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CHAOTIC DYNAMIC SYSTEMS OF SHIFT OPERATORS AND

APPLICATIONS IN ECONOMICS

In this paper we consider chaotic properties of weighted shifts on (non-separable) Hilbert
space. We ivestigate some conditions under which the operators are Li-Yorke chaos. We
examine various structural of the operators that contribute to their chaotic behavior, providing
theoretical results that highlight the interplay between the weights and the underlying space.
Also, we construct chaotic dynamic system for modeling the security price.

Key words and phrases: dynamic system, chaotic operator, hypercyclic operator, Hilbert
space.

Lviv University of Trade and Economics, 10, Tuhan-Baranovsky Str., Lviv 79005, Ukraine
e-mail: zoriana.maths@gmail.com, zoryana@lute.lviv.ua

Introduction

Chaos theory has emerged as a vital area in the study of dynamical systems, focusing
on the unpredictable and complex behavior exhibited by certain deterministic systems. A
chaotic dynamical system is one that demonstrates sensitive dependence on initial conditions,
topological transitivity, and a dense set of periodic points. These properties together produce
dynamics that are seemingly random and yet governed by deterministic rules.

In operator theory, the concept of chaos is closely tied to chaotic operators, which extend
the notion of chaos from classical systems to functional spaces. An operator is termed chaotic
if it is hypercyclic and has a dense set of periodic points. Hypercyclicity, a foundational
concept in this area, refers to the existence of a vector in a function space whose orbit under
repeated applications of the operator is dense in that space. This property, first studied
in depth by Birkhoff and MacLane, illustrates how linear operators can exhibit behavior
analogous to classical chaotic systems. The two of examples of classical chaotic systems

The Lorenz System.
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Described by Edward Lorenz in 1963, this system of three coupled nonlinear differential
equations is a classic example of chaos. The Lorenz attractor exhibits a distinctive butterfly-
shaped fractal structure.

The Logistic Map.
An iterative map xn+1 = rxn(1 − xn) that demonstrates chaos for certain values of the

parameter r. Despite its simplicity, it shows complex dynamics, including bifurcations and
chaotic behavior.

As is often the case in linear dynamics, the concepts mentioned above have been exten-
sively studied by researchers within the framework of a particular class of operators known
as weighted shifts. This is largely due to their flexibility in constructing examples in lin-
ear dynamics, operator theory, and its various applications. Over recent decades, numerous
dynamical properties of such operators have been thoroughly examined and described [1],
[2], [3] [4], [10], occasionally even before these properties were fully understood in broader
contexts. Specifically, in [5] and [6], the authors advanced this field by offering detailed
analyses of chaotic properties.

We consider chaotic properties such as

Topologacal transitivity ⇒ Hypercyclicity ⇒ Li− Y orke chaos

Frequent hypercyclicity ⇒ Hypercyclicity ⇐ Chaos

In Section 1 we consider chaotic properties of weighted shifts on (non-separable) Hilbert
space and ivestigate some conditions under which the operators are Li-Yorke chaos. In Sec-
tion 2 we construct a dynamic system based on these operators to model the price behavior
of financial securities. This application demonstrates the practical relevance of chaotic dy-
namics in economics, where security prices often exhibit irregular, unpredictable fluctuations.
This study bridges the gap between abstract operator theory and applied financial modeling,
opening new avenues for both mathematical and economic research.

1 Backward Shifts for Banach Spaces

Let X be a metric space and T be a continuous mapping T : X → X. T is called topo-
logically transitive if, for any pair U, V, (U ̸= ∅, V ̸= ∅) of open subsets of X, there exists
some integer k ≥ 0 such that T k(U) ∩ V ̸= ∅.

A sequence of closed subspaces (Xn) of a Banach space X is called a Schauder decom-
position of X if every element x ∈ X can be expressed uniquely as a sum of elements from
these subspaces

x =
∞∑
k=0

xk, xk ∈ Xk, (1)

and the series (1) converges in X. A Schauder decomposition (Xn) is unconditional if (1)
converges unconditionally.

In [2], it was pointed out that a criterion for topological transitivity, analogous to that
for hypercyclic operators [1, 7], can be formulated.
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Theorem 1. (see for the proof e.g. [8]). Let T be a bounded linear operator on a Banach
space X (not necessarily separable). Suppose that there exists a strictly increasing sequence
(nk), limk 7→∞ nk =∞ of positive integers for which there are the following:

(i) A dense subset Z0 ⊂ X such that T nk(x)→ 0 for every x ∈ Z0 as k →∞.

(ii) A dense subset Y0 ⊂ X and a sequence of mappings (not necessary linear and not neces-
sary continuous) Sk : Y0 → X such that Sk(y)→ 0 for every y ∈ Y0 and T nk ◦ Sk(y)→ y

for every y ∈ Y0 as k →∞.

Then, T is topologically transitive.

We consider an infinite-dimensional (may be non-separable) Banach space X which ad-
mits an unconditional Schauder decomposition to Banach spaces Xk, k = 0, 1, . . . . Let
(Jk)

∞
k=1 be a sequence of injective maps Jk : Xk+1 → Xk with dense ranges and ∥Jk∥ = 1.

We have the following shifts of spaces Xk under maps Jk:

0←− X0
J1←− X1

J2←− · · · Jn←− Xn · · · .

Let us construct a weighted backward shift operator (associated with a Schauder decom-
position (Xn) of X) by

T (x) =
∞∑
k=1

ωkJk(xk), (2)

T : (x0, x1, . . . , xn, . . .) 7→ (ω1J1(x1), ω2J2(x2), . . . , ωnJn(xn), . . .),

where (ωk) is a sequence of positive numbers with supk ωk <∞.

Theorem 2. ([9]) Let X be a Banach space that can be represented as an unconditional
Schauder decomposition into Banach spaces Xk, k = 0, 1, . . . and T a weighted backward
shift, defined as in (2). Assume that the following conditions are satisfied

(i) The weight constants ωk are such that

lim sup
n→∞

n∏
k=1

ωk =∞.

(ii) There is a dense subspace E0 ⊂ (J1) ⊂ X0 such that for every x ∈ E0 the set

{J−1
n ◦ · · · ◦ J−1

1 (x), n ∈ N}

is bounded in X.

Then the operator T defined by (2) is topologically transitive.
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2 Chaotic Properties of Weighted Shifts

Let (Hn)
∞
n=0 be a sequence of Hilbert spaces. In this paper, we assume that each Hn is

nontrivial, meaning Hn ̸= {0} and may not necessarily be separable.
Assume that for all n and m, the spaces Hn and Hm are isomorphic. We define ℓ2(Hn) =

ℓ2((Hn)
∞
n=0) as the Hilbert space consisting of elements x = (x0, x1, . . . , xn, . . .), xk ∈ Hk

endowed with norm ∥x∥ =

(
∞∑
i=0

∥xi∥2
) 1

2

.

Let (ωn) be a sequence of positive numbers, referred to as weights. Additionally, let us
fix a sequence of isomorphisms Jm : Hm → Hm−1, ∥Jm∥ = 1, m ∈ N. An operator

T : ℓ2(Hn)→ ℓ2(Hn)

will be called a backward weighted shift (with respect to the family (Jm)) with weight sequence
(ωn) if it is of the form

T (x) = (ω1J1(x1), ω2J2(x2), . . . , ωmJm(xm), . . .).

We will need the next corollary which is proved in [12].

Corollary 1. ([12]) Let (Hn)
∞
n=0 be a sequence of Hilbert spaces and T : ℓ2(Hn) → ℓ2(Hn)

be a backward weighed shift with respect to (Jm) and with positive weight sequence (ωn).
Let us suppose that

sup
m∈Z+

m∏
n=0

∥J−1
n ∥ <∞. (3)

Then the following are equivalent:

(i) T is topologically transitive.

(ii) There exists a non-trivial T -invariant (separable) closed subspace Y ⊂ ℓ2(Hn) on which
the restriction of T to Y , T : Y → Y , is hypercyclic.

(iii) The restriction T : Y → Y to any T -invariant (separable) closed subspace Y ⊂ ℓ2(Hn)

which contains non-zero vectors of the form (0, . . . , 0, xn, 0, . . .), xn ∈ Hn for every
n ∈ Z+, is hypercyclic.

(iv) lim sup
n→∞

n∏
k=1

ωk =∞.

Let T : X 7→ X be a bounded linear operator acting on topological space X

Definition 1. The operator T is

- Li-Yorke chaotic if there is uncountable set U ⊂ X, called scrambled set, such that for
each x, y ∈ U, x ̸= y, lim

n 7→∞
∥T n(x)− T n(y)∥ = 0
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- Hypercyclic if there is a vector x ∈ X for which the orbit under T, Orb(T, x) =

{x, Tx, T 2x, . . .} is dense in X. Every such vector x is called a hypercyclic vector of T.

- Frequently hypercyclic if T admits a frequently hypercyclic vector x ∈ X such that for
each non-empty open subset U of X, lim

N 7→∞
{1≤n≤N :Tn(x)∈U}

N
> 0.

1. Li-Yorke Chaos.
An operator T is Li-Yorke chaotic if there exists an uncountable set S ⊂ ℓ2(Hn) such

that for any x, y ∈ S, x ̸= y, (points are not asymptotic), lim sup
n→∞

∥T n(x−y)∥ > 0 (points are

proximal). For the weighted shift T , we note that the weights (ω)n control the growth/decay

of iterates. If
n∏

i=1

ωk → 0 or diverges, then the distance between certain points can oscillate,

fulfilling the conditions for Li-Yorke chaos. The isometries Jm preserve structure, allowing T

to meet the chaotic requirements under appropriate ωn. So, we can state the next theorem.

Theorem 3. Let (Hn)
∞
n=0 be a sequence of Hilbert spaces. An operator

T : ℓ2(Hn)→ ℓ2(Hn)

T (x) = (ω1J1(x1), ω2J2(x2), . . . , ωmJm(xm), . . .)

is Li-Yorke chaotic

Proof. For any x = (x1, x2, . . .) ∈ ℓ2(Hn) the action of T is given by

T (x) = (ω1J1(x1), ω2J2(x2), . . . , ωmJm(xm), . . .),

then the n-th iterate T n(x) is

T n(x) = (ωnJn(xn), ωn+1Jn+1(xn+1), . . .)).

with norm

∥T n(x)∥ =

(
∞∑
k=n

ω2
k∥Jk(xk)∥2

)1/2

.

For vectors x, y ∈ ℓ2(Hn), consider z = x− y. The norm satisfies

∥T n(z)∥ =

(
∞∑
k=n

ω2
k∥Jk(zk)∥2

)1/2

.

The weights (ωk) and the dynamics of Jk (3) can ensure such behavior that ∥T n(z)∥ alternates
between being arbitrarily small and bounded away from zero, depending on the decay or
growth of the weights (ωk)

We can constract uncountable set S ⊂ ℓ2(Hn) with the properties by leveraging the
oscillatory behavior of T iterates. Choose S as a subset of ℓ2(Hn) with coordinates that
exhibit chaotic pairing behavior under T .
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This typically involves specific properties of (ωn) and the shifts Jn to create a scrambled

set where the required, using the colorally 1 we will have that if lim sup
n→∞

n∏
k=1

ωk =∞ the norm

of T n(x) for certain vectors x grows arbitrarily large for some iterations n This ensures that
the separation condition for a scrambled set lim sup

n 7→∞
∥T n(x− y)∥ > 0 is satisfied.

So,
lim sup
n 7→∞

∥T n(x− y)∥ > 0,

and
lim inf
n 7→∞

∥T n(x− y)∥ = 0

conditions are satisfied. Thus, T is Li–Yorke chaotic.

2. Chaos.
An operator T is chaotic if there exists a dense set of periodic points.
It is hypercyclic (there exists x ∈ ℓ2(Hn) such that {T n(x) : n ≥ 0} is dense in ℓ2(Hn).

For proving of we need find x whose iterates under T approximate any x ∈ ℓ2(Hn) and show
density of periodic points by solving T n(x) = x for suitable x ∈ X.

For x ∈ ℓ2(Hn) we define periodic sequences xk such that only finitely many coordinates
xk are nonzero. These sequences are in ℓ2(Hn) and are clearly periodic under T . The set of
such periodic points is dense in ℓ2(Hn) because any vector in ℓ2(Hn) can be approximated
arbitrarily closely by a vector with finitely many nonzero coordinates.

So, the operator T satisfies both conditions for Li–Yorke chaos that an uncountable
scrambled set S exists due to the oscillatory nature of norms under T n. The set of periodic
points is dense in ℓ2(Hn).

3. Frequent Hypercyclicity.
An operator T is frequently hypercyclic if there exists x ∈ ℓ2(Hn) such that for every

open set U ∈ ℓ2(Hn), the set {n ≥ 0 : T n(x) ∈ U} has positive lower density.
For proving this statement we need to note that weighted shifts, the growth of (ωn)

ensures the existence of frequently hypercyclic vectors x.
Construct x with nonzero components in Hn that balance the effect of weights.

3 Dynamic systems for modeling of security price.

In this section, we will consider two examples of dynamic systems in the securities market.
Let us begin with the definition of a discrete dynamic system.

Definition 2. A (discrete) dynamical system is a pair (X,T ) consisting of a metric space
X and a continuous map T : X → X.

Sometimes we will simply call T : X → X a dynamical system.

Example 1. (Effectiveness of securities).
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We assume to be given by the value Cn (security price) at discrete times n = 1, 2, . . . .

In a simple model the security price at time n+ 1 will only depend on the security price at
time n. The effectiveness of securities is then described by a law

Cn+1 = T (Cn), n = 1, 2, . . .

where T is suitable map. It follows that

Cn = (T ◦ · · · ◦ T )(C1) n = 1, 2, . . .

with n applicants of the map. Thus the behavior of the security price is completely deter-
mined by the initial price C1 and the map T.

Now we consider the proportional change of security price.
Let Cn be purchase price of the securities, Cn+1 be sale price of the securities and period

of time n = 1, 2, . . . .

We suppose that the value Cn of a price changes proportionally to its actual value, that
is follows the law

Cn+1 − Cn

Cn

= γ, n ≥ 1

where γ is effectiveness of security, γ > −1.
One may write this equivalently as

Cn+1 = (1 + γ)Cn

so that the corresponding dynamical system is given by

T : R+ 7→ R+, Tx = (1 + γ)x.

The orbit of x ∈ R+ can be calculated explicitly as

Orb(x, T ) = {(1 + γ)nx : n ≥ 0}.

Thus, the orbit tends to 0, x and ∞ for −1 < γ < 0, γ = 0 and γ > 0, respectively.
The orbit of x ∈ R+ under the map T (x) = (1+γ)x is not generally dense in R+ Instead,

the orbit describes specific behavior depending on the value of γ such that

- For γ > 0 the orbit grows unbounded as n 7→ ∞, and it is not dense in R+ because it
tends towards infinity.

- For γ = 0 the orbit remains constant Orb(x, T ) = {x}, which is a single point, so it is
not dense.

- For −1 < γ < 0 the orbit tends to 0, n 7→ ∞ and again, it is not dense because it
converges to a single point.



44 Novosad Z.H.

Example 2. (The change in behavior of security prices and dividends).
To consider the behavior of an individual security in the context of a dynamic system,

we represent it as a chaotic dynamic system in which the security price and dividends are
time-dependent variables.

Let us assume that at time t − 1 the purchase price of a security is Ct−1 and at time t

the security is sold at the price Ct. During the period t, accrued dividends Dt. Then the
rate of return Rt for the period t can be represented as

Rt =
Ct +Dt − Ct−1

Ct−1

.

This value reflects the return over one time period t, which takes into account both the
increase in the value of the security itself and the dividends received.

Let the prices Ct and dividends Dt change over time and their behavior depends on
previous values. Then we can describe them using a dynamic system, where the state at
each step is determined by the state vector Xt = (Ct, Dt), and the evolution of this system
over a time period is modeled by the operator T , which goes from state Xt−1 to Xt

Xt = T (Xt−1),

where the operator T determines the change in price and dividends as a result of the influence
of market factors.

To model the chaotic behavior of the system, we can choose the operator T so that
the orbit of the system is dense in the space of possible states. This can be done if the
operator T is nonlinear and depends on random factors that model market changes, such as
economical-financial indicators. For example

T (Xt−1) =

{
f(Ct−1, Dt−1, εt),

g(Ct−1, Dt−1, εt)

where f and g are nonlinear functions that take into account the interdependence of prices
and dividends, and εt is a random variable that adds stochastic market influence.

The addition of random parameters introduces stochasticity into the previously deter-
ministic model. These random parameters represent external market influences such as
economic shocks or financial news. This example demonstrates how these systems can be
extended to incorporate real-world randomness without losing the fundamental chaotic prop-
erties. Specifically, the random operator remains consistent with chaotic principles, as the
small perturbations caused by preserve the sensitivity to initial conditions and dense orbit
structure, thereby modeling real-world financial data more effectively.

Thus, this system acquires the properties of a chaotic dynamical system with a dense
orbit, since the values of Ct and Dt change depending on previous states and random influ-
ences. This approach allows modeling complex market dynamics and assessing the average
efficiency and risk of a security under uncertainty.

Let the price of a security at time t be denoted by Ct. We can assume that the price
dynamics are a function of previous prices, accrued dividends, trading volume, and other
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market factors. Then we will consider the sequence of values (Ct) as elements of the vector
space ℓ2.

Let T be a shift operator that acts on a sequence of prices (Ct) as follows

(TC)t = αCt−1 + βCt + γCt+1 + εt,

where

- α, β and γ are parameters that adjust the linear combination of prices at different
points in time,

- εt is a small random variable that takes into account the randomness of market factors.

The inclusion of the random element εt adds chaos to the system, and even a linear
operator with a shift can generate complex dynamics.

For an operator to be hypercyclic in the space ℓ2 the coefficients must contribute to the
operator’s orbits being dense in that space. One known way to ensure hypercyclicity of a
shift operator in the space ℓ2 is to choose coefficients that provide sufficient stretching and
shifting of the sequences of values Ct in space, as well as sensitivity to initial conditions.

Consider the operator T for sequences in ℓ2 of the following form

(TC)t = αCt−1 + βC + γCt+1 + εt,

where α, β, γ is the coefficients that we choose εt is a small random component.
For hypercyclicity in the space ℓ2 in particular for the shift operator, the following con-

ditions are important

1. Zero coefficient at Ct. It is important that the operator has no constant component
(i.e., no fixed value at Ct, as this can limit the dynamics of the operator. Therefore, we
set β = 0. This allows the operator to act as a “shift" by one position in the sequence.

2. Nonzero values of α and γ. The coefficients α and γ must be nonzero and have values
that do not converge to zero or a stable value. For example, if we choose α = 1 and
γ = 1 the operator will expand the orbit of the sequence in both directions.

3. A small random component εt. Adding random fluctuations εt depending on time t

provides sensitivity to initial conditions. This guarantees that the sequence can reach
different states in the space ℓ2 are bounded stochastic variables introduced to account
for minor unpredictable fluctuations in the financial markets. Practically, this means,
that by adding small random fluctuations, the system can explore a wider range of
possible states within the space. This enhances the model’s ability to capture rare or
extreme market events (exogenous shock) that deterministic models might overlook.

Thus, for a hypercyclic operator in the space ℓ2 we can choose the following values of the
coefficients

α = 1, β = 0, γ = 1.
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Then the operator will have the next form

(TC)t = Ct−1 + Ct+1 + εt

This configuration with a random perturbation εt will allow the operator to generate a
dense orbit in the space ℓ2, and will also provide sensitivity to initial conditions, which is a
necessary property for hypercyclicity.

To evaluate the norm of operator T in the space ℓ2 by the formula

∥T∥ = sup
C∈ℓ2,∥C∥=1

∥TC∥,

where ∥C∥ =

√√√√ ∞∑
t=1

|Ct|2 is the norm of the sequence C.

For the operator T defined by the following form

(TC)t = Ct−1 + Ct+1 + εt

the norm con be calculated by considering the contributions from the terms Ct−1 and Ct+1.

The random component εt is typically small and bounded, so its contribution to the norm
is negligible for estimation purposes.

Then

∥TC∥2 =
∞∑
t=1

|(TC)t|2 =
∞∑
t=1

|Ct−1 + Ct+1 + εt|2.

Expanding the square and ignoring higher-order terms of εt, we get

∥TC∥2 ≈
∞∑
t=1

(|Ct−1|2 + |Ct+1|2).

We use the shift properties of sequences in Hilbert space ℓ2

1)
∞∑
t=1

|Ct−1|2 =
∞∑
t=1

|Ct|2 = ∥C∥2 = 1;

2)
∞∑
t=1

|Ct+1|2 = ∥C∥2 = 1.

Thus
∥TC∥2 ≈ 2∥C∥2 = 2,

∥T∥ =
√
2.

We consider the classical Black-Scholes model [11]. This model is used to evaluate the
value of financial derivatives, such as options

C = S0N(d1)−Ke−rtN(d2),
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where C is price of the option, S0 is current price of the underlying asset, K is strike
price of the option, t is time to maturity, r is risk-free interest rate, N(d1) and N(d2) are
cumulative distribution functions of the standard normal distribution. The parameters d1

and d2 are defined as d1 =
ln(

S0
X

)+(r+σ2

2
)t

σ
√
t

, d2 = d1 − σ
√
t, where σ represents the volatility of

the underlying asset.
The Black-Scholes model is primarily used to price financial options and provides a

theoretical framework for understanding the relationship between key financial variables.
This model is based on the assumption that the price of the underlying asset. follows
a geometric Brownian motion. Utilizes stochastic differential equations to describe price
dynamics. Designed to price derivatives, specifically European options, rather than modeling
the dynamics of the asset price itself. Focuses on determining the fair value of options
based on risk-free rates, volatility, and time to maturity. The dynamics model with a shift
operator views the price sequence Ct as elements of the vector space ℓ2, emphasizing time
series representation. Assumes that prices are influenced by a linear combination of past,
current, and future prices, with parameters α, β, γ determining the weights. Includes a
random component εt to account for market randomness. Primarily focuses on modeling the
asset price’s behavior directly rather than pricing derivatives. The Black-Scholes model is
the best suited for pricing derivatives like European options or conducting risk analysis in
derivative markets. Model with a shift operator is flexible in incorporating market-specific
factors. Ideal for studying the behavior of asset prices, identifying trends and forecasting
future price movements.

Conclusions In this paper, we have explored the chaotic properties of weighted shift
operators on (non-separable) Hilbert spaces. Specifically, we investigated conditions un-
der which these operators exhibit Li-Yorke chaos. Our study examined various structural
aspects of the operators that contribute to their chaotic behavior, emphasizing the inter-
play between the weights and the underlying Hilbert space. Furthermore, we constructed a
chaotic dynamical system to model the behavior of security prices. The study bridges the
gap between abstract operator theory and applied financial modeling. The chaotic properties
of weighted shifts effectively model irregular price behaviors in financial securities. Introduc-
ing stochastic parameters aligns the model with real-world data without compromising its
chaotic structure. This work provides new insights into the relationship between operator
theory and dynamic systems, offering a foundation for future research in both mathematical
and applied contexts.
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У статтi дослiджуються хаотичнi властивостi операторiв зваженого зсуву, якi дiють на
(несепарабельному) гiльбертовому просторi, що є одним iз важливих об’єктiв у теорiї ди-
намiчних систем. Особливу увагу придiлено аналiзу умов, за яких такi оператори можуть
бути топологiчно транзитивними, гiперциклiчними i часто гiперциклiчними. Крiм того,
дослiджено феномен хаосу Лi-Йорка, який передбачає iснування незлiченних множин то-
чок iз хаотичною поведiнкою орбiт. Це дозволяє глибше зрозумiти природу динамiчних
систем, що характеризуються нерегулярнiстю i непередбачуванiстю.

У статтi висвiтлюються, як рiзнi властивостi операторiв зваженого зсуву впливають на
їхню динамiчну поведiнку, розглядаючи взаємодiю мiж вагами оператора та структурою
базового простору. Для iлюстрацiї запропоновано два приклади динамiчних систем, якi
можна використовувати для моделювання поведiнки цiн на фiнансових ринках. Перший
приклад базується на простiй лiнiйнiй моделi, де змiна цiни пропорцiйна поточному зна-
ченню. Побудована орбiта в цьому прикладi в загальному випадку не є щiльною. У дру-
гому прикладi моделюється бiльш складна система, яка враховує залежнiсть змiни цiни
вiд попереднiх значень, дивiдендiв та випадкових факторiв. У цьому контекстi оператор
зваженого зсуву вiдiграє ключову роль, дозволяючи створити гiперциклiчну динамiчну
систему, здатну адекватно вiдображати хаотичну поведiнку цiн.

Застосування теорiї хаосу до фiнансових ринкiв є особливо актуальним, оскiльки це
дозволяє враховувати складну динамiку, нелiнiйнiсть та вплив випадкових факторiв на
цiновi змiни. Використання таких моделей може допомогти iнвесторам краще розумiти
природу ризикiв, знаходити можливостi для iнвестицiй та приймати бiльш обґрунтованi
рiшення в умовах невизначеностi. Отриманi результати мають також важливе значення
для широкого спектра наукових дослiджень у галузях математики, фiзики та економiки,
де вивчення хаотичних властивостей систем є центральним для розумiння їхньої поведiн-
ки.


