VIK 517.53
©2015 p.

V.V. Gorodetskyi, O.V. Martynyuk, R.S. Kolisnyk

Yuriy Fedkovych Chernivtsi National University

A NONLOCAL MULTIPOINT PROBLEM FOR A DIFFERENTIAL
OPERATOR EQUATION OF SECOND ORDER

BcranoBiieHO po3B’si3HICTH HEJIOKAJBHOI 6araTOTOYKOBOI 3a/1adi JIJIsI €BOJIFOIIIHOTO DPiBHSIHHS
JPYTOro MOPSIKY BiJHOCHO YaCOBOI 3MiHHOI 3 OIEPATOPOM, CIIEKTD AKOro JucKkpernuii. Hejgokaan-
Ha yMOBa 3aJI0BOJIBHAETHCA B CJIAOKOMy po3yMiHHI y mpoctopi dopmansbuaux psamiB Pyp’e, sxi
OTOTOXKHIOIOThCs 3 JHHifiHUME HenepepBHUMU (DyHKIioHAaMU (y3arajibHEHUMU €JIeMEHTAMH Ha

IPOCTOPI, IIOB’sI3aHOMY 3 JaHUM OLEPATOPOM).

We establish the solvability of a nonlocal multipoint problem for a second order evolution
equation with respect to time variable with an operator having discrete spectrum. A nonlocal
condition is considered to be satisfied in the weak sense in the space of formal Fourier series that
are identified with continuous linear functionals (generalized elements) on some space connected

with a given operator.

1. Introduction

The theory of nonlocal boundary value
problems, as a part of general partial boundary
value problems theory, has been extensively
developed from the 70th of the previous
century. The study of such problems is due
to a number of applications in mechanics,
physics, chemistry, biology, ecology and other
natural sciences that appear in mathematical
modeling of different processes [2-8]. Dezin [9]
was the first who pointed out on the advi-
sability to use nonlocal conditions in view
of general boundary value problems theory.
He has been investigated solvable extensions
of differential operators generated by a di-
fferentiation operation with constant coeffi-
cients. He has shown that, in order to set
a well posed boundary value problem, one
has to use both local and nonlocal conditi-
ons. Afterwards, the investigations started by
Dezin have been developed by Romanko [10],
Junusov [11|, Mamyan [12|, Makarov [13] and
others.

Nonlocal boundary value problems in di-
fferent contexts have been investigated by
many mathematicians, who have used di-
fferent methods and approaches (Nakhushev
[14], Samarsky [15], Ptashnyk [16], Chesalin
[17], Skubachevsky [18] and others). They
have obtained important results concerning

the setting, well solvability and constructi-
on of solutions, investigated dependence of
the solvability type on the behavior of
operation symbols, stated the regularity and
non-regularity conditions of boundary value
problems for essential types of differential-
operator equations. As a problem of the kind,
one can consider a nonlocal multipoint with
respect to time problem which generalizes a
Cauchy problem, where the initial condition
u(t, )|=0 = f is replaced with the following

one
E ozku

toz(),{tl,...,

=t = 1, (1)

tm} C (0,7,

where {ap,a1,...,a,,} C R and m € N are
fixed numbers (if g = 1, a1 = g = -+ =
a,, = 0 then we obtain a Cauchy problem).
In this paper we study a nonlocal multi-
point problem with condition (1) for a second
order differential-operator equation with a
nonnegative self-adjoint operator on a Hilbert
space with discrete spectrum. The positive
and negative spaces corresponding to such an
operator are contained in the space of the
formal Fourier series that are identified with
certain continuous linear functionals (generali-
zed elements). We define an abstract convoluti-
on operator on the space of formal Fourier seri-
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es via which the above self-adjoint operator is
considered as a convolution operator. On the
base of such an approach we prove the solvabi-
lity of a nonlocal multipoint problem, build
a fundamental solution G(t), t € (0,7] and
study its properties and structure. A solution
u(t) is represented as the convolution G(t) * g,
where ¢ is a continuous linear functional on a
suitable subspace X of main elements (X C
H C X', H a Hilbert space, X’ is the topologi-
cally conjugate space to X ). Remark that u(t),
G(t) € X for all t € (0,7], however (1) is
satisfied for wu(t) in the weak sense, that is,

Zak lim u(t) = f, f € X', where the limits
— t—ty

are taken in the space X’ which is, in certain
sense, “maximal” space of elements (continuous
linear functionals) for setting of a mnonlocal
multipoint problem, every solution of which
has the same properties as the fundamental
solution.

2. Spaces of main and generalized
elements. Formal Fourier series

Let H be an infinite dimensional separable
Hilbert space with an inner product (-,-)
and norm || - ||, A a nonnegative self-adjoint
operator with a dense in H domain D(A)
and discrete spectrum, (A\z)72; a nondecreasi-
ng sequence of eigenvalues of A, Ay > 0,

lim A\ = 400, in this case the condition
k—+o00

Z A, < oo with some p > 0 is true; (ex)32,
kA, #£0
the orthonormal basis of H consisting of the
corresponding eigenvectors of A.
We set

o, = {<p ceH: p= ch,wek, Chyp € (C},
k=1

® = lim ind ®,,

m—r0o0
(the subspace ® is dense in H and invariant
with respect to A). Denote by @’ the space of
all anti-linear continuous functionals on ® with
the weak convergence

(@'afnﬁofe@')@

({Far) = (Fr0),

n—oo

Vgoeq))

(the symbol over the arrow denotes the space
in which the convergence is considered, (f, ¢)
means the action of f at an element ).

By the correspondence

H9g0—>f¢€(13,: <fsovl/)> = (©,9),

Yy € P,

we define an embedding H C ®'. Thus, & C
H C @' with dense continuous embeddings.
Elements of ®' are called generalized elements.

Let s be the space of all numerical sequences
(ck)2y, a € C, with the coordinate-wise
convergence. The isomorphism

F: > f—= (= (frer)i> €5

of & onto s sends ® onto the set of all finitely
nonzero sequences from s, and H onto /5. By
means of the above isomorphism, the operator
A induces the operation (cx)%2; — (Akck)q,
and we can extend A on ®' to a continuous
operator A by Af = F7'(\ep)ie,, @ 3 f =
oo

> crer [19, p. 8-22].

k=1
oo

Let f € @'. The series chek, where
k=1
e = (f,er), is called the Fourier series of
the element f, and the numbers ¢, the Fourier
coefficients of f. For any f € &', the Fourier
series of f converges in ®’ to f, and conversely,
o0

every series chek which converges in ®' to
k=1

some elements f € ¢’ coincides with the Fouri-

er series of f [19]. Hence, the space ®' can be

considered as the space of formal series of the

(e.)
form g CrCl-
k=1

We introduce some classes of elements
connected to the operator A. Consider an
increasing sequence (1my,)nez, , Mo = 1 of posi-
tive numbers possessing the following properti-
es [19]:

1)Va>03c, >0Vn €Zy: my, > ¢, a™;

2) M > 0 3h > 0Vn € Zi: myyq <
Mh™m,,.
Examples

of such sequences are Gevrey
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sequences of the form m,, = (n!)?, m,, = n"?,
n € Z,, where 8 > 0 is a fixed parameter.
Set

Hy(A) := lim pr H,(A),

a—0o0

{90 € H( iﬁﬂ%(@)ﬁ < OO},

k=1
=Y Male
k=1

Ho

Ha(A)

ek, p € D(AY),a > 0,

my) = {p € Hy(A)

|A7g]| < camn,n € Zy}a > 0.

’Elc>0:

Then the space H,(m,) D @ is a Banach
space with respect to the norm ||| m,(m.) =
sup (||A™¢||/(a™m,,)). We denote Hy(my,) :=
nely

lim ind Hy(m,). Then & C Hy(m,) C

a—0o0

H(A) C H, and all the embeddings are
dense and continuous [19]. If by H. (A) and
H! (m,) one denotes the spaces of anti-
linear continuous functionals on H(A) and
Ho(my) respectively then by [19], we obtain
the chain of dense continuous embeddings H C
H! (A) C H. (m,) C ®'. Moreover H._(m,) =
li_>m pr H! (m,,).

The spaces Ggy(A) := Hoo(n"), B > 0, are
called the Gevrey spaces of order 3, generated
by the operator A; G13(A) equals the set of
analytic vectors of A [19].

Let

po(A) = sup (\"/my), A€

nely

[1,400);

1, Ae0,1),
) = { (V). A€ [L,4050).

By the properties of the sequence (my,)nez,
the function p is continuous on [0, 00),
increases on [1, +00) faster than any power of
A [19].

The space Hy(my,) coincides (see [19]) with
the inductive limit of the Hilbert spaces

H{a}—{fe@‘zmk HI? 2( ><oo

= ’D(Aa) =

alf) = (frex) fra >0,
with the inner product
o0 )\k
=2 alhalor(3)
k=1

{fug} - H{a}-

In view of the behavior of the Fourier coeffici-
ents of the elements, the spaces Hy,(m,) and
H!_(m,) are described as follows [19]:

(f € Hoo(mn)) &

lex(f)] < ep™
(f € H (my)) <

VE e Nt [en(f)| < eplpe)).
If my = nnﬁ) B > ( then po(/\) ~ exp{)\l/ﬂ}7

(f:9) Hiay =

(3p>03c>0Vk e N:
(A)
H);
(V> 03ec=c(u) >0
(B)

A € [1,400), so in this case for any f € &' one
has
(f € Gp(A) & (Iu>03c>0Vk e N:

cexp{—u/"});
(V> 03c=c(p) >0Vk € N:

len(f)l <
(f € Gig(A) &

lew(f)] < cexp{ur’}).

3. Nonnegative self-adjoint operators

as convolutions operators
o0

Let {f1, fo} C ¥, f1 = ch(fl)elm fo =
k=1
> crlf2)er

k=1
We define an operation * on the space

®" called the abstract convolution or just
convolution by setting

fix fo —ch fee(f)en = ch fix fo)er,

so, f1 * fy is a generalized element of @, the
Fourier coefficients of which are connected with
the ones of the generalized elements f; and f,
by ce(fi * fo) = ce(fi)er(f2), B € N.

Consider a sequence (my)ncz, generating
the spaces H,(m,) and H..(m,) of a special
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kind m,, = nlp,, where (pp)nez,, po =1, is a
sequence of nonnegative numbers which is: a)
decreasing; b) Jw > 1 Vn > 1: p,_1/pn < W™
c) 7111};0 /P = 0. In [20] it was proved that the

sequence (nlp,) has properties 1), 2). As an
example of a sequence (p,) with properties a)
— ¢) one can take the sequence p, = (nf)~"",
po = p1 = pa = 1, where g € (0,1) is a fixed
parameter ( [20, p. 57]).

If m,, = n!p, then the function p defined by
that sequence is differentiable on [0,00) [20],
and moreover,

V{z1, 22} C[1,00) 1 pla1)p(2) < p(x1 + 22)
which is equivalent to
V{x1, 22} C [1,4+00) :

I p(er) + Inp(as) < Inp(ay +a2).  (2)

Inequality (2) we will call the convexity
inequality for a function In p.

Notice that the sequence (n!p,) possesses
the condition lgn {/nlpn/n = 0 which implies

(see [21]) that po(A) > coe, A € [1, +00) with
some constants cg, ¢ > 0.
Lemma 1.

a) If {f1,f2} C Hi(my) then fi* fo €
H! (m,).

b) For all ¢ € Hy(my,) and f € H. (m,)
the convolution f * ¢ belongs to the space
Hoo(my,).

Proof. a) It is enough to prove that the
Fourier coefficients of ¢, (f1 * fo) satisfy (B).
If {f1, fo} C H. (my,), then (see (B))

v,LL1>OE|Cl:Cl(,M1)>OVkENS
lee(f1)] < erp(pa ),

VM2>OE|CQ:C2(,LL2)>OVIC€NZ
ek (f2)] < cap(pade).

Then, taking into account convexity inequality
(2) for In p one has

ek (f1* fa)| = lex(fo)| - len(f2)] <

< creap(pide) p(pade) =

— 6162€1HP(M1>\k)+lnP(M2)\k) < Clc2elnﬂ((#1+u2))\k) —

= cp(pAk), = pi + fia.

Thus, fi* fo € H. (my).
b) Since ¢ € Hy(m,,), we obtain (see (A))

c = cicg,

Ju>03e>0Vk eN: |er(p)] < epHuy).

By (B) for puy = p/2 there is ¢ = ¢1(p1) > 0
such that |cx(f)] < e1p(piAe), & € N. Then
convexity inequality (2) yields

In p(piAe) = Inp(pAe) < —Inp((p — pa)Ar) =

= —lnp<§/\k>,k: e N.
Hence,

Pl de)p  (pAg) = e Pl =hpledn) <

ol &
<e lp<2)\k> :pfl(g)\k» ke N.

Thus, for the Fourier coefficients of the
convolution f * ¢ the following estimates hold

ler(f + @)| < ép~ (fhe),
6261627[2::“/2’]{: € N7

that is, f * ¢ € Hoo(my,).
Let f: [0,00) — [0,00) be an increasing
continuous on [0, 00) function, /\lim fA) =
—+00

+00. Then using the function f and the
operator A we define the operator f(A) by

f(A)p = / f(NdExg, @€ D(f(A), (3)

where E)y, A > 0 is the spectral function of the
operator A with the domain

D(f(4) = {p e H| ]o FANd(Exp. ¢) < o0},

D(f(A)) = H.

The operator f(A) is nonnegative self-adjoint
on H as well. The integral in the right hand
side of (3) actually is taken just over the
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spectrum o(A) of A, which in our case is di-
screte and has a unique limited point at infi-
nity: 0(A) = {\, k € N}. The spectral functi-
on E), A > 0 is piece-wise constant and is
discontinuous only at the points Az, £ € N.
Moreover, E\, 1o — E), is the projection onto
the subspace spanned by the eigenvalues of
A that correspond to the eigenvalue A,. The
corresponding eigenvalues e, k € N, form an
orthonormal basis of H, and hence

(E)\k+0 - E)\k)90 =

The spectral function Ey, A > 0 in this case
has the form

E/\SO = Z Ck:(@)@k» RS H7

A <A

(¢, er)er = cr(@)er, o € H.

and integral (3) equals

F(A)e =" Fee(p)er, @ € D(f(A)),

where f(\;), k € N are the eigenvalues of f(A).
In the sequel, we shall use the notation
f(A) = Af.
The operator f(A) we extend to the conti-
nuous operator f(A) on & by

F(A)e = FH(f(\)er(9)i2y,

'3 p= ch(SO)ek
k=1

Consider the generalized element Gy =

Z f(Ar)er of the space @' constructed by
k=1

a function f. Then f(A) is a convolution
operator which acts in the space @ by setti-

ng

FA)p =Grxo =" f(M)er(p)ex.
k=1

We define the operator f(A) = Ay to be the
restriction of the operator f (A) to the subspace
Ho(my,).

Lemma 2. An operator Ay is continuous
on the space Hy(my) if and only if Gy €
H! (m,).

Proof. Assume Gy € H. (m,). Then
Vu>03c=c(u) >0Vk e N:

Fn) < ep(pdr). (4)
By Lemma 1, Gy *x ¢ € Hy(m,,) for all p €
H.(my). Hence, in this case the operator A
is mapped the space H.,(m,) into itself. We
show that Ay in continuous on H.(m,), that
is, Ay sends bounded subsets of this subspace
to bounded subsets (remark that the set of all
continuous operators on Hy,(m,,) coincides wi-
th the set of all bounded operators [22]).

Let L be a bounded subset of H.,(m,). Si-

nce H U Hyay, the set L is bounded
a>0
in some Hilbert space Hy,,, i.e.
b > 0Vy € L : Hwaq{ao} =
- A
S le@)Po?(E) <b,
k=1

or equivalently
A
Iy >0V € L: [len(v)] < blpfl(a—’f),k e N.
0

We set u = (2a)7! to inequality (4). Then
from (2) we deduce that

(A =f () ex ()] < cbyp™ (%‘“) A =

— byp ! (ﬁ) keN,

%)
where by = cby. Taking into account (2), we
obtain

(A (1) < b (o) p () =

o (n() () <

<oy (- mo(22)) - (22)

Since the function p(\) grows on [1, +00) faster
than any power of A\, by the above and by
Z A7 < oo for some p > 0 the following

E:Aj, 20
series converges

[e.9]

> latar)e(32)

k=1
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Thus, the set A;L is bounded in Hya,), and
therefore in Ho,(m,,).
The converse
analogously  using

(2).
Remark 1. The condition Gy € H._(m,)
is equivalent to the following condition on f

proved
inequalities

statement  is
convexity

Vi >03ec=c(p) >0:
fA) < ep(pu), A € [0, 00).

4. Nonlocal multipoint problem
Consider the following differential-operator
equation

u’(t) = Agu(t),

()

te (0, 7,0 <T < o0, (6)

where Ay is the operator constructed in Secti-
on , which is linear and continuous on the space
Ho(m,,). In what follows, we assume also that
the function f has the following property

Jpo > 03co >0 f(N) > coln?® p(uo)), (7)

A € [0, 00).

By a solution of equation (6) we mean a
function u: (0,T] — Huoo(my,), twice strongly
differentiable on H, which fulfills equation (6).

Theorem 1. For every ¢ = ch(zb)ek €
k=1
H! _(m,) the function

¥(t) =Y exp(—t/ fA)ex(W)er  (8)

is a solution of (6).
Proof. We prove that v(t) € Hy(m,) for
all £ > 0. Since ¢ € H._(m,,),

Vu>03c=c(u) >0: |cp(y)] < cp(u/\k)(, )
9
k € N.

Taking into account (7), (9) and cx(y(t)) =
cx () exp(—t\/ f(Ag)) we obtain
ek (V)] < ep(pAr) exp(=ty/ f(M)) <

< cp(pAi) exp(—citIn p(poAr)),

where ¢; = /cg and ¢ is the constant from (7).
The function In p is convex on [0, 00), hence if

0 < it < 1 (for a fixed t) then the following
inequality holds
citIn p(poAr) > In p(ertpoAr) = In p(fio k),
where fig = citpg. If for a fixed t € (0,7 one
has ¢it > 1 then ¢it = [c1t] + {c1t}. Hence
exp(—citInp(poAr)) =

= exp(—{ert} In p(poAr) — [ert] In p(poAr)) <
< exp(—{cit} In p(poAr)).
Since 0 < {et} < 1, the present case is

reduced to the previous one. Thus, for every
te (0,7

[er(v(1))] < cexp(ln p(pAi) — In pgi)),

where fiy = fig or fig = {c1t}puo (here t is fixed).
Take 1 = f1,/2 and use inequality (2) for In p.
Then

e (v(8)] < cexp ( - lnp(%)\k)> —

= cp_1<%)\k>,k e N.

Thus, we have proved that u(t) € Hy,(m,) for
all t > 0.

Now we prove the strong differentiability of
v(t) on (0,T]. To do this, it is enough to prove
that

,(At) = HW i AA? -0 _ w(t)H 0,
At — 0,

where ¢ € (0,7 is any fixed point and

w(t) ==Y/ F() exp(—ty/ f(Ar))crer.

Direct calculations show that ®Z(At) =

Z az(At)|ck|?, where
k=1

k(0] = | A lexp(—(t + A1)/ FOW) -

—exp(—ty/f () ]+ f (\) exp(—t f()"‘“»‘ B
= f(M)| exp(—tv/ f(A))—
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—exp(=7v f(M))] =
= f(Ak) exp(=T1v/ f(Ax)) 0] At],

T=14+0At,0 <0 < 1,7 =t+0,At,0 < 0, < 1.

If At > 0, then taking into account (5) and
(7) we obtain

|ax(At)] < f(Ax) exp(—t

< ep(pAy) exp(—tey In p(poAe) ) At,

where ¢; = /cp and p > 0 is an arbitrary fixed
parameter, ¢ = ¢(u) > 0.
Hence,

F())AL <

lak(At)| < cexp(In p(pAg) — teg In p(poAe))At.

Reasoning like above, we show that

In P(ﬁo)‘k))a

where ﬁo = citpg for 0 < ¢t < 1 and lio =
{ertypo for ¢t > 1. Setting p = f1,/2 and using
the convexity inequality for the function In p,
we obtain the next estimates

exp(—tcln p(pox)) < exp(—

|ar(At)] < cexp(ln p(pAi) — In plfighe)) At <

— ) Ar)At =

< cexp(—In p(fig

= cexp ( — lnp<%)\k)>At =

—cp ! (%AQ Atk € N. (10)

Since ¢ € H! (m,), estimates (9) and (10)
(using also (2)) imply

) i
Hence, ®?(At) < ¢At, where

:52210_ (i Ag) < Z

k=1 k=1

|ar(AL)] - fex| < ép = [ip/4,k € N,

—ag < 0,

aon

b,a >0

(here we used that p(\) > cpe™, X € [1, +00)).
Thus we obtain the limit relation ®;(At) — 0,
At — 0 for a fixed ¢ € (0, 7.

If At < 0 then we choose At to satisfy
T = t+ 0At > t/2. Then we show that
O, (At) — 0 for At — 0 and a fixed ¢ > 0.

From here we deduce the strong differentiabi-
lity of v(¢) on (0,7]. Analogously we prove the
strong differentiability of 4/(¢) on (0, 7']. Hence,
+(t) € C2((0, T, Holmn)).

Observe that w(t) € Ho(my,) for all ¢ > 0.
The proof of this property uses the properties
of f, Inp and estimate (9) of the coefficients

The function ~7(t) fulfills equation (6).
Indeed,

Ap(y(1))

Zf )\k Ck €k =
k=1

- Z J () exp(—t/ f(Ar))erer-

On the other hand, when proving the di-
fferentiability properties of y(t) we established
that

Zf )\k eXp f()\k))ckek
k=1

Thus, (t) is a solution of (6).
Remark 2. We introduce the following
notation

= exp(—ty/f(M))ex

By the properties of f, we have that G(t) €
H.(my) for all t > 0. Moreover, ~(t) =
G(t) » v € Hy(my), Y € H., (my).
Hence the convolution operator G(t) * - sends
every element of the space H._(my) (in parti-
cular, every element of the space Hoo(m,) C
H! (my)) to a solution of (6).

Setting problem: find a solution of equati-
on (6) of type (8) possessing the condition

m

pu(0) = > paulty,) =g, g€ H, (1)
n=1
where m € N, {u,pu1,...,p0m}t C (0,00),

{tl,...
Zﬂn, 1 <ty <

hm u(t), where the limit is considered in the
t—+0

tm} C (0,7T] are fixed numbers, u >

. Here u(0) means
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space H (i.e. we assume that there is ug € H
such that |u(t) — w| — 0, t — +0; uy =
u(0)). The above problem we call the multi-
point problem for equation (6). Theorem and
Remark imply that problem (6), (11) can be
equivalently reposed as follows: find an element
v in the class H]_(m,) the convolution of whi-
ch by G(t) is a solution of (6) satisfying (11) (in
the indicated sense). To solve this problem, one
should find the coefficients ¢, = ¢(¢), k € N
of such an element. In order to find ¢, k € N,
we multiply (11) by ex, £ € N in the sense of
the dot product, taking into account that

ce(v(1)) = ex(u(t) = cr(G(1))er(¥),

cr(G(1)) = exp(—ty/ f(M)-
Then we obtain
per( é Zunck cr(¥) = clyg),
e(Gt)) = exp(—ta/FOW),  a(G(0) = 1.

Hence

cr(¥) = exly ( Zunexp —t,

Now we set: Q1 (t, \r) = exp(—t

o)

FOw)). Then

Z ,Uan(tnv )\k’)>

-1

ax(¥) = c(9) (u -

Observe that

(N’_iuan(tm)\k> 1§( Zun) = /1o,

that is, ck(@Z)) = c;(9)Q2(\i), where Qa2(\) =
-1
( Z Q1 (t, /\k)> . Then

Z lex()* < MOZ lex(9)* = mollgll*, g € H,
that is, the element v generating a solution of
(6), (11), belongs to H, and the corresponding
solution is given by

u(t) =Gt)x v =>_ Qult, \)ck(g)x
|

-1

X (/J’ - Z Mn Ql(tna >\k)
n=1

=3 Qut W@ erlg) = Gl * 9,
k=1

0o
ch €k€H

=1

ZQ1 (t, Ae)Q2( Mk )ex,

Hy.(m,,) for all t E (0,T7.
By Lemma 1, we can consider the convoluti-

N———

where G G(t) €

on G * g in the case where g € H’ (m,).
Moreover, the same lemma yields that u(t) =

G + g € Hy(m,,) for all ¢t € (0,T],

cx(u(t)) = cx(G(1))en(g) =

= Q1(t, \e)Q2(Ar)ck(g) = cu(v(t))Q2(Ar),
k € N.

The proof of strong twice differentiability of
the function u(t) = G(t) * g, g € H' (m,)
is similar to the proof for the function ~(t)
(see proof of Theorem ). The function u(t) is a
solution of (6) satisfying condition (11), where
g € H!_(m,) in the sense that

plim u(t (12)

lim u
t510 Z fn to5tn, =9

g € Hc/>o <mn>>
where the limits are considered in the space
To prove (12), we take any element ¢ =

> ()

the continuity of the inclusion of He (my) in
the space H!_ (m,) and, taking into account
that ex, £ € N in an orthonormal basis, one
has

er € Hy(m,) and observe that, by

(u(t), ¥} =

$) =3 culult))en(ts) =

t )\k Qz )\k)ck( ) k(¢)

2o
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Then

t),v) =

lim (u
H t—>+0

Z Ju tlgg

= pu Jim > enlult))en(t)—

_ZM” tlg?
1

where the series ch(u(t))ck(w) converges
k

oo

(u(t))er (),

uniformly on (0,7 ]: The latter fact follows
from view of cx(u(t)), k € N and the inequality

lex ()] - ler ()] < elex(g)] - e ()],
€ (0,7],k € N.
Indeed, since g € H._(m,,), we have that
V> 03c=c(u) >0Vk € N:

lck(9)] < ep(pAr).

The condition ¢ € Hy(m,) together with (A)
gives that

ElﬂO > 0decg > 0VE € N :
()] < cop™ (pon)-
We set = po/2. By convexity inequality (2),
lce(9)] - [er(¥)] < CCOP_1<N0)\k)p<%/\k> <

< CCOP_I (%Ak>a ke N7

which implies the desired property.
Thus,

= fj Qultn W@ OWerlg)a(w),  (13)
lim, ;1 (u(t))en(w) = ickw(o»ck(w -
. fj LOa@a®). (14

Taking into account (13) and (14) we obtain

a tl—lg-l(] ZM" }Hg ) ) =
- f: [(F‘_i Q1 (tn, /\kz>>Q2(/\k)] cr(g)en(v) =
k=1 n=1

= 3 0 W@ en(g)en(®) =

= alg)a®) = (g

and the proof is completed.
Since u(t) = G(t), t € (0,T],if g = § =

> e € Hl_(m,), then (12) implies that the
k=1

7¢>’¢ 6 HOO<m7’L>?

function C:?(t) satisfies in the space H!_ (m,)
the following limit relation
w lim G- Z,untlggG ) =0.

t—+0

The function G(t) is called a fundamental
solution of the nonlocal multipoint problem for
equation (6).

We summarize the above obtained results
in the following statement.

Theorem 2. Let (5) and (7) be satisfied.
Then multipoint problem (6), (12) is solvable

and a solution is giwen by u(t) = G(t) g, t €
(0,7, u(t) € Hoo{my,) for allt € (0,T].
Consider for example the self-adjoint
operator A% in the Hilbert space H =
L]0, 2] generated by the differential expressi-

n —d?/dz* and conditions u(0) = wu(2mw),
uw'(0) = ' (27), A = VA% = |D|, where |D|

is the modulus of the differentiation operator,
|D| > 0. The spectrum of the operator A = |D|
is discrete: o(A) = {|k|, k € Z} with a unique
limit point at infinity, e, = e**, k € Z, x € R,
are its eigenfunctions. In this case one has

b, = {cp c H ’ = Z ck,@eikm,ck,@ e C,

k=—m

xGR},m€Z+,
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that is, ever element of ®,, is a trigonometric
polynomial of degree m, ®' is the space of all
formal Fourier series which are identified wi-
th generalized 27m-periodic functions as anti-
linear continuous functionals on the space of
trigonometric polynomials [22].

The convolution of two generalized periodic
functions {f, g} C @’ is defined as follows [22]:

(fxg,0) = (fo, (9, p(x +¥))), Vpeo

It make sense, because

(9005 + ) = (g, Y enpe™e) =

k=—m
m
ik ikx
= § : Ck7¢<g7e y>e € Q.
k=—m

The mapping
F: ®sf—{ca(f)=(fe*) kecZ}eS

sends the space Ls[0, 27| onto /5, the operator
|D| is transformed into the multiplicati-
on operator by |k|, and the convolution is
transformed into the coordinate-wise multipli-
cation:

cr(fxg) = (fxg.e ™) = (f, gy, e ")) =

= (f. (g, e7™)e™™") = cu(f)en(g),
V{f,g} C P

Hence we obtain the commutativity and associ-
ativity of the convolution on @, that is, in this
case ¢’ is a ring (with respect to the convoluti-
on) with unit which is the Dirac delta-function.
Thus, f * g is a generalized 27-periodic functi-
on from Og)’ which is identiﬁe(oiO with the Fourier

series Z cr(f*g)e™™ = Z cr(fex(g)e™™,
k=—00 k=—o00
and the convolution on @’ coincides with the
abstract convolution introduces in Section 3.
Remark that in this case Gg(|D|) =
H,(n"®), B > 0, consists of all 2r-periodic
infinitely differentiable on R functions ¢ havi-
ng the following property: there exist constants
¢, a > 0 (depending only on the function ¢)
such that

lp™(2)| < ca™n™ n € Z,,x €R.

If 0 < # < 1 then the function ¢ € Gz (|D])
admits an analytic extension on the complex
plane to an entire function ¢(z), z = x+iy € C
such that |23, p. 35-39]

de=c(p) >0 =10b(p) >0:

lp(z +iy)| < cexp(bly[V/ ).

We define the sequence (p,) to be equal
the sequence ((n(1 — 3)) "= Per-7)) where
p € (0;1) is a fixed parameter. As noticed
above, the sequence p,, satisfies conditions a)
— ¢), and the corresponding sequence (m,, =
n!p,) has properties 1), 2), po(A) ~ exp(AY/5),
A € [1,4+00). We take the function f generati-
ng the operator f(|D|) = f(A) to be equal
A, v > 0. One can directly verify that if
2/ < v, 0 < B < 1 then the function
f(A) = N possesses conditions (5), (7). For
instance, if one set 3 = 1/2 then f(\) = \4,
A; = f(ID]) = d*/dxz* and equation (6) has
the form

OPu(t,x)  0'ult,z)
o2 ozt

reRte(0,7T].

(15)
So, the nonlocal multipoint problem for
equation (15) with condition (12), where g €
‘Héo'(n”/Q) = Gy oy (|D]), 18 solved‘ (in the sense
indicated above: the corresponding limits in
(12) are considered in the space G, o, (|D])).
The following function is a 27-periodic infini-
tely differentiable in x solution

+o0o
u(t,z) = Z cr(g) exp(—tk? + ikz)x

k=—o00

x (u — iﬂn exp(—tn/f2)>_l7
n=1

u(t, ) € Gy (D)),
+oo

g=Y_ clge™

k=—o0

S G{{1/2}(|D’)'

Thus, generalized 27-periodic functions
from the space G, 5, (|D]) can be used to pose
of nonlocal condition (12). In this case the
solution wu(t,z) of the corresponding problem
preserves properties of a smooth solution of the
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“classical” nonlocal problem for equation (15)
with condition (11), where g € Ls[0, 27].

10.

11.

12.
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