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KwuiBchkuit namionanbamit yHiBepcuteT iMeni Tapaca [IleBuenka

EXTRAPOLATION PROBLEM FOR FUNCTIONALS OF STATIONARY

PROCESSES WITH MISSING OBSERVATIONS

JlocmikyeThes 3a/1a1a OITUMAJIBHOTO JTIHIHHOTO OmiHIOBaHHS (DYHKITIOHAJIA Bl HEBIIOMUX 3HA~
YEHb CTAIIOHAPHOTO CTOXACTHYHOTO MPOIECY 33 JAHUMU CIIOCTEPEKEHD MPOIECY 3 NIyMOM. SHal1e-
Hi bopmynu s 0OUNCTIEHHSA CEPETHBOKBAIPATHYHOI MOXUOKN TA CIEKTPATBHOI XapaKTEPUCTUKN
ONTUMAJIBHOI OIiHKK (PYHKIIOHATIA 33 YMOBH, IO CHEKTPAJIbHI IIIBHOCTI npomeciB Bigomi. Y Bu-
MajKy, KOJU BUTJISI CIEKTPATbHUX MIJILHOCTEH HEBiTOMMIt, ajie 3aJaHi MHOXKWHU JIOMYCTHUMUX
CIIEKTPAJBHUX IIJBHOCTEH, 3aCTOCOBAHO MiHIMAKCHUHE MeTos oniHoBaHHs. /I 3a1aHuX MHOXKUH
JOMYCTAMUX CHEKTPAJHHUX IMIIJIFHOCTEN BU3HAYEHI HAUMEHII CIPUSTANBI CIeKTPaIbHI MIbHOCTL
Ta MiHIMAKCHI CIIEKTPAJIbHI XapaKTEPUCTUKH ONTUMAIBHOI JiHIAHOT OMiHKY (DYHKIIIOHAIA.

The problem of optimal linear estimation of the functional which depends on unknown values of
a stochastic stationary process from observations of the process with noise is considered. Formulas
for calculating the mean-square error and the spectral characteristic of the optimal linear estimate
of the functional are proposed under the condition of spectral certainty, where the spectral densities
of the processes £(t) and 7(t) are exactly known. The minimax (robust) method of estimation is
applied in the case where the spectral densities are not known exactly, but sets of admissible
spectral densities are given. Formulas that determine the least favorable spectral densities and

minimax spectral characteristics are proposed for some special sets of admissible densities.

Effective methods of solution of the
problems of interpolation, extrapolation and fi-
Itering of stationary sequences and processes
were developed by A. N. Kolmogorov [15].
Further analysis can be found in the works
by Yu. A. Rozanov [32], E. J. Hannan [10],
H. Wold [36,37], T. Nakazi [28], N. Wiener
[35], A. M. Yaglom [38,39].

The crucial assumption of most of the
methods of estimation of the unobserved values
of stochastic processes is that the spectral
densities of the considered stochastic processes
are exactly known. However, in practice,
complete information on the spectral densi-
ties is impossible in most cases. In order to
solve the problem one can find parametric
or nonparametric estimates of the unknown
spectral densities. Then, one of the traditional
estimation methods is applied. With the help
of some examples K. S. Vastola and H. V. Poor
[34]. have demonstrated that this procedure
can result in significant increasing of the value
of error.

In the paper by Ulf Grenander [9], whi-
ch deals with the problem of extrapolation for
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stationary processes, a new method of esti-
mation, called minimax, was introduced. The
purpose of this method is to search the esti-
mates which are optimal for all densities from
a certain class of admissible spectral densities.
These estimates are called minimax since they
minimize the maximum value of the error.

Several models of spectral uncertainty and
minimax-robust methods of data processi-
ng can be found in the survey paper by
S. A. Kassam and H. V. Poor [14]. J. Franke
[5], J. Franke and H. V. Poor [6] investi-
gated the minimax extrapolation and filteri-
ng problems for stationary sequences with the
help of convex optimization methods. This
approach makes it possible to find equati-
ons that determine the least favorable spectral
densities for different classes of densities.

The results of research of the problems of
the linear optimal estimation of the functi-
onals which depend on the unknown values of
stationary sequences and processes are given in
papers by M. Moklyachuk [19] — [22]. A mini-
max technique of estimation for vector-valued
stationary stochastic processes was developed
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by M.  Moklyachuk and A. Masyutka
in papers [23]-[25]. Solution of estimation
problems for periodically correlated stochastic
processes were proposed by M. Moklyachuk
and I. Dubovetska [4,8]. Estimation problems
for functionals which depend on the unknown
values of stochastic processes with stationary
increments were investigated by M. Luz
and M. Moklyachuk [16]-[18]. The problem
of interpolation of stationary sequence wi-
th missing values was investigated by M.
Moklyachuk and M. Sidei [26,27].

Prediction of stationary processes with
missing observations was investigated in
papers by P. Bondon [1,2|, Y. Kasahara,
M. Pourahmadi and A. Inoue [13,29],
R. Cheng, A. G. Miamee, M. Pourahmadi
[3]. The problem of interpolation of stationary
sequences was considered in the paper of
H. Salehi [33].

In this paper we deal with the problem
of the mean-square optimal linear estimation
of the functional A = [° a(t)&(t)dt, which
depends on the unknown values of a stochastic
stationary process £(t) from observations of
the process £(t) + n(t) at time points t €
R’\S, S = Ule[—Ml - N, —Ml], M, =
S o(Ne + K1), Ny = 0, Ko = 0. First we
consider the case when spectral densities are
known, and apply the Hilbert space method to
the solution of the estimation problem. We use
minimax-robust method of estimation to solve
the problem for the given classes of admissi-
ble spectral densities in the case when spectral
densities are not exactly known.

Classical extrapolation problem of
stationary processes

Consider two uncorrelated stochastic
processes {£(t),t € R} and {n(t),t € R} with

zero first moments E¢(t) = 0, En(t) = 0,
and correlation functions of the form
Re(k) = & [Z e™F(NN, Ry(k) =
o= 70 e*g(N)dA, where f(X) and g(\) are

spectral densities of the functions £(¢) and
n(t), such that the minimality condition holds

true
P N
/oof<A>+g<A>dA< IS
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where v(\) = [ a(t)e™dt is nontrivial
function of exponential type. Under this condi-
tion the error-free extrapolation is impossible
[32].

Stationary stochastic processes &(t) and 7(t)
admit the spectral decomposition [12]

o0

| enzianae = [ ez an,

(2)
where Z¢(d\) and Z,(d)\) are the orthogonal
stochastic measures.

Consider the problem of the mean-square
optimal linear extrapolation of the functional
A¢ = [T a(t)é(t)dt, which depends on the
unknown values of the process £(t), based
on the observed values of the process £(t) +
n(t) at time points ¢ € R™\S, where S =
Ul=1-M,—N,,...,—M].

Let the function a(t) which defines the
functional A satisfy conditions (3)

§(t) =

/OOO la(t)| dt < oo,/ooot\a(t)\th <o0. (3)

It follows from the spectral decomposition
of the process £(t) that the functional A{ can
be represented in the form

ag= [ ez,

A(e?) = /000 a(t)e™dt.

Denote by AS the optimal linear estimate of
the functional A from the observations of the

process {(t)+n(t). Let A(f,g9) = F |AS — Af’Z

be the mean-square error of the estimate A&.
Consider the Hilbert space H =
Ly(2, F, P) generated by random variables &
with 0 mathematical expectations, K¢ = 0,
finite variations, FE|{|*> < oo, and inner
product (§,n) = E£7. Denote by H*(£+n) the
closed linear subspace generated by elements
{&(t) +n(t) : t € R7\S} in the Hilbert space
H = Ly(Q, F, P). Let Lyo(f + g) be the Hilbert
space of complex-valued functions that are
square-integrable with respect to the measure
whose density is f(\) + g(\), and Li(f + g)
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be the subspace of Lo(f + g) generated by
functions {e* t € R7\S}.

We seek the mean-square optimal linear
estimate A of the functional A in the form

Ag/

where h(e®*) € Li(f + g) is called spectral
characteristic of the estimate.
The mean-square error A(h; f) of the esti-

Ze(dX) + Zy(dN)),

mate 1215 can be calculated by the formula

1 o0
Ak f.9) =5 [

1 > i (2

el |h(e A)| g(N)dA.

|A(™) = h(e™)|* F(N)dA+

According to the Hilbert space projection
method proposed by A. N. Kolmogorov [15],
the optimal linear estimation of the functional
A€ is a projection of the element A¢ of the
space H on the space H*(§ + 1), which can be
found from the following conditions:

1)Ag € H*(¢ + ),
2)AE — ASLH® (& +1).
Therefore, the spectral characteristic h(e™)

and the mean-square error A(h; f,g) of the
estimate A& can be calculated by the formulas

2 _ areny JO) ()
h(e?) = A(e )m)ﬂ,m )+ g
(4)
ey =3 [ B Ra0e
=1 /—Ml—Nz
[
A(h; f,g) =
i 0o |A(ei”\)g()\) +C(€i>‘)‘2
7 SRR VPV ETPY A (5)
1 |A(6M f /\) —0(6”)}2
21 ) oo (f(A) +9(N)2 e

= (Ra,B"'Ra) + (Qa, a),
where < A,C >= Y0 [TM CA@)C({t)dt +
JooA@)C(t)dt is the inner product in the
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space Lo(T), (Bx)(t), (Rx)(t) and (Qx)(t) are
linear operators in the space Lo(T),

(Bx)(1)

e N
Z_M/ o / 7+ 900
1 > Nt 1

Yor ), X“”/ S ToYESTI TR

(Rx) (1) =

S

1 A(u—t) f(/\) u
w2 | o / 70 -+ 90

i h x(u e u=t) —f(>\) U
om g “_4 7O+ g0 "
@)
N sy [ o TRIN)
O R
i > <(u piMu—t) fN)g(N) w
om g ”_4 700+ g0 "

x(t) € Lo(T),

and the function a(¢) is such that a(t) =0, t €
S, and a(t) = a(t), t > 0.
The following theorem holds true.

teT,

Theorem 1. Let the processes £(t) and n(t) be
uncorrelated stationary processes with spectral
densities f(N\) and g(\) which satisfy the mi-
nimality condition (1). The spectral characteri-
stic h(e®) and the mean-square error A(f,g)
of the optimal linear estimate of the functional
A& which depends on the unknown values of
the process £(j) based on observations of the
process £(t) +n(t), t € R™\S can be calculated
by formulas (3), (5).

Consider the problem of the mean-square
optimal linear extrapolation of the functional

ANg:/ON
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which depends on the unknown values of
the process £(t) based on observations of the
process £(t) + n(t) at time points t € R™\S.

The linear estimate ANﬁ of the functional
Apn€ is of the form

Ané = / " I () (Ze(dN) + Z,(dN),

where hy(e”) € Li(f + g) is the spectral
characteristic.

Consider the function ay(f) such that
ay(t) =a(t),t € S,ayn(t) =a(t),t € TN[O, N],
ay(t) =0,t € T\[0, N].

Then the spectral characteristic hy(e?) of
the estimate ANé can be calculated by the
formula

) = Avle) T = T+ o)
(6)
O (e :i /_ MAiNl (B~'Ray)(t)e™dt+
/OOO(B‘IRaN)(t)eMdt,
where Ay(e?) = [V a(t)e "dt.

The mean- square error A(hy; f,g) of the
estimate Anx& can be calculated by the formula

A(hN7 f: g) -
(Ray, B 'Ray) +

(7)
(Qay,ay).

We obtain the following corollary.

Corollary 1. Let the processes &(t) and
n(t) be uncorrelated stationary processes wi-
th spectral densities f(\) and g(\) which sati-
sfy the minimality condition (1). The spectral
characteristic hy(e?) and the mean-square
error A(hy; f,g) of the optimal linear esti-
mate of the functional A& which depends on
the unknown values of the process £(j) based
on observations of the process £(t) + n(t), t €
R™\S can be calculated by formulas (6), (7).

the spectral characteristic of the estimate flf
is of the form

h(e) = A(e™) = C(e”) (),

(o) = Z /7w
/ (B (1)t

0
The mean-square error of the estimate of
the functional can be calculated by formula

A(h; f) (9)
The following theorem holds true.

Theorem 2. Let &(t) be a stationary
stochastic process with the spectral density
f(X), which satisfies the minimality condition
f:r F7HA)dX < co. The spectral characteristic
h(e?) and the mean-square error A(f, g) of the
optimal linear estimate Af of the functional
A& which depends on the unknown values of
the process £(j) based on observations of the
process £(t) at time points t € R™\S, where

S = U [—M; — Ny, ...,—M], can be calculated
by formulas (8) (7).

(8)

(t)e"™ dt+

=<Bla,a>.

Minimax method of extrapolation

The results from the section above can
be applied to the solution of the introduced
problem only in the case when spectral densi-
ties of the processes are exactly known. In
the case when the full information on spectral
densities is impossible, but it is known that
spectral densities belong to the specified class
of admissible densities, the minimax approach
will be useful. The purpose of this method is
to find estimate that minimize the maximum
values of the mean-square errors of the esti-
mates for all spectral densities from the given
class of admissible spectral densities.

Let us introduce definitions [21].

Definition 1. For a given class of spectral
densities D = Dy x Dy the spectral densiti-
es fo(A) € Dy, go(A) € Dy are called least

Consider the case when the stationary favorable in the class D for the optimal li-

process £(t) is observed without noise. Then

ISSN 2309-4001. Byxosuncokuti momemamuunul ocyprans. 2016. — T. 4, N 1-2.

near extrapolation of the functional A& if the
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following relation holds true

A (fo,go) =A (h(fojgo) 3 foygo)
= max A(h(f,9);f.9).

(f,9)€DfxDy
Definition 2. For a given class of spectral
densities D = Dy x D, the spectral characteri-
stic h°(e™) of the optimal linear extrapolation
of the functional A& is called minimaz-robust
if there are satisfied conditions

A

(f?g)eDfXDg

h(e?) e Hp = Ly(f +9),

min max A (h; = max A (h%;

heHp (f,9)€D (hif.9) = (f,9)eD ( - g)
Making use of the definitions above and

the results from the previous section, we can

formulate the following lemmas.

Lemma 1. Spectral densities fo(\) € Dy,
go(X) € D, satisfying the minimality conditi-
on (1) are the least favorable in the class D =
Dy x Dy for the optimal linear extrapolation of
the functional A&, if the Fourier coefficients of
the functions (fo(A) + go(A))™", fo(A)(fo(A) +
90(A) 7" fo(Mgo (M) (fo(A) + go(N)) ™" determi-

ne the operators B®, R%, Q°, which determine a
solution to the constmm optimization problem

+(Qd, &) =
+(Q'4, &).

The minimaz spectral characteristic h’ =
h(fo, go) is determined by the formula (3) if
h(fo,90) € Hp.

Corollary 2. Suppose the spectral density
fo(\) € Dy is such that fy'()\) is integrable.
The spectral density fo(X\) € Dy is the least
favorable in the class Dy for the optimal li-
near ectrapolation of the functional A& from
the observation of the process (t) at time poi-
nts t € R™\S, if the Fourier coefficients of
the function fi'(X\) determine the operator BY,
which determines a solution to the constrain
optimization problem

max
(f:g)eDf XDQ

(R"4, (B")"'R’a)

(Ra, B 'Ra)
(10)

(BY)'a&). (1)

max(B™'a,a) =
fEDf
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The minimaz spectral characteristic h® = h(fo)
is determined by the formula (8) if h(fo) €
Hp,.

The least favorable spectral densities fo(A),
go(A) and the minimax spectral characteristic
h® = h(fo, go) form a saddle point of the functi-
on A (h; f,g) on the set Hp x D. The saddle

point inequalities
A (h% f,g) < A (R fo,90) < A (h; fo, 90)
Vh € Hp,Vf € D¢, Vg € Dy,

hold true if h° = h(fo, go) Ta h(fo,90) € Hp,
where (fo, go) is a solution to the constrained
optimization problem

A <h<f0>gﬂ)ﬂ f7 g) =A (h’(f0790)7 angO) )

(12)

sup
(f:g)eDf XDQ

h(fo:90); f g)
/ G
/ G

¢ Z/

+/ ((BO)*lROa)(t)emdt, tes.

)+ COe)]?
+90(/\))

— (™)
+90()\))

FOAA

g(A)dA,

IRO )( ) itAdt

The constrained optimization problem (8)
is equivalent to the unconstrained optimization
problem [30]:

Ap(f,g9) =— A(h(fo,90); [, 9)

+0((f,9)|Ds x D,) — inf, (13)

where 0((f,9)|Ds x Dy) is the indicator
function of the set D = D; x D,. Solution
of the problem (13) is characterized by the
condition 0 € O0Ap(fo,g0), where OAp(fo)
is the subdifferential of the convex functional
Ap(f,g) at point (fo,g0) [31].

The form of the functional A(h(fo, g0); f,9)
admits finding the derivatives and differenti-
als of the functional in the space Li x L.
Therefore the complexity of the optimization
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problem (13) is determined by the complexity
of calculating the subdifferential of the indi-
cator functions 6((f,g)|Ds x D,) of the sets
Df X Dg [11]

Lemma 2. Let (fo,90) be a solution to the
optimization problem (13). The spectral densi-
ties fo(A), go(A\) are the least favorable in the
class D = Dy x D, and the spectral characteri-
stic h® = h(fy, go) is the minimazx of the opti-
mal linear estimate of the functional A& if

h(fo, 90) € Hp.

Least favorable spectral densities in
the class D = D, x D!

Consider the problem of extrapolation of
the functional A in the case when spectral
densities of the processes belong to the class of
admissible spectral densities D = Dy x D},

= {io [ swmen)

oo ORI >|cu<5}

where spectral density ¢;()) is known and fi-
xed. Class D! describes a "e-district" in the
space L; of the given bounded spectral density
g1(A).

Consider the spectral densities such that
fo(A) € Dy, go(\) € DL. Suppose the following
functions are bounded

‘A z)\ go(\) + CO(ez‘A)}2
(f07g0) ( ( )+ 0()\))2 ) (14)
hy(fo, 90) = [AEP)fo) = Ce) . (15)

(fo(A) + g0(N))?

Then the functional A(h(fo,90); f,g) is
continuous and bounded in the space Ly X L

Ahtfosgu): £.9) =5 | st g0) )N

o

Hence, the following relation holds true [30]

aADoxD;(foago) = — JA(h(fo, 90); fo; 90)
+ 96((fo, 90) | Do x D}).

f0>90 )d)\-
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Condition 0 € 9Ap,«p1(fo,go) makes it
possible to find equations which the least
favorable densities satisfy

|A(€ik)go()\) + Co(eik)’ = a1 (fo(A) + go( ()1)
|A(€™) fo(A) = C(e™)] = (fo(A)+go(A ))‘1’(()\)7042,

where [U(A)| < 1 and U(A) = sign(go(N)
g1(A)), when go(A) # ¢1(N), constants oy >
0, as > 0. Particularly, a3 # 0, if
Equations (16), (17) together with the opti-
mization problem (10) and normality condition
1 [ee)
— A — g (N d)\ = 18
i [l —alan=c (s
determine the least favorable spectral densities

in the class D.

Theorem 3. Let the spectral densities fo(A\) €
Dy, go(N\) € D! satisfy the minimality conditi-
on (1), and functions determined by formulas
(14), (15) be bounded. Spectral densities fo()\),
go(N) are the least favorable in the class Dy X
D! for the optimal linear extrapolation of the
functional A& if they satisfy equations (16)-
(18) and determine a solution to the opti-
mization problem (10). The minimaz-robust
spectral characteristic of the optimal estimate
of the functional A is determined by formula

(3).
Theorem 4. Suppose that fo()\)
go(X) € DL, where

D, = {0 |- [~ 10 - il an <

D, = {o00 |5 [ la - aiir< e ),

spectral densities f1(\), g1(N\) are known and fi-
zed. Let the spectral densities fo(N), go(\) sati-
sfy the minimality condition (1) and functions
determined by formulas (14), (15) be bounded.
Spectral densities fo(X), go(N) are the least
favorable in the class D! x DL for the opti-
mal linear extrapolation of the functional A€ if
they satisfy equations

|A(ei/\)90()\) + Co(eM)‘ = (fo(N)+90(N)¥1(N)a,

e D!

€17
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[A(e™) fo(A) =
where |W1(A)] < 1 and ¥ ( ) = sign(fo(N)
Si(A), when fo(A) # f1(A), [T2(A)] <1 a
Us(A) = sign(go(A) — g1(N)), when go(A)
g1(N), constants ag > 0, ag > 0.

A pair (fo(X),g(N)) of the least favorable
densities determines a solution to the optimi-
zation problem (10) and satisfies conditions

1 o0
[ - Alar =<,
T J-
1 o
o | 19N = (N[ dr = e,
T J -

The function calculated by the formula (3) is
the minimaz-robust spectral characteristic of
the optimal estimate of the functional AE.

Corollary 3. Suppose the spectral density g(\)
is known, the spectral density fo(\) € DL . Let
the function fo(\)+g(X\) satisfy the minimality
condition (1), the function h¢(fo,g) determi-
ned by formula (14) be bounded. The spectral
density fo(X) is the least favorable in the
class D;l for the optimal linear extrapolation
of the functional AE if it is of the form fo(\) =
max {fi(V), 1 | A(EN)g(A) + COeM)]| — gV}
and the pair (fo(N), g(\)) is a solution of the
optimization problem (10). The minimaz-
robust spectral characteristic of the optimal
estimate of the functional AE. is determined
by formula (3).

Corollary 4. Let the spectral density fo(\) €
D!, the function fy'(\) is integrable and
the function determined by the formula (8)
be bounded. The spectral density fo(X\) is the
least favorable in the class D;l for the opti-
mal linear extrapolation of the functional A&
if it satisfies the following relation |Co(e“‘)| =
FoN) U1 (N, and fo(X) determines a solution
to the optimization problem (11). The function
calculated by the formula (8) is the minimaz-
robust spectral characteristic of the optimal
estimate of the functional AE.

Conclusions

In the article we propose methods of the
mean-square optimal linear extrapolation of
the functional which depends on the unknown
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COe™)| = (fo(N)+90(A))T2(N)agyalues of stationary stochastic process based

on observed data of the process with noise and
missing values. In the case of spectral certainty
when the spectral densities of the stationary
processes are known we derive formulas for
calculating the spectral density and the mean-
square error of the estimate of the functional.
Results of solution of the estimation problem
are obtained for the case of observations wi-
thout noise. In the case of spectral uncertainty,
when specified sets of admissible densities are
given, we derive the equations which determine
the least spectral densities.
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