Dg

⟨Ra⃗,B−1Ra⃗⟩+ ⟨Qa⃗, a⃗⟩ =

⟨R0a⃗, (B0)−1R0a⃗⟩+ ⟨Q0a⃗, a⃗⟩.
(10)

The minimax spectral characteristic h0 =
h(f0, g0) is determined by the formula (3) if
h(f0, g0) ∈ HD.

Corollary 2. Suppose the spectral density
f0(λ) ∈ Df is such that f−1

0 (λ) is integrable.
The spectral density f0(λ) ∈ Df is the least
favorable in the class Df for the optimal li-
near extrapolation of the functional Aξ from
the observation of the process ξ(t) at time poi-
nts t ∈ R−\S, if the Fourier coe�cients of
the function f−1

0 (λ) determine the operator B0,
which determines a solution to the constrain
optimization problem

max
f∈Df

⟨B−1a⃗, a⃗⟩ = ⟨(B0)−1a⃗, a⃗⟩. (11)

The minimax spectral characteristic h0 = h(f0)
is determined by the formula (8) if h(f0) ∈
HDf .

The least favorable spectral densities f0(λ),
g0(λ) and the minimax spectral characteristic
h0 = h(f0, g0) form a saddle point of the functi-
on ∆(h; f, g) on the set HD × D. The saddle
point inequalities

∆
(
h0; f, g

)
≤ ∆

(
h0; f0, g0

)
≤ ∆(h; f0, g0) ,

∀h ∈ HD,∀f ∈ Df ,∀g ∈ Dg,

hold true if h0 = h(f0, g0) òà h(f0, g0) ∈ HD,
where (f0, g0) is a solution to the constrained
optimization problem

sup
(f,g)∈Df×Dg

∆(h(f0, g0); f, g) = ∆ (h(f0, g0); f0, g0) ,

(12)
∆(h(f0, g0); f, g) =

1

2π

∞∫
−∞

∣∣A(eiλ)g0(λ) + C0(eiλ)
∣∣2

(f0(λ) + g0(λ))2
f(λ)dλ

+
1

2π

∞∫
−∞

∣∣A(eiλ)f0(λ)− C0(eiλ)
∣∣2

(f0(λ) + g0(λ))2
g(λ)dλ,

C0(eiλ) =
s∑
l=1

∫ −Ml

−Ml−Nl
((B0)−1R0a)(t)eitλdt

+

∫ ∞

0

((B0)−1R0a)(t)eitλdt, t ∈ S.

The constrained optimization problem (8)
is equivalent to the unconstrained optimization
problem [30]:

∆D(f, g) =−∆(h(f0, g0); f, g)

+ δ((f, g) |Df ×Dg ) → inf,
(13)

where δ((f, g) |Df ×Dg ) is the indicator
function of the set D = Df × Dg. Solution
of the problem (13) is characterized by the
condition 0 ∈ ∂∆D(f0, g0), where ∂∆D(f0)
is the subdi�erential of the convex functional
∆D(f, g) at point (f0, g0) [31].

The form of the functional ∆(h(f0, g0); f, g)
admits �nding the derivatives and di�erenti-
als of the functional in the space L1 × L1.
Therefore the complexity of the optimization
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problem (13) is determined by the complexity
of calculating the subdi�erential of the indi-
cator functions δ((f, g)|Df × Dg) of the sets
Df ×Dg [11].

Lemma 2. Let (f0, g0) be a solution to the
optimization problem (13). The spectral densi-
ties f0(λ), g0(λ) are the least favorable in the
class D = Df ×Dg and the spectral characteri-
stic h0 = h(f0, g0) is the minimax of the opti-
mal linear estimate of the functional Aξ if
h(f0, g0) ∈ HD.

Least favorable spectral densities in
the class D = D0 ×D1

ε

Consider the problem of extrapolation of
the functional Aξ in the case when spectral
densities of the processes belong to the class of
admissible spectral densities D = D0 ×D1

ε ,

D0 =

{
f(λ)

∣∣∣∣ 12π
∫ ∞

−∞
f(λ)dλ ≤ P1

}
,

D1
ε =

{
g(λ)

∣∣∣∣ 12π
∫ ∞

−∞
|g(λ)− g1(λ)| dλ ≤ ε

}
where spectral density g1(λ) is known and �-
xed. Class D1

ε describes a "ε-district" in the
space L1 of the given bounded spectral density
g1(λ).

Consider the spectral densities such that
f0(λ) ∈ D0, g0(λ) ∈ D1

ε . Suppose the following
functions are bounded

hf (f0, g0) =

∣∣A(eiλ)g0(λ) + C0(eiλ)
∣∣2

(f0(λ) + g0(λ))2
, (14)

hg(f0, g0) =

∣∣A(eiλ)f0(λ)− C0(eiλ)
∣∣2

(f0(λ) + g0(λ))2
. (15)

Then the functional ∆(h(f0, g0); f, g) is
continuous and bounded in the space L1 × L1

∆(h(f0, g0); f, g) =
1

2π

∫ ∞

−∞
hf (f0, g0)f(λ)dλ

+
1

2π

∫ ∞

−∞
hg(f0, g0)g(λ)dλ.

Hence, the following relation holds true [30]

∂∆D0×D1
ε
(f0, g0) =− ∂∆(h(f0, g0); f0, g0)

+ ∂δ((f0, g0)
∣∣D0 ×D1

ε ).

Condition 0 ∈ ∂∆D0×D1
ε
(f0, g0) makes it

possible to �nd equations which the least
favorable densities satisfy∣∣A(eiλ)g0(λ) + C0(eiλ)

∣∣ = α1(f0(λ) + g0(λ)),
(16)∣∣A(eiλ)f0(λ)− C0(eiλ)

∣∣ = (f0(λ)+g0(λ))Ψ(λ)α2,
(17)

where |Ψ(λ)| ≤ 1 and Ψ(λ) = sign(g0(λ) −
g1(λ)), when g0(λ) ̸= g1(λ), constants α1 ≥
0, α2 ≥ 0. Particularly, α1 ̸= 0, if
1
2π

∫∞
−∞ f0(λ)dλ = P1.
Equations (16), (17) together with the opti-

mization problem (10) and normality condition

1

2π

∫ ∞

−∞
|g(λ)− g1(λ)| dλ = ε (18)

determine the least favorable spectral densities
in the class D.

Theorem 3. Let the spectral densities f0(λ) ∈
D0, g0(λ) ∈ D1

ε satisfy the minimality conditi-
on (1), and functions determined by formulas
(14), (15) be bounded. Spectral densities f0(λ),
g0(λ) are the least favorable in the class D0 ×
D1
ε for the optimal linear extrapolation of the

functional Aξ if they satisfy equations (16)�
(18) and determine a solution to the opti-
mization problem (10). The minimax-robust
spectral characteristic of the optimal estimate
of the functional Aξ is determined by formula
(3).

Theorem 4. Suppose that f0(λ) ∈ D1
ε1
,

g0(λ) ∈ D1
ε2
, where

D1
ε1
=

{
f(λ)

∣∣∣∣ 12π
∫ ∞

−∞
|f(λ)− f1(λ)| dλ ≤ ε1

}
,

D1
ε2
=

{
g(λ)

∣∣∣∣ 12π
∫ ∞

−∞
|g(λ)− g1(λ)| dλ ≤ ε2

}
,

spectral densities f1(λ), g1(λ) are known and �-
xed. Let the spectral densities f0(λ), g0(λ) sati-
sfy the minimality condition (1) and functions
determined by formulas (14), (15) be bounded.
Spectral densities f0(λ), g0(λ) are the least
favorable in the class D1

ε1
× D1

ε2
for the opti-

mal linear extrapolation of the functional Aξ if
they satisfy equations∣∣A(eiλ)g0(λ) + C0(eiλ)

∣∣ = (f0(λ)+g0(λ))Ψ1(λ)α1,
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∣∣A(eiλ)f0(λ)− C0(eiλ)
∣∣ = (f0(λ)+g0(λ))Ψ2(λ)α2,

where |Ψ1(λ)| ≤ 1 and Ψ1(λ) = sign(f0(λ) −
f1(λ)), when f0(λ) ̸= f1(λ), |Ψ2(λ)| ≤ 1 and
Ψ2(λ) = sign(g0(λ) − g1(λ)), when g0(λ) ̸=
g1(λ), constants α1 ≥ 0, α2 ≥ 0.

A pair (f0(λ), g(λ)) of the least favorable
densities determines a solution to the optimi-
zation problem (10) and satis�es conditions

1

2π

∫ ∞

−∞
|f(λ)− f1(λ)| dλ = ε1,

1

2π

∫ ∞

−∞
|g(λ)− g1(λ)| dλ = ε2.

The function calculated by the formula (3) is
the minimax-robust spectral characteristic of
the optimal estimate of the functional Aξ.

Corollary 3. Suppose the spectral density g(λ)
is known, the spectral density f0(λ) ∈ D1

ε1
. Let

the function f0(λ)+g(λ) satisfy the minimality
condition (1), the function hf (f0, g) determi-
ned by formula (14) be bounded. The spectral
density f0(λ) is the least favorable in the
class D1

ε1
for the optimal linear extrapolation

of the functional Aξ if it is of the form f0(λ) =
max

{
f1(λ), α1

∣∣A(eiλ)g(λ) + C0(eiλ)
∣∣− g(λ)

}
,

and the pair (f0(λ), g(λ)) is a solution of the
optimization problem (10). The minimax-
robust spectral characteristic of the optimal
estimate of the functional Aξ. is determined
by formula (3).

Corollary 4. Let the spectral density f0(λ) ∈
D1
ε1
, the function f−1

0 (λ) is integrable and
the function determined by the formula (8)
be bounded. The spectral density f0(λ) is the
least favorable in the class D1

ε1
for the opti-

mal linear extrapolation of the functional Aξ
if it satis�es the following relation

∣∣C0(eiλ)
∣∣ =

f0(λ)Ψ1(λ)α1, and f0(λ) determines a solution
to the optimization problem (11). The function
calculated by the formula (8) is the minimax-
robust spectral characteristic of the optimal
estimate of the functional Aξ.

Conclusions
In the article we propose methods of the

mean-square optimal linear extrapolation of
the functional which depends on the unknown

values of stationary stochastic process based
on observed data of the process with noise and
missing values. In the case of spectral certainty
when the spectral densities of the stationary
processes are known we derive formulas for
calculating the spectral density and the mean-
square error of the estimate of the functional.
Results of solution of the estimation problem
are obtained for the case of observations wi-
thout noise. In the case of spectral uncertainty,
when speci�ed sets of admissible densities are
given, we derive the equations which determine
the least spectral densities.
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