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COEFFICIENT INVERSE PROBLEM FOR PARABOLIC EQUATION

WITH STRONG POWER DEGENERATION

In a domain with known boundaries it is investigated an inverse problem for a parabolic
equation with strong degeneration. The degeneration of the equation is caused by power
function with respect to time variable at the higher order derivative of unknown function. It is
known that the minor coefficient of the equation is a polynomial of the first order for the space
variable with two unknown functions with respect to time. The boundary conditions of the
second kind and the means of heat moments as overdetermination conditions are given. We
establish conditions of existence and uniqueness of the classical solution to the named inverse
problem.
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Introduction

The theory of inverse problems for parabolic equations is actively developing in recent
decades due to its practical application. Unlike direct problems, coefficient inverse problems
arise when it is necessary to determine some parameters of the equation in addition to
its solution. One of the first papers that studied the inverse problem of determination of
the time-dependent coefficient of thermal conductivity in a heat equation is the paper by
B.F. Jones [17]. The conditions of existence and uniqueness of the classical solution to this
problem are established in it applying the Schauder Fixed Point Theorem. The coefficient
inverse problems for parabolic equations in a domain with fixed boundaries with different
boundary and overdetermination conditions are well studied for today (see, for example,
[5, 1, 18, 7, 9, 4, 24, 21, 19, 20] and bibliography in them). Note that among these papers
there are some with unknown time-dependent major coefficients of the parabolic equation
[5, 1, 18, 7, 9], and time-dependent [4, 24, 21] or space-dependent [19, 20] minor coefficients
in it.
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When describing such processes as the movement of liquids and gases in a porous medium,
desalination of sea water, the behavior of financial markets, population dynamics, problems
arise for parabolic equations with degenerations. Inverse problems for determination of the
function a = a(t), a(t) > 0, t ∈ [0, T ] in parabolic equation

ut = a(t)tβuxx + b(x, t)ux + c(x, t)u+ f(x, t)

were investigated in [23, 16] for both cases of weak (0 < β < 1) and strong (β ≥ 1)
degeneration respectively. Coefficient inverse problems for degenerate parabolic equations
were studied in [10, 11, 12, 8, 22, 6, 3]. Note that among them there are problems of
identification of the time-dependent minor coefficient in equations with degenerations with
respect to time variable [10, 11, 12, 8] and space variables [22, 6], and the problem with
unknown space-dependent coefficient in the degenerate equation with respect to this variable
[3]. The problems of determining the coefficients in the degenerate parabolic equations, which
depend on both time and space variables, remain uninvestigated for today.

In this paper coefficient inverse problem for parabolic equation with degeneration caused
by time-dependent power function at the higher order derivative is investigated. It is known
that the minor coefficient of the equation is a a polynomial of the first order for the space
variable with two unknown functions with respect to time. The boundary conditions of the
second kind and the means of heat moments as overdetermination conditions are given. The
case of strong degeneration is studied. The conditions of existence and uniqueness of the
classical solution to the named problem are established. Note that the case of weak degen-
eration for the named problem is investigated in [13, 2] and the case of strong degeneration
with the Dirichlet boundary condition in [14].

1 The statement of the problem and the main results

In a domain QT = {(x, t) : 0 < x < l, 0 < t < T} we consider the coefficient inverse
problem for the degenerate parabolic equation:

wt = a(t)tβwxx + (b1(t)x+ b2(t))wx + c(x, t)w + f(x, t), (1)

w(x, 0) = φ(x), x ∈ [0, l], (2)

wx(0, t) = µ1(t), wx(l, t) = µ2(t), t ∈ [0, T ], (3)
l∫

0

w(x, t)dx = µ3(t), t ∈ [0, T ], (4)

l∫
0

xw(x, t)dx = µ4(t), t ∈ [0, T ]. (5)

It is known that a(t) > 0, t ∈ [0, T ] and the degeneration of the equation is caused by the
power function tβ, where β ≥ 1 (the case of strong degeneration). The coefficient at the
first derivative of unknown function w = w(x, t) in the equation (1) is a polynomial of the
first order for the space variable with two unknown functions with respect to time variable
b1 = b1(t), b2 = b2(t).
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Definition 1. A triplet of functions (b1, b2, w) ∈ (C[0, T0])
2 × C2,1(QT0) ∩ C1,0(QT0

),
|b1(t)| ≤ M1t

η, |b2(t)| ≤ M2t
η, where η = min{γ, β}, γ > β−1

2
is an arbitrary number,

M1,M2 are the positive constants defined by the input data, which satisfies the equation (1)
and conditions (2)-(5) point by point for all t ≤ T0 is called the local solution to the problem
(1)-(5) at T0 < T and the global solution to this problem at T0 = T .

The main result of the paper is contained in the following Theorem.

Theorem. Suppose that the assumptions

A1) φ ∈ C3[0, l], a ∈ C[0, T ], c, f ∈ C1,0(QT ), µi ∈ C1[0, T ], i = {1, 2, 3, 4};

A2) a(t) > 0, t ∈ [0, T ], φ′(x) > 0, x ∈ [0, l];

A3) |f(x, t)| + |fx(x, t)| ≤ A1t
γ, |c(x, t)| + |cx(x, t)| ≤ A2t

γ, (x, t) ∈ QT , |µ′
3(t)| ≤ A3t

γ,

|µ′
4(t)| ≤ A4t

γ, t ∈ [0, T ], where Ai, i = 1, 2, 3, 4 are arbitrary positive constants;

A4) µ1(0) = φ′(0), µ2(0) = φ′(l),
l∫
0

φ(x)dx = µ3(0),
l∫
0

xφ(x)dx = µ4(0)

hold. Then there exists the unique local solution to the problem (1)-(5).

2 Existence of the solution

To prove the existence of the solution to the problem (1)-(5) we apply the Schauder Fixed
Point Theorem. For this purpose, using the apparatus of Green’s functions of boundary value
problems for the heat equation, the inverse problem (1)-(5) is reduced to an equivalent system
of equations and conditions of Schauder’s theorem are ensured for it.

In the problem (1)-(5) we make the substitution

w(x, t) = w̃(x, t) + w0(x, t), (6)

where the function w0(x, t) satisfies the given nonhomogeneous initial and boundary condi-
tions (2), (3). It is easy to verify by direct inspection, that the function w0(x, t) is defined
by the formula

w0(x, t) = φ(x) + x(µ1(t)− µ1(0)) +
x2

2l

(
µ2(t)− µ1(t)− µ2(0) + µ1(0)

)
. (7)

As a result of the substitution (6) we obtain the nonhomogeneous equation with respect to
the function w̃ = w̃(x, t) with homogeneous initial and boundary conditions:

w̃t = a(t)tβw̃xx + (b1(t)x+ b2(t))w̃x + c(x, t)w̃ + f(x, t)− xµ′
1(t)−

x2

2l
(µ′

2(t)− µ′
1(t))

+ (b1(t)x+ b2(t))

(
φ′(x) + µ1(t)− µ1(0) +

x

l

(
µ2(t)− µ1(t)− µ2(0) + µ1(0)

))
+ c(x, t)

(
φ(x) + x(µ1(t)− µ1(0)) +

x2

2l

(
µ2(t)− µ1(t)− µ2(0) + µ1(0)

))
+ a(t)tβ

(
φ′′(x) + µ2(t)− µ1(t)− µ2(0) + µ1(0)

)
,
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w̃(x, 0) = 0, x ∈ [0, l], (8)

w̃x(0, t) = w̃x(l, t) = 0, t ∈ [0, T ]. (9)

Applying the Green’s function G2 = G2(x, t, ξ, τ) of the second initial-boundary problem
for the heat equation

wt = a(t)tβwxx, (10)

we reduce the problem (2)-(9) to the equivalent integro-differential equation

w̃(x, t) =

t∫
0

l∫
0

G2(x, t, ξ, τ)

((
b1(τ)ξ + b2(τ)

)
w̃ξ(ξ, τ) + c(ξ, τ)w̃(ξ, τ) + f(ξ, τ)

+ a(τ)τβ
(
φ′′(ξ) + µ2(τ)− µ1(τ)− µ2(0) + µ1(0)

)
− ξµ′

1(τ)−
ξ2

2l

(
µ′
2(τ)− µ′

1(τ)
)

+ (b1(τ)ξ + b2(τ))

(
φ′(ξ) + µ1(τ)− µ2(0) +

ξ

l

(
µ2(τ)− µ1(τ)− µ2(0) + µ1(0)

))
+ c(ξ, τ)

(
φ(ξ) + ξ(µ1(τ)− µ1(0)) +

ξ2

2l
(µ2(τ)− µ1(τ)− µ2(0) + µ1(0))

))
dξ dτ. (11)

The Green’s functions of the first (k = 1) and the second (k = 2) initial-boundary
problems for the equation (10) are defined by the formulas [15, p. 12]

Gk(x, t, ξ, τ) =
1

2
√
π(θ(t)− θ(τ))

+∞∑
n=−∞

(
exp

(
−(x− ξ + 2nl)2

4(θ(t)− θ(τ))

)
+ (−1)k exp

(
−(x+ ξ + 2nl)2

4(θ(t)− θ(τ))

))
, k = 1, 2, (12)

with θ(t) =

t∫
0

a(τ)τβdτ . The estimates

l∫
0

|Gk(x, t, ξ, τ)|dξ ≤ 1,

l∫
0

|Gkx(x, t, ξ, τ)| dξ ≤ C1√
θ(t)− θ(τ)

, k = 1, 2, (13)

hold for them ([15, p. 12]), where C1 is an arbitrary positive constant.
Put v(x, t) ≡ wx(x, t), u(x, t) ≡ wxx(x, t). Since G1(0, t, ξ, τ) = G1(l, t, ξ, τ) = 0,

G2x = −G1ξ, then, taking into account (6), (11), we replace the problem (1)-(3) by the
system of equivalent integral equations

w(x, t) = w0(x, t) (14)

+

t∫
0

l∫
0

G2(x, t, ξ, τ)

(
(b1(τ)ξ + b2(τ))v(ξ, τ) + c(ξ, τ)w(ξ, τ) + f(ξ, τ)− ξµ′

1(τ)

− ξ2(µ′
2(τ)− µ′

1(τ))

2l
+ a(τ)τβ

(
φ′′(ξ) +

µ2(τ)− µ1(τ)− µ2(0) + µ1(0)

l

))
dξ dτ,
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v(x, t) = w0x(x, t) (15)

+

t∫
0

l∫
0

G1(x, t, ξ, τ)

(
(b1(τ)ξ + b2(τ))u(ξ, τ) + (b1(τ) + c(ξ, τ))v(ξ, τ)

+ cξ(ξ, τ)w(ξ, τ) + fξ(ξ, τ)− µ′
1(τ)−

ξ(µ′
2(τ)− µ′

1(τ))

l
+ a(τ)τβφ′′′(ξ)

)
dξ dτ,

u(x, t) = w0xx(x, t) (16)

+

t∫
0

l∫
0

G1x(x, t, ξ, τ)

(
(b1(τ)ξ + b2(τ))u(ξ, τ) + (b1(τ) + c(ξ, τ))v(ξ, τ)

+ cξ(ξ, τ)w(ξ, τ) + fξ(ξ, τ)− µ′
1(τ)−

ξ(µ′
2(τ)− µ′

1(τ))

l
+ a(τ)τβφ′′′(ξ)

)
dξ dτ.

The equations with respect to functions b1 = b1(t), b2 = b2(t) we find multiplying (1) by
xk, k = 0, 1 alternately and integrating them with respect to space variable from 0 to l:

b1(t) = △−1

((
µ′
3(t)− a(t)tβ(µ2(t)− µ1(t))−

l∫
0

(c(x, t)w(x, t) + f(x, t))dx

)

×
(
lw(l, t)− µ3(t)

)
−

(
µ′
4(t)− a(t)tβ(lµ2(t)− w(l, t) + w(0, t))

−
l∫

0

x(c(x, t)w(x, t) + f(x, t))dx

)(
w(l, t)− w(0, t)

))
, (17)

b2(t) = △−1

((
µ′
4(t)− a(t)tβ(lµ2(t)− w(l, t) + w(0, t))−

l∫
0

x(c(x, t)w(x, t)

+ f(x, t))dx

)(
lw(l, t)− µ3(t)

)
−

(
µ′
3(t)− a(t)tβ(µ2(t)− µ1(t))

−
l∫

0

(c(x, t)w(x, t) + f(x, t))dx

)(
l2w(l, t)− 2µ4(t)

))
, (18)

where
△(t) = (lw(l, t)− µ3(t))

2 − (w(l, t)− w(0, t))(l2w(l, t)− 2µ4(t)). (19)

Let us establish the behavior of the integrals on the right hand sides of the formulas (14)-
(16). Denote W (t) = max

(x,τ)∈[0,l]×[0,t]
|w(x, τ)|, V (t) = max

(x,τ)∈[0,l]×[0,t]
|v(x, τ)|,

U(t) = max
(x,τ)∈[0,l]×[0,t]

|u(x, τ)|, t ∈ [0, T ]. Using condition (A3) of the Theorem and (13),

from the equations (14)-(18) we obtain

W (t) ≤ C2 + C3

t∫
0

(
(|b1(τ)|+ |b2(τ)|)V (τ) + τ γW (τ)

)
dτ, t ∈ [0, T ], (20)
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V (t) ≤ C4 (21)

+ C5

t∫
0

(
(|b1(τ)|+ |b2(τ)|)U(τ) + (|b1(τ)|+ τ γ)V (τ) + τ γW (τ)

)
dτ, t ∈ [0, T ],

U(t) ≤ C6

t
β−1
2

(22)

+ C7

t∫
0

(|b1(τ)|+ |b2(τ)|)U(τ) + (|b1(τ)|+ τ γ)V (τ) + τ γW (τ)√
tβ+1 − τβ+1

dτ, t ∈ (0, T ],

|b1(t)| ≤ C8

(
tγ + tβ

)
+ C9

(
tγ + tβ

)
W (t) + C10

(
tγ + tβ

)
W 2(t), t ∈ [0, T ], (23)

|b2(t)| ≤ C11

(
tγ + tβ

)
+ C12

(
tγ + tβ

)
W (t) + C13

(
tγ + tβ

)
W 2(t), t ∈ [0, T ]. (24)

We conclude from the (20)-(24) that the functions w = w(x, t), v(x, t) are continuous in
QT , u = u(x, t) has the singularity t

1−β
2 at t → 0 and the functions b1 = b1(t), b2 = b2(t)

tend to zero when t → 0 as the power function tη with η = min{γ, β}. Besides, we note that
the integrals on the right hand sides of (14), (15) tend to zero when t → 0. It yields that
the sum of all the summands of (15) except the first term of the function w0x = w0x(x, t), is
infinitely small when t → 0. It means that we can indicate such number t1, 0 < t1 ≤ T that∣∣∣∣µ1(t)− µ1(0) +

x

l

(
µ2(t)− µ1(t)− µ2(0) + µ1(0)

)

+

t∫
0

l∫
0

G1(x, t, ξ, τ)

(
(b1(τ)ξ + b2(τ))u(ξ, τ) + (b1(τ) + c(ξ, τ))v(ξ, τ)

+ cξ(ξ, τ)w(ξ, τ) + fξ(ξ, τ)− µ′
1(τ)−

ξ(µ′
2(τ)− µ′

1(τ))

l
+ a(τ)τβφ′′′(ξ)

)
dξ dτ

∣∣∣∣
≤

min
[0,l]

φ′(x)

2
, (x, t) ∈ Qt1 . (25)

As a result from the equation (15) we get

v(x, t) ≥
min
[0,l]

φ′(x)

2
> 0, (x, t) ∈ Qt1 . (26)

Since we can rewrite △(t) in a view

△(t) =

( l∫
0

xv(x, t)dx

)2

−
l∫

0

v(x, t)dx

l∫
0

x2v(x, t)dx

= −1

2

l∫
0

l∫
0

(y2 − y1)
2v(y1, t)v(y2, t)dy1dy2, (27)

then

min
t∈[0,T ]

|△(t)| ≥
l4
(
min
[0,l]

φ′(x)

)2

48
> 0, (x, t) ∈ Qt1 , (28)
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that is the condition (А2) of the Theorem ensures the difference from the zero of the denom-
inator △(t) on the segment [0, t1].

Thus, the problem (1)-(5) is reduced to the system of equations (14)-(18). Under the
solution to this system we will understand such set of the functions (w, v, u, b1, b2), that
(w, v, u, b1, b2) ∈ (C(Qt1))

2×C([0, l]× (0, t1])× (C[0, t1])
2, |b1(t)| ≤ M1t

η, |b2(t)| ≤ M2t
η and

satisfy (14)-(18).
The problem (1)-(5) and the system of equations (14)-(18) are equivalent in the following

sense: if a triplet of finctions (b1, b2, w) is a local solution to the problem (1)-(5) in Qt1 ,
then (w, v, u, b1, b2) is a solution to the system of equations (14)-(18) and contrary. The
first part of this claim emerges from the way of reduction of system of these equations.
We prove that if (w, v, u, b1, b2) ∈ (C(Qt1))

2 × C([0, l]× (0, t1])× (C[0, t1])
2, |b1(t)| ≤ M1t

η,
|b2(t)| ≤ M2t

η is a solution to the system of the equations (14)-(18), then (b1, b2, w) belong to
(C[0, t1])

2×C2,1(Qt1)∩C1,0(Qt1), and satisfy the conditions (1)-(5) and estimations |b1(t)| ≤
M1t

η, |b2(t)| ≤ M2t
η.

Let us differentiate (15) with respect to x. The right hand side of the expression

vx(x, t) = w0xx(x, t) +

t∫
0

l∫
0

G1x(x, t, ξ, τ)

(
(b1(τ)ξ + b2(τ))u(ξ, τ) + (b1(τ) + c(ξ, τ))v(ξ, τ)

+ cξ(ξ, τ)w(ξ, τ) + fξ(ξ, τ)− µ′
1(τ)−

ξ(µ′
2(τ)− µ′

1(τ))

l
+ a(τ)τβφ′′′(ξ)

)
dξ dτ

and the equality (16) coincide, so u(x, t) ≡ vx(x, t), (x, t) ∈ [0, l]× (0, t1]. Then we differenti-
ate the equality (14) with respect to x. Using the known properties of the Green’s functions
we deduce

wx(x, t) = w0x(x, t) +

t∫
0

l∫
0

G1(x, t, ξ, τ)

(
(b1(τ)ξ + b2(τ))vξ(ξ, τ) + b1(τ)v(ξ, τ) + c(ξ, τ)

× wξ(ξ, τ) + cξ(ξ, τ)w(ξ, τ) + fξ(ξ, τ)− µ′
1(τ)−

ξ(µ′
2(τ)− µ′

1(τ))

l
+ a(τ)τβφ′′′(ξ)

)
dξ dτ.

Subtracting the corresponding parts of the obtained equality and (15), we obtain the homoge-
neous integral Volterra equation of second kind

wx(x, t)− v(x, t) =

t∫
0

l∫
0

G1(x, t, ξ, τ)c(ξ, τ)
(
wξ(ξ, τ)− v(ξ, τ)

)
dξ dτ.

In a virtue of (13) and uniqueness of the solution to these equations it yields that
v(x, t) ≡ wx(x, t), (x, t) ∈ [0, l] × (0, t1]. Furthermore, taking into account the behavior of
the functions b1 = b1(t), b2 = b2(t), v(x, t) we can state that the products bi(t)v(x, t), i = 1, 2

are continuous in a rectangle [0, l] × [0, t1]. Then, considering the equation (14) as integro-
differential one with respect to w = w(x, t), we can assert that w ∈ C2,1(Qt1) ∩ C1,0(Qt1)

and satisfies (1)-(3).
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We multiply the equality (17) by lw(l, t)−µ3(t) and (18) by w(l, t)−w(0, t) respectively.
Summing up the obtained equalities, we find

b1(t)(lw(l, t)− µ3(t)) + b2(t)(w(l, t)− w(0, t)) = µ′
3(t)− a(t)tβ(µ2(t)− µ1(t))

−
l∫

0

(c(x, t)w(x, t) + f(x, t))dx.

Using (1)-(3), this equality we rewrite in the form

b1(t)

( l∫
0

w(x, t)dx− µ3(t)

)
= −

( l∫
0

wt(x, t)dx− µ′
3(t)

)
.

Put z(t) ≡
l∫
0

w(x, t)dx − µ3(t). Then z′(t) = −b1(t)z(t), and respectively

z(t) = z(0)e
−

t∫
0

b1(τ)dτ
. Since z(0) = 0 according to the condition (A4) of the Theorem,

so z(t) ≡ 0, that is the condition (4) is fulfilled.
As a similar way we multiply the equation (17) by l2w(l, t)−2µ4(t), and (18) by lw(l, t)−

µ3(t). After summing up we find

b1(t)(l
2w(l, t)− 2µ4(t)) + b2(t)(lw(l, t)− µ3(t)) = µ′

4(t)− a(t)tβ(lµ2(t)

− w(l, t) + w(0, t))−
l∫

0

x(c(x, t)w(x, t) + f(x, t))dx.

Then the compatibility condition (A4) of the Theorem yields (5). It means that the equiv-
alence of the inverse problem (1)-(5) and the system of equations (14)-(18) is proved.

Denote p1(t) = b1(t)t
−η, p2(t) = b2(t)t

−η, ũ(x, t) = t
β−1
2 u(x, t). The system of equations

(14)-(18) we represent in the form

w(x, t) = w0(x, t) (29)

+

t∫
0

l∫
0

G2(x, t, ξ, τ)

(
(p1(τ)ξ + p2(τ))τ

ηv(ξ, τ) + c(ξ, τ)w(ξ, τ) + f(ξ, τ)− ξµ′
1(τ)

− ξ2(µ′
2(τ)− µ′

1(τ))

2l
+ a(τ)τβ

(
φ′′(ξ) +

µ2(τ)− µ1(τ)− µ2(0) + µ1(0)

l

))
dξ dτ,

v(x, t) = w0x(x, t) (30)

+

t∫
0

l∫
0

G1(x, t, ξ, τ)

(
(p1(τ)ξ + p2(τ))τ

η−β−1
2 ũ(ξ, τ) + (p1(τ)τ

η + c(ξ, τ))v(ξ, τ)

+ cξ(ξ, τ)w(ξ, τ) + fξ(ξ, τ)− µ′
1(τ)−

ξ(µ′
2(τ)− µ′

1(τ))

l
+ a(τ)τβφ′′′(ξ)

)
dξ dτ,

ũ(x, t) = w0xx(x, t) (31)
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+ t
β−1
2

t∫
0

l∫
0

G1x(x, t, ξ, τ)

(
(p1(τ)ξ + p2(τ))τ

η−β−1
2 ũ(ξ, τ) + (p1(τ)τ

η + c(ξ, τ))v(ξ, τ)

+ cξ(ξ, τ)w(ξ, τ) + fξ(ξ, τ)− µ′
1(τ)−

ξ(µ′
2(τ)− µ′

1(τ))

l
+ a(τ)τβφ′′′(ξ)

)
dξ dτ,

p1(t) = △−1τ−η

((
µ′
3(t)− a(t)tβ(µ2(t)− µ1(t))−

l∫
0

(c(x, t)w(x, t) + f(x, t))dx

)

×
(
lw(l, t)− µ3(t)

)
−

(
µ′
4(t)− a(t)tβ(lµ2(t)− w(l, t) + w(0, t))

−
l∫

0

x(c(x, t)w(x, t) + f(x, t))dx

)(
w(l, t)− w(0, t)

))
, (32)

p2(t) = △−1τ−η

((
µ′
4(t)− a(t)tβ(lµ2(t)− w(l, t) + w(0, t))−

l∫
0

x(c(x, t)w(x, t)

+ f(x, t))dx

)(
lw(l, t)− µ3(t)

)
−

(
µ′
3(t)− a(t)tβ(µ2(t)− µ1(t))

−
l∫

0

(c(x, t)w(x, t) + f(x, t))dx

)(
l2w(l, t)− 2µ4(t)

))
, (33)

where △(t) is defined by the formula (19). Note, that this system is considered in Qt1 , so
the difference from zero of the denominators in the formulas (32), (33) is argued in (28).

We represent the system of equations (29)-(33) as an operator equation

ω = Pω, (34)

where ω = (w, v, ũ, p1, p2) and the operator P = (P1, P2, P3, P4, P5) is defined y the right
hand sides of equations (29)-(33) respectively.

Assume that |w(x, t)| ≤ M3, 0 < M4 ≤ v(x, t) ≤ M5, |ũ(x, t)| ≤ M6, (x, t) ∈ Qt1 ,

where M3,M4,M5,M6 are some positive constants. We will define them below. Using these
estimates and (28) in (32)-(33), we find

|P4ω| ≤
C14(t

γ−η + tβ−η)(1 +M3 +M2
3 )

min
t∈[0,t1]

|△(t)|
≡ M1, t ∈ [0, t1], (35)

|P5ω| ≤
C15(t

γ−η + tβ−η)(1 +M3 +M2
3 )

min
t∈[0,t1]

|△(t)|
≡ M2, t ∈ [0, t1], (36)

where the numbers C14, C15 are determined by the input data.
Let us consider the equations (29)-(31). Taking into account (35), (36), we obtain

|P1ω| ≤
∣∣∣∣

t∫
0

l∫
0

G2(x, t, ξ, τ)

(
(M1l +M2)t

ηM5 + max
(x,t)∈Qt1

|c(ξ, τ)|M3
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+ max
(ξ,τ)∈Qt1

∣∣∣∣f(ξ, τ)− ξµ′
1(τ) + a(τ)τβ

(
φ′′(ξ) +

µ2(τ)− µ1(τ)− µ2(0) + µ1(0)

l

)
− ξ2(µ′

2(τ)− µ′
1(τ))

2l

∣∣∣∣) dξ dτ

∣∣∣∣+ max
(x,t)∈Qt1

|w0(x, t)|

≤ C16t
η+1 + C17t

γ+1 + C18t+ max
(x,t)∈Qt1

|w0(x, t)|, (37)

P2ω ≥ min
x∈[0,l]

φ′(x) + min
(x,t)∈Qt1

∣∣∣∣µ1(t)− µ1(0) +
x

l

(
µ2(t)− µ1(t)− µ2(0) + µ1(0)

)

+

t∫
0

l∫
0

G1(x, t, ξ, τ)

(
(p1(τ)ξ + p2(τ))τ

η−β−1
2 ũ(ξ, τ) + (p1(τ)τ

η + c(ξ, τ))v(ξ, τ)

+ cξ(ξ, τ)w(ξ, τ) + fξ(ξ, τ)− µ′
1(τ)−

ξ(µ′
2(τ)− µ′

1(τ))

l
+ a(τ)τβφ′′′(ξ)

)
dξ dτ

∣∣∣∣, (38)

P2ω ≤ max
x∈[0,l]

φ′(x) + max
(x,t)∈Qt1

∣∣∣∣µ1(t)− µ1(0) +
x

l

(
µ2(t)− µ1(t)− µ2(0) + µ1(0)

)

+

t∫
0

l∫
0

G1(x, t, ξ, τ)

(
(p1(τ)ξ + p2(τ))τ

η−β−1
2 ũ(ξ, τ) + (p1(τ)τ

η + c(ξ, τ))v(ξ, τ)

+ cξ(ξ, τ)w(ξ, τ) + fξ(ξ, τ)− µ′
1(τ)−

ξ(µ′
2(τ)− µ′

1(τ))

l
+ a(τ)τβφ′′′(ξ)

)
dξ dτ

∣∣∣∣, (39)

|P3ω| ≤
∣∣∣∣tβ−1

2

t∫
0

l∫
0

G1x(x, t, ξ, τ)

(
(M1l +M2)t

η−β−1
2 M6 +

(
M1τ

η + max
(x,t)∈Qt1

|c(ξ, τ)|
)
M5

+ max
(x,t)∈Qt1

|cξ(ξ, τ)|M3 + max
(x,t)∈Qt1

∣∣∣∣f(ξ, τ)− µ′
1(τ)−

ξ

l
(µ′

2(τ)− µ′
1(τ))

+ a(τ)τβφ′′(ξ)

∣∣∣∣) dξ dτ

∣∣∣∣+ max
(x,t)∈Qt1

∣∣∣∣tβ−1
2 w0xx(x, t)

∣∣∣∣
≤ C19t

η−β−1
2 + C20t

γ + C21t
η + C22 + max

(x,t)∈Qt1

∣∣∣∣tβ−1
2 w0xx(x, t)

∣∣∣∣. (40)

Now we estimate the expresion

∣∣∣∣
t∫

0

l∫
0

G1(x, t, ξ, τ)

(
(p1(τ)ξ + p2(τ))τ

η−β−1
2 ũ(ξ, τ) + (p1(τ)τ

η + c(ξ, τ))v(ξ, τ)

+ cξ(ξ, τ)w(ξ, τ) + fξ(ξ, τ)− µ′
1(τ)−

ξ(µ′
2(τ)− µ′

1(τ))

l
+ a(τ)τβφ′′′(ξ)

)
dξ dτ

+ µ1(t)− µ1(0) +
x

l

(
µ2(t)− µ1(t)− µ2(0) + µ1(0)

)∣∣∣∣
≤

∣∣∣∣
t∫

0

l∫
0

G1(x, t, ξ, τ)

(
(M1l +M2)t

η−β−1
2 M6 +

(
M1τ

η + max
(x,t)∈Qt1

|c(ξ, τ)|
)
M5
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+ max
(x,t)∈Qt1

∣∣∣∣cξ(ξ, τ)|M3 + max
(x,t)∈Qt1

∣∣∣∣f(ξ, τ)− µ′
1(τ)−

ξ

l
(µ′

2(τ)− µ′
1(τ))

+ a(τ)τβφ′′(ξ)

∣∣∣∣) dξ dτ

∣∣∣∣+ max
(x,t)∈Qt1

∣∣∣∣xl
(
µ2(t)− µ1(t)− µ2(0) + µ1(0)

)∣∣∣∣
+ max

t∈[0,t1]

∣∣µ1(t)− µ1(0)
∣∣ ≤ C23t

η−β−3
2 + C24t

η+1 + C25t
γ+1 + C26t. (41)

Choose the constants M3 −M6 such that

M3 > max
(x,t)∈Qt1

|w0(x, t)|, M4 =
1

2
min
x∈[0,l]

φ′(x), M5 = max
x∈[0,l]

φ′(x) +
1

2
min
x∈[0,l]

φ′(x),

M6 > C22 + max
(x,t)∈Qt1

∣∣∣∣tβ−1
2 w0xx(x, t)

∣∣∣∣.
Fix the number T0, 0 < T0 ≤ t1 ia a such way

C16T
η+1
0 + C17T

γ+1
0 + C18T0 + max

(x,t)∈Qt1

|w0(x, t)| ≤ M3, (42)

C19T
η−β−1

2
0 + C20T

γ
0 + C21T

η
0 + C22 + max

(x,t)∈Qt1

∣∣∣∣tβ−1
2 w0xx(x, t)

∣∣∣∣ ≤ M6, (43)

C23T
η−β−3

2
0 + C24T

η+1
0 + C25T

γ+1
0 + C26T0 ≤

1

2
min
x∈[0,l]

φ′(x). (44)

As a result we obtain

|P1ω| ≤ M3, 0 < M4 ≤ P2ω ≤ M5, |P3ω| ≤ M6, (x, t) ∈ QT0
. (45)

We consider the operator equation (34) on a convex closed set
N ≡ {(w, v, ũ, p1, p2) ∈ (C(QT0

))3 × (C[0, T0])
2 : |w(x, t)| ≤ M3, 0 < M4 ≤ v(x, t) ≤

M5, |ũ(x, t)| ≤ M6, |p1(t)| ≤ M1, |p2(t)| ≤ M2} in the Banach space B ≡ (C(QT0
))3 ×

(C[0, T0])
2. The estimates (35), (36), (45) guarantee that the operator P maps the set N

into itself. To prove the compactness of the operator P on the set N we apply the Arzela-
Ascoli theorem. For this aim we have to show that the set PN is uniformly bounded and
equicontinuous. The latter means that

∀ε ∃ϱ : |Pω(x2, t2)− Pω(x1, t1)| < ε

for all |x2 − x1| < ϱ, |t2 − t1| < ϱ, ω(x, t) ∈ N .
Let us consider the operator P4ω(t). Using (32) we represent it in the form

P4ω =
F (t)

△(t)tδ
,

where △(t) is defined by (19) and

F (t) ≡
(
µ′
3(t)− a(t)tβ(µ2(t)− µ1(t))−

l∫
0

(c(x, t)w(x, t) + f(x, t))dx

)
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×
(
lw(l, t)− µ3(t)

)
−

(
µ′
4(t)− a(t)tβ(lµ2(t)− w(l, t) + w(0, t))

−
l∫

0

x(c(x, t)w(x, t) + f(x, t))dx

)(
w(l, t)− w(0, t)

)
.

Taking into account the conditions of the Theorem and the definition of the set N we deduce
that F (t) is continuous on [0, T0] and F (t) ≤ C27t

δ. The constant C27 in last inequality is
determined by the input data.

Fix an arbitrary number ε > 0. Since lim
t→0

F (t)
△(t)tδ

= κ1, so we can indicate such number t∗,
that ∣∣∣∣ F (t)

△(t)tδ
− κ1

∣∣∣∣ < ε

2

for 0 < t ≤ t∗. As a result we obtain

|P4ω(t2)− P4ω(t1)| ≤ |P4ω(t2)− κ2|+ |κ2 − P4ω(t1)| < ε

for 0 < t1, t2 ≤ t∗.

For the case t1, t2 > t∗ we find

|P4ω(t2)− P4ω(t1)| ≤
∣∣∣∣F (t1)

tδ1

(
1

△(t1)
− 1

△(t2)

)∣∣∣∣+ ∣∣∣∣F (t1)

△(t2)

(
1

tδ1
− 1

tδ2

)∣∣∣∣+ ∣∣∣∣F (t1)− F (t2)

△(t2)tδ2

∣∣∣∣
≤ |F (t1)||△(t2)−△(t1)|

(t∗)δ
(
min

τ∈[0,T0]
|△(τ)|

)2 +
|F (t1)||tδ1 − tδ2|

(t∗)2δ
(
min

τ∈[0,T0]
|△(τ)|

) +
|F (t1)− F (t2)|

(t∗)δ
(
min

τ∈[0,T0]
|△(τ)|

) .
In a virtue of continuity of input data and the mean value theorem we conclude

|P4ω(t2)− P4ω(t1)| ≤ ε, |t2 − t1| < ϱ.

The case t1 < t∗, t2 > t∗ combines two previous ones because

|P4ω(t2)− P4ω(t1)| ≤ |P4ω(t2)− P4ω(t
∗)|+ |P4ω(t

∗)− P4ω(t1)|.

We prove the equicontinuous of the set P5N in a similar way.
The compactness of operators P1−P3, whose kernels are Green’s functions can be proved

according to the scheme given in [15, p. 27] adapted to the case of strong degeneration [16].
Applying the Schauder Fixed Point Theorem we state that there exists the solution to the
system of equations (29)-(33) in QT0

and therefore to inverse problem (1)-(5) in QT0
.

3 Uniqueness of the solution

Suppose that the system of equations (29)-(33) has two solutions (wi, vi, ũi, p1i, p2i), i =

1, 2. Denote w(x, t) = w1(x, t) − w2(x, t), v(x, t) = v1(x, t) − v2(x, t), ũ(x, t) = ũ1(x, t) −
ũ2(x, t), p1(t) = p11(t)− p12(t), p2(t) = p21(t)− p22(t). Using (29)-(33), we find

w(x, t) =

t∫
0

l∫
0

G2(x, t, ξ, τ)

(
(p11(τ)ξ + p21(τ))τ

βv(ξ, τ)
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+ (p1(τ)ξ + p2(τ))τ
βv2(ξ, τ) + c(ξ, τ)w(ξ, τ)

)
dξ dτ, (x, t) ∈ QT0

, (46)

v(x, t) =

t∫
0

l∫
0

G1(x, t, ξ, τ)

(
(p11(τ)ξ + p21(τ))τ

η−β−1
2 ũ(ξ, τ)

+ (p1(τ)ξ + p2(τ))τ
η−β−1

2 ũ2(ξ, τ) + (p11(τ)τ
η + c(ξ, τ))v(ξ, τ)

+ p1(τ)τ
ηv2(ξ, τ) + cξ(ξ, τ)w(ξ, τ)

)
dξ dτ, (x, t) ∈ QT0

, (47)

ũ(x, t) = t
β−1
2

t∫
0

l∫
0

G1x(x, t, ξ, τ)

(
(p11(τ)ξ + p21(τ))τ

η−β−1
2 ũ(ξ, τ)

+ (p1(τ)ξ + p2(τ))τ
η−β−1

2 ũ2(ξ, τ) + (p11(τ)τ
η + c(ξ, τ))v(ξ, τ)

+ p1(τ)τ
ηv2(ξ, τ) + cξ(ξ, τ)w(ξ, τ)

)
dξ dτ, (x, t) ∈ QT0

, (48)

p1(t) = △−1t−η

((
µ′
3(t)− a(t)tβ(µ2(t)− µ1(t))−

l∫
0

(c(x, t)w1(x, t) + f(x, t))dx

)

× lw(x, t)−
(
lw2(l, t)− µ3(t)

) l∫
0

c(x, t)w(x, t)dx−
(
µ′
4(t)− a(t)tβ(lµ2(t)

− w1(l, t) + w1(0, t))−
l∫

0

x(c(x, t)w1(x, t) + f(x, t))dx

)(
w(l, t)− w(0, t)

)

−
(
a(t)tβ(w(l, t)− w(0, t))−

l∫
0

xc(x, t)w(x, t)dx

)(
w2(l, t)− w2(0, t)

))
, t ∈ [0, T0], (49)

p2(t) = △−1t−η

((
µ′
4(t)− a(t)tβ(lµ2(t)− w1(l, t) + w1(0, t))

−
l∫

0

x(c(x, t)w1(x, t) + f(x, t))dx

)
lw(l, t) +

(
a(t)tβ(w(l, t)− w(0, t))

−
l∫

0

xc(x, t)w(x, t)dx

)(
lw2(l, t)− µ3(t)

)
−

(
µ′
3(t)− a(t)tβ(µ2(t)− µ1(t))

−
l∫

0

(c(x, t)w1(x, t) + f(x, t))dx

)
l2w(l, t)−

(
l2w2(l, t)− 2µ4(t)

)

×
l∫

0

c(x, t)w(x, t)dx

)
, t ∈ [0, T0]. (50)

Substituting (49)-(50) into (46)-(48), we obtain the system of homogeneous integral
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Voltera equations of second kind with respect to unknowns w = w(x, t), v = v(x, t),

ũ = ũ(x, t) for every x ∈ [0, l] :

w(x, t) =

t∫
0

(K11(t, τ)v(x, τ) +K12(t, τ)w(x, τ))dτ, t ∈ [0, T0], (51)

v(x, t) =

t∫
0

(K21(t, τ)ũ(x, τ) +K22(t, τ)v(x, τ) +K23(t, τ)w(x, τ))dτ, t ∈ [0, T0], (52)

ũ(x, t) =

t∫
0

(K31(t, τ)ũ(x, τ) +K32(t, τ)v(x, τ) +K33(t, τ)w(x, τ))dτ, t ∈ [0, T0]. (53)

Taking into account (13), (45), we can state that the kernels of this system has integrable
singularities. It means that the system has only trivial solution

w(x, t) ≡ 0, v(x, t) ≡ 0, ũ(x, t) ≡ 0, (x, t) ∈ QT0
. (54)

Substituting (54) into (49), (50), we find

p1(t) ≡ 0, p2(t) ≡ 0, t ∈ [0, T0]. (55)

It completes the proof of the Theorem.

4 Conclusions

In the paper it is investigated the inverse problem of determination of two time-dependent
functions in a first order polynomial with respect to space variable. It is a minor coefficient
in a parabolic equation with strong power degeneration.

1. It is established conditions of existence and uniqueness of the local solution to the
named problem.

2. It is proved that for the case of strong degeneration for parabolic equation with
Neumann boundary conditions the unknown function w = w(x, t) and its first derivative with
respect to space variable are continuous in QT0

. The second derivative of this function has
the singularity t

1−β
2 at t → 0 unlike both cases of weak degeneration when all these functions

are continuous in QT0
and strong degeneration of parabolic equation with Dirichlet boundary

conditions when the first derivative of unknown function behaves as t
1−β
2 when t → 0.

3. It is established that the unknown functions b1 = b1(t), b2 = b2(t) behave at t → 0 as
tδ with δ = min{γ, β} in contrast to the case of strong degeneration for parabolic equation
with Dirichlet boundary conditions when δ = min{γ, β+1

2
} with γ > β−1

2
.

4. The system of equations (29)-(33) which is obtained in the paper can served the base
for application some numerical methods for construction the approximate solutions to the
named problem.

5. Results of this paper can be used in research of inverse problems of identification the
younger coefficients in parabolic equation which depend on both space and time variables.
Besides, they are the first step in investigation parabolic equations with general strong
degeneration or multidimensional degenerate parabolic equations.
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5 An example

It can be shown by direct calculation that a triplet of function b1(t) = b2(t)

= (β + 1)tβ, w(x, t) = (x+ 1)et
β+1 is the solution to the inverse problem

wt = tβwxx + (b1(t)x+ b2(t))wx, (x, t) ∈ (0, 1)× (0, T ),

w(x, 0) = x+ 1, x ∈ [0, 1],

wx(0, t) = wx(1, t) = et
β+1

, t ∈ [0, T ],

1∫
0

w(x, t)dx =
3

2
et

β+1

, t ∈ [0, T ],

1∫
0

xw(x, t)dx =
5

6
et

β+1

, t ∈ [0, T ].

The input data of this problem satisfy the requirements of the Theorem given in the paper.
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В областi з вiдомими межами дослiджується обернена задача для параболiчного рiвня-
ння з сильним виродженням. Виродження рiвняння спричинене степеневою функцiєю вiд
часу при старшiй похiднiй невiдомої функцiї. Вiдомо, що молодший коефiцiєнт рiвняння
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є полiномом першого степеня за просторовою змiнною з двома невiдомими коефiцiєнтами
вiд часу. Задано крайовi умови другого роду та значення теплових моментiв у якостi умов
перевизначення. Встановлено умови iснування та єдиностi класичного розв’язку вказаної
задачi.


