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A NONLOCAL MULTIPOINT PROBLEM FOR A DIFFERENTIAL
OPERATOR EQUATION OF SECOND ORDER

Встановлено розв’язнiсть нелокальної багатоточкової задачi для еволюцiйного рiвняння
другого порядку вiдносно часової змiнної з оператором, спектр якого дискретний. Нелокаль-
на умова задовольняється в слабкому розумiннi у просторi формальних рядiв Фур’є, якi
ототожнюються з лiнiйними неперервними функцiоналами (узагальненими елементами на
просторi, пов’язаному з даним оператором).

We establish the solvability of a nonlocal multipoint problem for a second order evolution
equation with respect to time variable with an operator having discrete spectrum. A nonlocal
condition is considered to be satisfied in the weak sense in the space of formal Fourier series that
are identified with continuous linear functionals (generalized elements) on some space connected
with a given operator.

1. Introduction
The theory of nonlocal boundary value

problems, as a part of general partial boundary
value problems theory, has been extensively
developed from the 70th of the previous
century. The study of such problems is due
to a number of applications in mechanics,
physics, chemistry, biology, ecology and other
natural sciences that appear in mathematical
modeling of different processes [2–8]. Dezin [9]
was the first who pointed out on the advi-
sability to use nonlocal conditions in view
of general boundary value problems theory.
He has been investigated solvable extensions
of differential operators generated by a di-
fferentiation operation with constant coeffi-
cients. He has shown that, in order to set
a well posed boundary value problem, one
has to use both local and nonlocal conditi-
ons. Afterwards, the investigations started by
Dezin have been developed by Romanko [10],
Junusov [11], Mamyan [12], Makarov [13] and
others.

Nonlocal boundary value problems in di-
fferent contexts have been investigated by
many mathematicians, who have used di-
fferent methods and approaches (Nakhushev
[14], Samarsky [15], Ptashnyk [16], Chesalin
[17], Skubachevsky [18] and others). They
have obtained important results concerning

the setting, well solvability and constructi-
on of solutions, investigated dependence of
the solvability type on the behavior of
operation symbols, stated the regularity and
non-regularity conditions of boundary value
problems for essential types of differential-
operator equations. As a problem of the kind,
one can consider a nonlocal multipoint with
respect to time problem which generalizes a
Cauchy problem, where the initial condition
u(t, ·)|t=0 = f is replaced with the following
one

m∑
k=0

αku(t, ·)|t=tk = f, (1)

t0 = 0, {t1, . . . , tm} ⊂ (0, T ],

where {α0, α1, . . . , αm} ⊂ R and m ∈ N are
fixed numbers (if α0 = 1, α1 = α2 = · · · =
αm = 0 then we obtain a Cauchy problem).

In this paper we study a nonlocal multi-
point problem with condition (1) for a second
order differential-operator equation with a
nonnegative self-adjoint operator on a Hilbert
space with discrete spectrum. The positive
and negative spaces corresponding to such an
operator are contained in the space of the
formal Fourier series that are identified with
certain continuous linear functionals (generali-
zed elements). We define an abstract convoluti-
on operator on the space of formal Fourier seri-
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es via which the above self-adjoint operator is
considered as a convolution operator. On the
base of such an approach we prove the solvabi-
lity of a nonlocal multipoint problem, build
a fundamental solution G(t), t ∈ (0, T ] and
study its properties and structure. A solution
u(t) is represented as the convolution G(t) ∗ g,
where g is a continuous linear functional on a
suitable subspace X of main elements (X ⊂
H ⊂ X ′, H a Hilbert space, X ′ is the topologi-
cally conjugate space to X). Remark that u(t),
G(t) ∈ X for all t ∈ (0, T ], however (1) is
satisfied for u(t) in the weak sense, that is,
m∑
k=0

αk lim
t→tk

u(t) = f , f ∈ X ′, where the limits

are taken in the space X ′ which is, in certain
sense, “maximal” space of elements (continuous
linear functionals) for setting of a nonlocal
multipoint problem, every solution of which
has the same properties as the fundamental
solution.

2. Spaces of main and generalized
elements. Formal Fourier series

Let H be an infinite dimensional separable
Hilbert space with an inner product (·, ·)
and norm ∥ · ∥, A a nonnegative self-adjoint
operator with a dense in H domain D(A)
and discrete spectrum, (λk)∞k=1 a nondecreasi-
ng sequence of eigenvalues of A, λk ≥ 0,
lim

k→+∞
λk = +∞, in this case the condition∑

k:λk ̸=0

λ−p
k <∞ with some p > 0 is true; (ek)∞k=1

the orthonormal basis of H consisting of the
corresponding eigenvectors of A.

We set

Φm =
{
φ ∈ H : φ =

m∑
k=1

ck,φek, ck,φ ∈ C
}
,

Φ = lim
m→∞

indΦm

(the subspace Φ is dense in H and invariant
with respect to A). Denote by Φ′ the space of
all anti-linear continuous functionals on Φ with
the weak convergence(

Φ′ ∋ fn
Φ′
−→
n→∞

f ∈ Φ′
)
⇔(

⟨fn, φ⟩ −→
n→∞

⟨f, φ⟩, ∀φ ∈ Φ
)

(the symbol over the arrow denotes the space
in which the convergence is considered, ⟨f, φ⟩
means the action of f at an element φ).

By the correspondence

H ∋ φ −→ fφ ∈ Φ′ : ⟨fφ, ψ⟩ = (φ, ψ),

∀ψ ∈ Φ,

we define an embedding H ⊂ Φ′. Thus, Φ ⊂
H ⊂ Φ′ with dense continuous embeddings.
Elements of Φ′ are called generalized elements.

Let s be the space of all numerical sequences
(ck)

∞
k=1, ck ∈ C, with the coordinate-wise

convergence. The isomorphism

F : Φ′ ∋ f → (ck = ⟨f, ek⟩)∞k=1 ∈ s

of Φ′ onto s sends Φ onto the set of all finitely
nonzero sequences from s, and H onto ℓ2. By
means of the above isomorphism, the operator
A induces the operation (ck)

∞
k=1 → (λkck)

∞
k=1,

and we can extend A on Φ′ to a continuous
operator Â by Âf = F−1(λkck)

∞
k=1, Φ′ ∋ f =

∞∑
k=1

ckek [19, p. 8–22].

Let f ∈ Φ′. The series
∞∑
k=1

ckek, where

ck = ⟨f, ek⟩, is called the Fourier series of
the element f , and the numbers ck the Fourier
coefficients of f . For any f ∈ Φ′, the Fourier
series of f converges in Φ′ to f , and conversely,

every series
∞∑
k=1

ckek which converges in Φ′ to

some elements f ∈ Φ′ coincides with the Fouri-
er series of f [19]. Hence, the space Φ′ can be
considered as the space of formal series of the

form
∞∑
k=1

ckek.

We introduce some classes of elements
connected to the operator A. Consider an
increasing sequence (mn)n∈Z+ , m0 = 1 of posi-
tive numbers possessing the following properti-
es [19]:

1) ∀α > 0 ∃cα > 0 ∀n ∈ Z+: mn ≥ cα · αn;
2) ∃M > 0 ∃h > 0 ∀n ∈ Z+: mn+1 ≤

Mhnmn.
Examples of such sequences are Gevrey
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sequences of the form mn = (n!)β, mn = nnβ,
n ∈ Z+, where β > 0 is a fixed parameter.

Set

H∞(A) := lim
α→∞

prHα(A), Hα(A) = D(Aα) =

{
φ ∈ H

∣∣∣ ∞∑
k=1

λ2αk |ck(φ)|2 <∞
}
,

Aαφ =
∞∑
k=1

λαk ck(φ)ek, φ ∈ D(Aα), α > 0,

Hα⟨mn⟩ := {φ ∈ H∞(A)
∣∣∣∃c > 0 :

∥Anφ∥ ≤ cαnmn, n ∈ Z+}, α > 0.

Then the space Hα⟨mn⟩ ⊃ Φ is a Banach
space with respect to the norm ∥φ∥Hα⟨mn⟩ =
sup
n∈Z+

(∥Anφ∥/(αnmn)). We denote H∞⟨mn⟩ :=

lim
α→∞

indHα⟨mn⟩. Then Φ ⊂ H∞⟨mn⟩ ⊂
H∞(A) ⊂ H, and all the embeddings are
dense and continuous [19]. If by H ′

∞(A) and
H ′

∞⟨mn⟩ one denotes the spaces of anti-
linear continuous functionals on H∞(A) and
H∞⟨mn⟩ respectively then by [19], we obtain
the chain of dense continuous embeddings H ⊂
H ′

∞(A) ⊂ H ′
∞⟨mn⟩ ⊂ Φ′. MoreoverH ′

∞⟨mn⟩ =
lim
α→∞

prH ′
α⟨mn⟩.

The spaces G{β}(A) := H∞⟨nnβ⟩, β > 0, are
called the Gevrey spaces of order β, generated
by the operator A; G{1}(A) equals the set of
analytic vectors of A [19].

Let

ρ0(λ) = sup
n∈Z+

(λn/mn), λ ∈ [1,+∞);

ρ(λ) =

{
1, λ ∈ [0, 1),
ρ0(λ), λ ∈ [1,+∞).

By the properties of the sequence (mn)n∈Z+ ,
the function ρ is continuous on [0,∞),
increases on [1,+∞) faster than any power of
λ [19].

The space H∞⟨mn⟩ coincides (see [19]) with
the inductive limit of the Hilbert spaces

H{α} =
{
f ∈ Φ′

∣∣∣ ∞∑
k=1

|ck(f)|2ρ2
(λk
α

)
<∞,

ck(f) = ⟨f, ek⟩
}
, α > 0,

with the inner product

(f, g)H{α} =
∞∑
k=1

ck(f)ck(g)ρ
2
(λk
α

)
,

{f, g} ⊂ H{α}.

In view of the behavior of the Fourier coeffici-
ents of the elements, the spaces H∞⟨mn⟩ and
H ′

∞⟨mn⟩ are described as follows [19]:

(f ∈ H∞⟨mn⟩) ⇔ (∃µ > 0 ∃c > 0 ∀k ∈ N :
(A)

|ck(f)| ≤ cρ−1(µλk));

(f ∈ H ′
∞⟨mn⟩) ⇔ (∀µ > 0 ∃c = c(µ) > 0

(B)
∀k ∈ N : |ck(f)| ≤ cρ(µλk)).

If mn = nnβ, β > 0 then ρ0(λ) ∼ exp{λ1/β},
λ ∈ [1,+∞), so in this case for any f ∈ Φ′ one
has

(f ∈ G{β}(A)) ⇔ (∃µ > 0 ∃c > 0 ∀k ∈ N :

|ck(f)| ≤ c exp{−µλ1/βk });
(f ∈ G′

{β}(A)) ⇔ (∀µ > 0∃c = c(µ) > 0 ∀k ∈ N :

|ck(f)| ≤ c exp{µλ1/βk }).
3. Nonnegative self-adjoint operators

as convolutions operators

Let {f1, f2} ⊂ Φ′, f1 =
∞∑
k=1

ck(f1)ek, f2 =

∞∑
k=1

ck(f2)ek.

We define an operation ∗ on the space
Φ′ called the abstract convolution or just
convolution by setting

f1 ∗f2 :=
∞∑
k=1

ck(f1)ck(f2)ek ≡
∞∑
k=1

ck(f1 ∗f2)ek,

so, f1 ∗ f2 is a generalized element of Φ′, the
Fourier coefficients of which are connected with
the ones of the generalized elements f1 and f2
by ck(f1 ∗ f2) = ck(f1)ck(f2), k ∈ N.

Consider a sequence (mn)n∈Z+ generating
the spaces Hα⟨mn⟩ and H∞⟨mn⟩ of a special
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kind mn = n!ρn, where (ρn)n∈Z+ , ρ0 = 1, is a
sequence of nonnegative numbers which is: a)
decreasing; b) ∃ω > 1 ∀n ≥ 1: ρn−1/ρn ≤ ωn;
c) lim

n→∞
n
√
ρn = 0. In [20] it was proved that the

sequence (n!ρn) has properties 1), 2). As an
example of a sequence (ρn) with properties a)
– c) one can take the sequence ρn = (nβ)−nβ,
ρ0 = ρ1 = ρ2 = 1, where β ∈ (0, 1) is a fixed
parameter ( [20, p. 57]).

If mn = n!ρn then the function ρ defined by
that sequence is differentiable on [0,∞) [20],
and moreover,

∀{x1, x2} ⊂ [1,∞) : ρ(x1)ρ(x2) ≤ ρ(x1 + x2)

which is equivalent to

∀{x1, x2} ⊂ [1,+∞) :

ln ρ(x1) + ln ρ(x2) ≤ ln ρ(x1 + x2). (2)

Inequality (2) we will call the convexity
inequality for a function ln ρ.

Notice that the sequence (n!ρn) possesses
the condition lim

n→∞
n
√
n!ρn/n = 0 which implies

(see [21]) that ρ0(λ) ≥ c0e
cλ, λ ∈ [1,+∞) with

some constants c0, c > 0.
Lemma 1.

a) If {f1, f2} ⊂ H ′
∞⟨mn⟩ then f1 ∗ f2 ∈

H ′
∞⟨mn⟩.

b) For all φ ∈ H∞⟨mn⟩ and f ∈ H ′
∞⟨mn⟩

the convolution f ∗ φ belongs to the space
H∞⟨mn⟩.

Proof. a) It is enough to prove that the
Fourier coefficients of ck(f1 ∗ f2) satisfy (B).

If {f1, f2} ⊂ H ′
∞⟨mn⟩, then (see (B))

∀µ1 > 0 ∃c1 = c1(µ1) > 0 ∀k ∈ N :

|ck(f1)| ≤ c1ρ(µ1λk),

∀µ2 > 0 ∃c2 = c2(µ2) > 0 ∀k ∈ N :

|ck(f2)| ≤ c2ρ(µ2λk).

Then, taking into account convexity inequality
(2) for ln ρ one has

|ck(f1 ∗ f2)| = |ck(f1)| · |ck(f2)| ≤

≤ c1c2ρ(µ1λk)ρ(µ2λk) =

= c1c2e
ln ρ(µ1λk)+ln ρ(µ2λk) ≤ c1c2e

ln ρ((µ1+µ2)λk) =

= cρ(µλk), c = c1c2, µ = µ1 + µ2.

Thus, f1 ∗ f2 ∈ H ′
∞⟨mn⟩.

b) Since φ ∈ H∞⟨mn⟩, we obtain (see (A))

∃µ > 0 ∃c > 0 ∀k ∈ N : |ck(φ)| ≤ cρ−1(µλk).

By (B) for µ1 = µ/2 there is c1 = c1(µ1) > 0
such that |ck(f)| ≤ c1ρ(µ1λk), k ∈ N. Then
convexity inequality (2) yields

ln ρ(µ1λk)− ln ρ(µλk) ≤ − ln ρ((µ− µ1)λk) ≡

≡ − ln ρ
(µ
2
λk

)
, k ∈ N.

Hence,

ρ(µ1λk)ρ
−1(µλk) = eln ρ(µ1λk)−ln ρ(µλk) ≤

≤ e
− ln ρ

(
µ
2
λk

)
= ρ−1

(µ
2
λk

)
, k ∈ N.

Thus, for the Fourier coefficients of the
convolution f ∗ φ the following estimates hold

|ck(f ∗ φ)| ≤ c̃ρ−1(µ̃λk),

c̃ = c1c2, µ̃ = µ/2, k ∈ N,

that is, f ∗ φ ∈ H∞⟨mn⟩.
Let f : [0,∞) → [0,∞) be an increasing

continuous on [0,∞) function, lim
λ→+∞

f(λ) =

+∞. Then using the function f and the
operator A we define the operator f(A) by

f(A)φ =

∞∫
0

f(λ)dEλφ, φ ∈ D(f(A)), (3)

where Eλ, λ ≥ 0 is the spectral function of the
operator A with the domain

D(f(A)) =
{
φ ∈ H

∣∣∣ ∞∫
0

f 2(λ)d(Eλφ, φ) <∞
}
,

D(f(A)) = H.

The operator f(A) is nonnegative self-adjoint
on H as well. The integral in the right hand
side of (3) actually is taken just over the
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spectrum σ(A) of A, which in our case is di-
screte and has a unique limited point at infi-
nity: σ(A) = {λk, k ∈ N}. The spectral functi-
on Eλ, λ ≥ 0 is piece-wise constant and is
discontinuous only at the points λk, k ∈ N.
Moreover, Eλk+0 − Eλk

is the projection onto
the subspace spanned by the eigenvalues of
A that correspond to the eigenvalue λk. The
corresponding eigenvalues ek, k ∈ N, form an
orthonormal basis of H, and hence

(Eλk+0 − Eλk
)φ = (φ, ek)ek ≡ ck(φ)ek, φ ∈ H.

The spectral function Eλ, λ ≥ 0 in this case
has the form

Eλφ =
∑
λk<λ

ck(φ)ek, φ ∈ H,

and integral (3) equals

f(A)φ =
∞∑
k=1

f(λk)ck(φ)ek, φ ∈ D(f(A)),

where f(λk), k ∈ N are the eigenvalues of f(A).
In the sequel, we shall use the notation

f(A) := Af .
The operator f(A) we extend to the conti-

nuous operator f̂(A) on Φ′ by

f̂(A)φ = F−1(f(λk)ck(φ))
∞
k=1,

Φ′ ∋ φ =
∞∑
k=1

ck(φ)ek.

Consider the generalized element Gf =
∞∑
k=1

f(λk)ek of the space Φ′ constructed by

a function f . Then f̂(A) is a convolution
operator which acts in the space Φ′ by setti-
ng

f̂(A)φ = Gf ∗ φ =
∞∑
k=1

f(λk)ck(φ)ek.

We define the operator f(A) ≡ Af to be the
restriction of the operator f̂(A) to the subspace
H∞⟨mn⟩.

Lemma 2. An operator Af is continuous
on the space H∞⟨mn⟩ if and only if Gf ∈
H ′

∞⟨mn⟩.

Proof. Assume Gf ∈ H ′
∞⟨mn⟩. Then

∀µ > 0 ∃c = c(µ) > 0 ∀k ∈ N :

f(λk) ≤ cρ(µλk). (4)
By Lemma 1, Gf ∗ φ ∈ H∞⟨mn⟩ for all φ ∈
H∞⟨mn⟩. Hence, in this case the operator Af

is mapped the space H∞⟨mn⟩ into itself. We
show that Af in continuous on H∞⟨mn⟩, that
is, Af sends bounded subsets of this subspace
to bounded subsets (remark that the set of all
continuous operators on H∞⟨mn⟩ coincides wi-
th the set of all bounded operators [22]).

Let L be a bounded subset of H∞⟨mn⟩. Si-
nce H∞⟨mn⟩ =

∪
α>0

H{α}, the set L is bounded

in some Hilbert space H{α0}, i.e.

∃b > 0∀ψ ∈ L : ∥ψ∥2H{α0}
=

∞∑
k=1

|ck(ψ)|2ρ2
(λk
α0

)
≤ b,

or equivalently

∃b1 > 0 ∀ψ ∈ L : ∥ck(ψ)∥ ≤ b1ρ
−1
(λk
α0

)
, k ∈ N.

We set µ = (2α0)
−1 to inequality (4). Then

from (2) we deduce that

|ck(Afψ)|=f(λk)|ck(ψ)|≤cb1ρ−1
(( 1

α0

−µ
)
λk

)
=

= b2ρ
−1
(λk
α0

)
, k ∈ N,

where b2 = cb1. Taking into account (2), we
obtain

|ck(Afψ)| · ρ
( λk
4α0

)
≤ b2ρ

−1
( λk
2α0

)
ρ
( λk
4α0

)
=

= b2 exp
(
− ln ρ

( λk
2α0

)
+ ln ρ

( λk
4α0

))
≤

≤ b2 exp
(
− ln ρ

( λk
4α0

))
= b2ρ

−1
( λk
4α0

)
.

Since the function ρ(λ) grows on [1,+∞) faster
than any power of λ, by the above and by∑
k:λk ̸=0

λ−p
k < ∞ for some p > 0 the following

series converges
∞∑
k=1

|ck(Afψ)|2ρ2
( λk
4α0

)
.
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Thus, the set AfL is bounded in H{4α0}, and
therefore in H∞⟨mn⟩.

The converse statement is proved
analogously using convexity inequalities
(2).

Remark 1. The condition Gf ∈ H ′
∞⟨mn⟩

is equivalent to the following condition on f

∀µ > 0∃c = c(µ) > 0 :

f(λ) ≤ cρ(µλ), λ ∈ [0,∞). (5)

4. Nonlocal multipoint problem
Consider the following differential-operator

equation

u′′(t) = Afu(t), t ∈ (0, T ], 0 < T <∞, (6)

where Af is the operator constructed in Secti-
on , which is linear and continuous on the space
H∞⟨mn⟩. In what follows, we assume also that
the function f has the following property

∃µ0 > 0 ∃c0 > 0 : f(λ) ≥ c0 ln
2 ρ(µ0λ), (7)

λ ∈ [0,∞).
By a solution of equation (6) we mean a

function u: (0, T ] → H∞⟨mn⟩, twice strongly
differentiable on H, which fulfills equation (6).

Theorem 1. For every ψ =
∞∑
k=1

ck(ψ)ek ∈

H ′
∞⟨mn⟩ the function

γ(t) =
∞∑
k=1

exp(−t
√
f(λk))ck(ψ)ek (8)

is a solution of (6).
Proof. We prove that γ(t) ∈ H∞⟨mn⟩ for

all t > 0. Since ψ ∈ H ′
∞⟨mn⟩,

∀µ > 0∃c = c(µ) > 0 : |ck(ψ)| ≤ cρ(µλk),
(9)

k ∈ N.
Taking into account (7), (9) and ck(γ(t)) =

ck(ψ) exp(−t
√
f(λk)) we obtain

|ck(γ(t))| ≤ cρ(µλk) exp(−t
√
f(λk)) ≤

≤ cρ(µλk) exp(−c1t ln ρ(µ0λk)),

where c1 =
√
c0 and c0 is the constant from (7).

The function ln ρ is convex on [0,∞), hence if

0 < c1t < 1 (for a fixed t) then the following
inequality holds

c1t ln ρ(µ0λk) ≥ ln ρ(c1tµ0λk) ≡ ln ρ(µ̃0λk),

where µ̃0 = c1tµ0. If for a fixed t ∈ (0, T ] one
has c1t > 1 then c1t = [c1t] + {c1t}. Hence

exp(−c1t ln ρ(µ0λk)) =

= exp(−{c1t} ln ρ(µ0λk)− [c1t] ln ρ(µ0λk)) ≤
≤ exp(−{c1t} ln ρ(µ0λk)).

Since 0 < {c1t} < 1, the present case is
reduced to the previous one. Thus, for every
t ∈ (0, T ]

|ck(γ(t))| ≤ c exp(ln ρ(µλk)− ln ρ(˜̃µ0λk)),

where ˜̃µ0 = µ̃0 or ˜̃µ0 = {c1t}µ0 (here t is fixed).
Take µ = ˜̃µ0/2 and use inequality (2) for ln ρ.
Then

|ck(γ(t))| ≤ c exp
(
− ln ρ

( ˜̃µ0

2
λk

))
=

= cρ−1
( ˜̃µ0

2
λk

)
, k ∈ N.

Thus, we have proved that u(t) ∈ H∞⟨mn⟩ for
all t > 0.

Now we prove the strong differentiability of
γ(t) on (0, T ]. To do this, it is enough to prove
that

Φt(∆t) =
∥∥∥γ(t+∆t)− γ(t)

∆t
− ω(t)

∥∥∥ → 0,

∆t→ 0,

where t ∈ (0, T ] is any fixed point and

ω(t) = −
∞∑
k=1

√
f(λk) exp(−t

√
f(λk))ckek.

Direct calculations show that Φ2
t (∆t) =

∞∑
k=1

a2k(∆t)|ck|2, where

|ak(∆t)| =
∣∣∣ 1

∆t
[exp(−(t+∆t)

√
f(λk))−

− exp(−t
√
f(λk))]+

√
f(λk) exp(−t

√
f(λk))

∣∣∣ =
=

√
f(λk)| exp(−t

√
f(λk))−
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− exp(−τ
√
f(λk))| =

= f(λk) exp(−τ1
√
f(λk))θ|∆t|,

τ = t+θ∆t, 0 < θ < 1, τ1 = t+θ1∆t, 0 < θ1 < 1.

If ∆t > 0, then taking into account (5) and
(7) we obtain

|ak(∆t)| ≤ f(λk) exp(−t
√
f(λk))∆t ≤

≤ cρ(µλk) exp(−tc1 ln ρ(µ0λk))∆t,

where c1 =
√
c0 and µ > 0 is an arbitrary fixed

parameter, c = c(µ) > 0.
Hence,

|ak(∆t)| ≤ c exp(ln ρ(µλk)− tc1 ln ρ(µ0λk))∆t.

Reasoning like above, we show that

exp(−tc ln ρ(µ0λk)) ≤ exp(− ln ρ(˜̃µ0λk)),

where ˜̃µ0 = c1tµ0 for 0 < c1t < 1 and ˜̃µ0 =
{c1t}µ0 for c1t > 1. Setting µ = ˜̃µ0/2 and using
the convexity inequality for the function ln ρ,
we obtain the next estimates

|ak(∆t)| ≤ c exp(ln ρ(µλk)− ln ρ(˜̃µ0λk))∆t ≤

≤ c exp(− ln ρ(˜̃µ0 − µ)λk)∆t =

= c exp
(
− ln ρ

( ˜̃µ0

2
λk

))
∆t =

= cρ−1
( ˜̃µ0

2
λk

)
∆t, k ∈ N. (10)

Since ψ ∈ H ′
∞⟨mn⟩, estimates (9) and (10)

(using also (2)) imply

|ak(∆t)| · |ck| ≤ c̃ρ−1(µ1λk), µ1 = ˜̃µ0/4, k ∈ N.

Hence, Φ2
t (∆t) ≤ ˜̃c∆t, where

˜̃c = c̃2
∞∑
k=1

ρ−1(µ1λk) ≤ b

∞∑
k=1

e−αλk <∞,

b, α > 0

(here we used that ρ(λ) ≥ c0e
cλ, λ ∈ [1,+∞)).

Thus we obtain the limit relation Φt(∆t) → 0,
∆t→ 0 for a fixed t ∈ (0, T ].

If ∆t < 0 then we choose ∆t to satisfy
τ = t + θ∆t ≥ t/2. Then we show that
Φt(∆t) → 0 for ∆t → 0 and a fixed t > 0.

From here we deduce the strong differentiabi-
lity of γ(t) on (0, T ]. Analogously we prove the
strong differentiability of γ′(t) on (0, T ]. Hence,
γ(t) ∈ C2((0, T ], H∞⟨mn⟩).

Observe that ω(t) ∈ H∞⟨mn⟩ for all t > 0.
The proof of this property uses the properties
of f , ln ρ and estimate (9) of the coefficients
ck(ψ).

The function γ(t) fulfills equation (6).
Indeed,

Af (γ(t)) ≡ f(A)γ(t) =
∞∑
k=1

f(λk)ck(γ(t))ek =

=
∞∑
k=1

f(λk) exp(−t
√
f(λk))ckek.

On the other hand, when proving the di-
fferentiability properties of γ(t) we established
that

γ′′(t) =
∞∑
k=1

f(λk) exp(−t
√
f(λk))ckek.

Thus, γ(t) is a solution of (6).
Remark 2. We introduce the following

notation

G̃(t) =
∞∑
k=1

exp(−t
√
f(λk))ek.

By the properties of f , we have that G̃(t) ∈
H∞⟨mn⟩ for all t > 0. Moreover, γ(t) =
G̃(t) ∗ ψ ∈ H∞⟨mn⟩, ∀ψ ∈ H ′

∞⟨mn⟩.
Hence the convolution operator G̃(t) ∗ · sends
every element of the space H ′

∞⟨mn⟩ (in parti-
cular, every element of the space H∞⟨mn⟩ ⊂
H ′

∞⟨mn⟩) to a solution of (6).
Setting problem: find a solution of equati-

on (6) of type (8) possessing the condition

µu(0)−
m∑

n=1

µnu(tn) = g, g ∈ H, (11)

where m ∈ N, {µ, µ1, . . . , µm} ⊂ (0,∞),
{t1, . . . , tm} ⊂ (0, T ] are fixed numbers, µ >
m∑

n=1

µn, t1 < t2 < · · · < tm. Here u(0) means

lim
t→+0

u(t), where the limit is considered in the
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space H (i.e. we assume that there is u0 ∈ H
such that ∥u(t) − u0∥ → 0, t → +0; u0 =
u(0)). The above problem we call the multi-
point problem for equation (6). Theorem and
Remark imply that problem (6), (11) can be
equivalently reposed as follows: find an element
ψ in the class H ′

∞⟨mn⟩ the convolution of whi-
ch by G̃(t) is a solution of (6) satisfying (11) (in
the indicated sense). To solve this problem, one
should find the coefficients ck ≡ ck(ψ), k ∈ N
of such an element. In order to find ck, k ∈ N,
we multiply (11) by ek, k ∈ N in the sense of
the dot product, taking into account that

ck(γ(t)) ≡ ck(u(t)) = ck(G̃(t))ck(ψ),

ck(G̃(t)) = exp(−t
√
f(λk)).

Then we obtain

µck(G̃(0))ck(ψ)−
m∑

n=1

µnck(G̃(tn))ck(ψ) = ck(g),

ck(G̃(tn)) = exp(−tn
√
f(λk)), ck(G̃(0)) = 1.

Hence

ck(ψ) = ck(g)
(
µ−

m∑
n=1

µn exp(−tn
√
f(λk))

)−1

.

Now we set: Q1(t, λk) = exp(−t
√
f(λk)). Then

ck(ψ) = ck(g)
(
µ−

m∑
n=1

µnQ1(tn, λk)
)−1

.

Observe that(
µ−

m∑
n=1

µnQ1(tn, λk)
)−1

≤
(
µ−

m∑
n=1

µn

)−1

≡µ0,

that is, ck(ψ) = ck(g)Q2(λk), where Q2(λk) =(
µ−

m∑
n=1

µnQ1(tn, λk)
)−1

. Then

∞∑
k=1

|ck(ψ)|2 ≤ µ2
0

∞∑
k=1

|ck(g)|2 = µ2
0∥g∥2, g ∈ H,

that is, the element ψ generating a solution of
(6), (11), belongs to H, and the corresponding
solution is given by

u(t) = G̃(t) ∗ ψ =
∞∑
k=1

Q1(t, λk)ck(g)×

×
(
µ−

m∑
n=1

µn Q1(tn, λk)
)−1

≡

≡
∞∑
k=1

Q1(t, λk)Q2(λk)ck(g) =
˜̃G(t) ∗ g,

g =
∞∑
k=1

ck(g)ek ∈ H,

where ˜̃G(t) =
∞∑
k=1

Q1(t, λk)Q2(λk)ek,
˜̃G(t) ∈

H∞⟨mn⟩ for all t ∈ (0, T ].
By Lemma 1, we can consider the convoluti-

on ˜̃G ∗ g in the case where g ∈ H ′
∞⟨mn⟩.

Moreover, the same lemma yields that u(t) =
˜̃G ∗ g ∈ H∞⟨mn⟩ for all t ∈ (0, T ],

ck(u(t)) = ck(
˜̃G(t))ck(g) =

= Q1(t, λk)Q2(λk)ck(g) = ck(γ(t))Q2(λk),

k ∈ N.
The proof of strong twice differentiability of
the function u(t) = ˜̃G(t) ∗ g, g ∈ H ′

∞⟨mn⟩
is similar to the proof for the function γ(t)
(see proof of Theorem ). The function u(t) is a
solution of (6) satisfying condition (11), where
g ∈ H ′

∞⟨mn⟩ in the sense that

µ lim
t→+0

u(t)−
m∑

n=1

µn lim
t→tn

u(t) = g, (12)

g ∈ H ′
∞⟨mn⟩,

where the limits are considered in the space
H ′

∞⟨mn⟩.
To prove (12), we take any element ψ =

∞∑
k=1

ck(ψ)ek ∈ H∞⟨mn⟩ and observe that, by

the continuity of the inclusion of H∞⟨mn⟩ in
the space H ′

∞⟨mn⟩ and, taking into account
that ek, k ∈ N in an orthonormal basis, one
has

⟨u(t), ψ⟩ = (u(t), ψ) =
∞∑
k=1

ck(u(t))ck(ψ) =

=
∞∑
k=1

Q1(t, λk)Q2(λk)ck(g)ck(ψ).
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Then

µ lim
t→+0

⟨u(t), ψ⟩ −
m∑

n=1

µn lim
t→tn

⟨u(t), ψ⟩ =

= µ lim
t→+0

∞∑
k=1

ck(u(t))ck(ψ)−

−
m∑

n=1

µn lim
t→tn

∞∑
k=1

ck(u(t))ck(ψ),

where the series
∞∑
k=1

ck(u(t))ck(ψ) converges

uniformly on (0, T ]. The latter fact follows
from view of ck(u(t)), k ∈ N and the inequality

|ck(u(t))| · |ck(ψ)| ≤ c̃|ck(g)| · |ck(ψ)|,

t ∈ (0, T ], k ∈ N.
Indeed, since g ∈ H ′

∞⟨mn⟩, we have that

∀µ > 0 ∃c = c(µ) > 0∀k ∈ N :

|ck(g)| ≤ cρ(µλk).

The condition ψ ∈ H∞⟨mn⟩ together with (A)
gives that

∃µ0 > 0∃c0 > 0∀k ∈ N :

|ck(ψ)| ≤ c0ρ
−1(µ0λk).

We set µ = µ0/2. By convexity inequality (2),

|ck(g)| · |ck(ψ)| ≤ cc0ρ
−1(µ0λk)ρ

(µ0

2
λk

)
≤

≤ cc0ρ
−1
(µ0

2
λk

)
, k ∈ N,

which implies the desired property.
Thus,

lim
t→tn

∞∑
k=1

ck(u(t))ck(ψ) =
∞∑
k=1

ck(u(tn))ck(ψ) ≡

≡
∞∑
k=1

Q1(tn, λk)Q2(λk)ck(g)ck(ψ), (13)

lim
t→+0

∞∑
k=1

ck(u(t))ck(ψ) =
∞∑
k=1

ck(u(0))ck(ψ) ≡

≡
∞∑
k=1

Q2(λk)ck(g)ck(ψ). (14)

Taking into account (13) and (14) we obtain

µ lim
t→+0

⟨u(t), ψ⟩ −
m∑

n=1

µn lim
t→tn

⟨u(t), ψ⟩ =

=
∞∑
k=1

[(
µ−

m∑
n=1

µnQ1(tn, λk)
)
Q2(λk)

]
ck(g)ck(ψ) ≡

≡
∞∑
k=1

Q−1
2 (λk)Q2(λk)ck(g)ck(ψ) =

=
∞∑
k=1

ck(g)ck(ψ) = ⟨g, ψ⟩, ψ ∈ H∞⟨mn⟩,

and the proof is completed.
Since u(t) = ˜̃G(t), t ∈ (0, T ], if g = δ̃ =

∞∑
k=1

ek ∈ H ′
∞⟨mn⟩, then (12) implies that the

function ˜̃G(t) satisfies in the space H ′
∞⟨mn⟩

the following limit relation

µ lim
t→+0

˜̃G−
m∑

n=1

µn lim
t→tn

˜̃G(t) = δ̃.

The function ˜̃G(t) is called a fundamental
solution of the nonlocal multipoint problem for
equation (6).

We summarize the above obtained results
in the following statement.

Theorem 2. Let (5) and (7) be satisfied.
Then multipoint problem (6), (12) is solvable
and a solution is given by u(t) = ˜̃G(t) ∗ g, t ∈
(0, T ], u(t) ∈ H∞⟨mn⟩ for all t ∈ (0, T ].

Consider for example the self-adjoint
operator A2 in the Hilbert space H =
L2[0, 2π] generated by the differential expressi-
on −d2/dx2 and conditions u(0) = u(2π),
u′(0) = u′(2π), A =

√
A2 ≡ |D|, where |D|

is the modulus of the differentiation operator,
|D| ≥ 0. The spectrum of the operator A = |D|
is discrete: σ(A) = {|k|, k ∈ Z} with a unique
limit point at infinity, ek = eikx, k ∈ Z, x ∈ R,
are its eigenfunctions. In this case one has

Φm =
{
φ ∈ H

∣∣∣φ =
m∑

k=−m

ck,φe
ikx, ck,φ ∈ C,

x ∈ R
}
,m ∈ Z+,
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that is, ever element of Φm is a trigonometric
polynomial of degree m, Φ′ is the space of all
formal Fourier series which are identified wi-
th generalized 2π-periodic functions as anti-
linear continuous functionals on the space of
trigonometric polynomials [22].

The convolution of two generalized periodic
functions {f, g} ⊂ Φ′ is defined as follows [22]:

⟨f ∗ g, φ⟩ = ⟨fx, ⟨gy, φ(x+ y)⟩⟩, ∀φ ∈ Φ.

It make sense, because

⟨gy, φ(x+ y)⟩ =
⟨
gy,

m∑
k=−m

ck,φe
ik(x+y)

⟩
=

=
m∑

k=−m

ck,φ⟨g, eiky⟩eikx ∈ Φ.

The mapping

F : Φ′ ∋ f → {ck(f) = ⟨f, e−ikx⟩, k ∈ Z} ∈ S

sends the space L2[0, 2π] onto ℓ2, the operator
|D| is transformed into the multiplicati-
on operator by |k|, and the convolution is
transformed into the coordinate-wise multipli-
cation:

ck(f ∗ g) = ⟨f ∗ g, e−ikx⟩ = ⟨f, ⟨gy, e−ik(x+y)⟩⟩ =

= ⟨f, ⟨g, e−iky⟩e−ikx⟩ = ck(f)ck(g),

∀{f, g} ⊂ Φ′.

Hence we obtain the commutativity and associ-
ativity of the convolution on Φ′, that is, in this
case Φ′ is a ring (with respect to the convoluti-
on) with unit which is the Dirac delta-function.
Thus, f ∗ g is a generalized 2π-periodic functi-
on from Φ′ which is identified with the Fourier

series
∞∑

k=−∞

ck(f ∗g)eikx =
∞∑

k=−∞

ck(f)ck(g)e
ikx,

and the convolution on Φ′ coincides with the
abstract convolution introduces in Section 3.

Remark that in this case G{β}(|D|) =
H∞⟨nnβ⟩, β > 0, consists of all 2π-periodic
infinitely differentiable on R functions φ havi-
ng the following property: there exist constants
c, α > 0 (depending only on the function φ)
such that

|φ(n)(x)| ≤ cαnnnβ, n ∈ Z+, x ∈ R.

If 0 < β < 1 then the function φ ∈ G{β}(|D|)
admits an analytic extension on the complex
plane to an entire function φ(z), z = x+iy ∈ C
such that [23, p. 35–39]

∃c = c(φ) > 0 ∃b = b(φ) > 0 :

|φ(x+ iy)| ≤ c exp(b|y|1/(1−β)).

We define the sequence (ρn) to be equal
the sequence ((n(1− β))−n(1−β)en(1−β)), where
β ∈ (0; 1) is a fixed parameter. As noticed
above, the sequence ρn satisfies conditions a)
– c), and the corresponding sequence (mn =
n!ρn) has properties 1), 2), ρ0(λ) ∼ exp(λ1/β),
λ ∈ [1,+∞). We take the function f generati-
ng the operator f(|D|) ≡ f(A) to be equal
λν , ν > 0. One can directly verify that if
2/β ≤ ν, 0 < β < 1 then the function
f(λ) = λν possesses conditions (5), (7). For
instance, if one set β = 1/2 then f(λ) = λ4,
Af ≡ f(|D|) = d4/dx4 and equation (6) has
the form

∂2u(t, x)

∂t2
=
∂4u(t, x)

∂x4
, x ∈ R, t ∈ (0, T ].

(15)
So, the nonlocal multipoint problem for

equation (15) with condition (12), where g ∈
H ′

∞⟨nn/2⟩ ≡ G′
{1/2}(|D|), is solved (in the sense

indicated above: the corresponding limits in
(12) are considered in the space G′

{1/2}(|D|)).
The following function is a 2π-periodic infini-
tely differentiable in x solution

u(t, x) =
+∞∑

k=−∞

ck(g) exp(−tk2 + ikx)×

×
(
µ−

m∑
n=1

µn exp(−tnk2)
)−1

,

u(t, ·) ∈ G{1/2}(|D|),

g =
+∞∑

k=−∞

ck(g)e
ikx ∈ G′

{1/2}(|D|).

Thus, generalized 2π-periodic functions
from the space G′

{1/2}(|D|) can be used to pose
of nonlocal condition (12). In this case the
solution u(t, x) of the corresponding problem
preserves properties of a smooth solution of the
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“classical” nonlocal problem for equation (15)
with condition (11), where g ∈ L2[0, 2π].
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