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UNIFORMLY CONTINUOUS MAPPINGS ON PREMETRIC SPACES

We study the notion of uniformly continuous mapping between quasi-metric spaces and
construct an example of the topological homeomorphism between two compact Hausdorff par-
tially metric spaces such that the corresponding mapping between quasi-metric spaces is not
uniformly continuous. This example shows, in particular, that Theorem 4.4 from [6] is not
true. In addition, we prove an analogue of the classical Heine-Cantor theorem on the uniform
continuity of any continuous mapping f : X → Y between a premetric space X, which satisfies
a strengthened condition of the countable compactness, and a uniform space Y . We also give
an example of a continuous mapping f : X → Y between a compact Hausdorff premetric space
X and a uniform space Y , which is not uniformly continuous.
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Introduction

According to the classical Heine-Cantor theorem, for any compact metric space (X, d)

and any metric space (Y, ϱ) every continuous mapping f : X → Y is uniformly continuous
[3, Theorem 4.3.32]. It is well known that an arbitrary metric d on a set X induces the
uniformity Ud on X, which consists of all sets U for which there exists a number ε > 0 such
that

{(x, y) ∈ X2 : d(x, y) < ε} ⊆ U.

Moreover, for any metric spaces (X, d) and (Y, ϱ) the uniform continuity of a mapping
f : (X, d) → (Y, ϱ) is equivalent to the uniform continuity of the corresponding mapping
f : (X,Ud) → (Y,Uϱ) (see, for example, [3, Exercise 8.1.A]).

On the other hand, for every compact Hausdorff space X there exists exactly one unifor-
mity U on X which is compatible with the topology of X. This uniformity U consists of all
neighbourhoods U of the diagonal ∆ = {(x, x) : x ∈ X} in X2 (see [1, Chapter II, § 4, The-
orem 1]). So, the following theorem (see [1, Chapter II, § 4, Theorem 2]) is a generalization
of the Heine-Cantor theorem.
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Theorem 1. Every continuous mapping from a compact Hausdorff space X to a uniform
space (Y,U) is uniformly continuous.

Notice that the metric version of the concept of uniformly continuous mapping can be
naturally adapted to more general classes of spaces: quasi-metric, quasi-pseudometric and
premetric. Since the corresponding metric analogues do not possess the symmetry property,
the study of the uniform continuity of mappings between such spaces cannot be reduced to
the consideration of uniform spaces. Therefore, analogs of Theorem 1 for mappings between
spaces from such classes require separate study and are of independent interest.

The paper [6, Theorem 4.4] contains the following result (see Section 1 for corresponding
definitions and denotations).

Theorem 2. Let f : (X, p1) → (Y, p2) be a continuous mapping from a compact partial
metric space (X, p1) to a partial metric space (Y, p2). Then f is uniformly continuous as
mapping between the quasi-metric spaces (X, qp1) and (Y, qp2).

In this article, we study the notion of uniformly continuous mapping between quasi-metric
spaces and construct an example of the topological homeomorphism between two compact
Hausdorff partially metric spaces such that the corresponding mapping between quasi-metric
spaces is not uniformly continuous. This example shows, in particular, that Theorem 2 is
not true. In addition, we prove an analogue of Theorem 1 on the uniform continuity of any
continuous mapping f : X → Y between a premetric space X, which satisfies a strengthened
condition of the countable compactness, and a uniform space Y . We also give an example
of a continuous mapping f : X → Y between a compact Hausdorff premetric space X and
a uniform space Y , which is not uniformly continuous.

1 Basic notions and denotations

A function q : X2 → [0,+∞) is called a quasi-metric on X (see [7]) if

(q1) q(x, x) = 0;

(q2) q(x, z) ≤ q(x, y) + q(y, z);

(q3) x = y ⇔ q(x, y) = q(y, x) = 0

for all x, y, z ∈ X.
Every quasi-metric q on X induces a conjugate quasi-metric q−1 : X2 → R defined by

q−1(x, y) = q(y, x) for every x, y ∈ X. Moreover, the function dq = q+ q−1 is a metric on X.
Let (X, q) be a quasi-metric space. For every x ∈ X the balls

Bq(x, ε) = {y ∈ X : q(x, y) < ε}, ε > 0

form a base of the quasi-metric topology τq at the point x.
A function p : X2 → [0,+∞) is called a partial metric on X (see [7]) if

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);
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(p2) p(x, x) ≤ p(x, y);

(p3) p(x, y) = p(y, x);

(p4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y)

for all x, y, z ∈ X.
For any partial metric p : X2 → [0,+∞) the function qp : X

2 → R,

qp(x, y) = p(x, y)− p(x, x),

is a quasi-metric on X and the topology of the partial metric space (X, p) is the topology of
the quasi-metric space (X, qp) (see [7, Theorem 4.1]). Moreover, the function dp : X

2 → R,

dp(x, y) = dqp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a metric on X.
For any partial metric space (X, p) we have that p is a metric on X if and only if

p(x, x) = 0 for every x ∈ X. Moreover, qp = p and dp = 2p if p is a metric.
Let X be a nonempty set and ∆ = {(x, x) : x ∈ X}. A system U ⊆ 2X

2 is called a
uniformity on X if it satisfies the following conditions:

(U1) ∆ ⊆ U for every U ∈ U ;

(U2) if U ∈ U and U ⊆ V ⊆ X2 then V ∈ U ;

(U3) U ∩ V ∈ U for every U, V ∈ U ;

(U4) for every U ∈ U there exists V ∈ U such that

V ◦ V = {(x, z) : (∃y ∈ X) ((x, y), (y, z) ∈ V )} ⊆ U ;

(U5) U−1 = {(x, y) : (y, x) ∈ U} ∈ U for every U ∈ U .

The pair (X,U) is called a uniform space and an element U ∈ U is called an entourage.
Let (X,U) be a uniform space. For every x ∈ X the sets

U [x] = {y ∈ X : (x, y) ∈ U}, U ∈ U

form the system of all neighbourhoods of x in some topology TU . This topology is called the
topology induced by U (see [1, Chapter II, § 1, Proposition 1 and Definition 3]). In particular,
for a metric space (X, d) and corresponding uniformity Ud on X the topology TUd

coincides
with the topology generated by d.

Let X be a topological space, T be the topology of X and U be a uniformity on the set
X. We say that U is compatible with T if TU = T .

Let X be a topological space. A point x ∈ X is called a cluster point of a sequence
(xn)

∞
n=1 of points xn ∈ X if for every neighborhood U of x the set {n ∈ N : xn ∈ U} is

infinite.
A topological space X is called countably compact if every countable open cover of X

has a finite subcover, or equivalently, every sequence (xn)
∞
n=1 of points xn ∈ X has a cluster

point x ∈ X.
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2 Uniformly continuous mappings between quasi-metric spaces

Let (X, q) and (Y, r) be quasi-metric spaces. Following [6, Definition 4.1] we say that a
mapping f : X → Y is uniformly continuous if for every ε > 0 there exists δ > 0 such that
for every x1, x2 ∈ X the inequality q(x1, x2) < δ implies r(f(x1), f(x2)) < ε.

Clearly, every uniformly continuous mapping between quasi-metric spaces is continuous.

Proposition 1. Let (X, q) and (Y, r) be quasi-metric spaces and f : X → Y . Then the
following conditions are equivalent.

(i) f : (X, q) → (Y, r) is uniformly continuous.

(ii) f : (X, q−1) → (Y, r−1) is uniformly continuous.

Proof. It follows immediately from the equalities

q(x1, x2) = q−1(x2, x1) and r(f(x1), f(x2)) = r−1(f(x1), f(x2))

for all x1, x2 ∈ X.

Proposition 2. Let (X, q) and (Y, r) be quasi-metric spaces and f : (X, q) → (Y, r) be a
uniformly continuous mapping. Then f : (X, dq) → (Y, dr) is uniformly continuous.

Proof. Fix any ε > 0 and choose δ > 0 such that for every x1, x2 ∈ X the inequality
q(x1, x2) < δ implies r(f(x1), f(x2)) <

ε
2
. Then for every x1, x2 ∈ X with dq(x1, x2) < δ we

have that
max{q(x1, x2), q(x2, x1)} ≤ dq(x1, x2) < δ

and therefore,

dr(f(x1), f(x2)) = r(f(x1), f(x2) + r(f(x2), f(x1) <
ε
2
+ ε

2
= ε.

The following example shows that the converse implication is not true.

Proposition 3. There exist quasi-metrics q and r on the set X = R such that the identity
mapping f : (X, q) → (X, r), f(x) = x, is everywhere discontinuous and dq = dr, in
particular, f : (X, dq) → (X, dr) is uniformly continuous.

Proof. Consider the function q : X2 → R defined by

q(x, y) =

{
1, if y < x,

y − x, if y ≥ x.

According to [5, Example 2], q is a quasi-metric on X and q generates the topology of
Sorgenfrey line on X, that is, for every x ∈ X the family ([x, x+ ε) : ε > 0) forms a base of
neighbourhoods of x in (X, q). Notice that

dq(x, y) =

{
0, if x = y,

1 + |y − x|, if x ̸= y.
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Now let r = 1
2
dq. Since dq(x, y) = dq(y, x),

dr(x, y) = r(x, y) + r(y, x) = dq(x, y)

for every x, y ∈ X. Moreover, for any x, y ∈ X with dp(x, y) < 1 we have that x = y and, in
particular, dr(x, y) = 0 < ε for every ε > 0.

It follows from the following example that Theorem 2 is not true.

Theorem 3. There exist a compact metric space (X, d), a compact partial metric space
(Y, p) and a homeomorphism f : X → Y such that f : (X, d) → (Y, qp) is not uniformly
continuous.

Proof. Let x0 = 0, xn = 1
n

for every n ∈ N, X = {xn : n ≥ 0} and d(x, y) = |x− y|.
Now Y = {yn : n ≥ 0} where all elements yn are distinct and

p(x, y) = p(y, x) =


1, if x = y = y0,

0, if x = y = yn, n ∈ N,
1 + 1

n
, if x = y0, y = yn, n ∈ N,

1, if x = yn, y = ym, n,m ∈ N, n ̸= m.

Notice that p is a partial metric on Y . Conditions (p1) − (p3) are obvious. It remains to
verify (p4) for distinct points x, y, z ∈ X. If y ̸= y0, then

p(x, z) + p(y, y) = p(x, z) ≤ 2 ≤ p(x, y) + p(y, z).

If y = y0, then p(x, z) = p(y, y) = 1 and

p(x, z) + p(y, y) = 2 ≤ p(x, y) + p(y, z).

Thus, (Y, p) is a partial metric space.
Notice that

qp(x, y) =


0, if x = y,
1
n
, if x = y0, y = yn, n ∈ N,

1 + 1
n
, if y = y0, x = yn, n ∈ N,

1, if x = yn, y = ym, n,m ∈ N, n ̸= m.

Clearly, all points y ̸= y0 are isolated in (Y, p) and yn → y0. Therefore, the mapping
f : X → Y , f(xn) = yn, is a homeomorphism. Moreover, for any distinct n,m ∈ N we
have that d(xn, xm) = | 1

n
− 1

m
| and qp(yn, ym) = 1. So, f : (X, d) → (Y, qp) is not uniformly

continuous.

Remark 1. In the proof of Theorem 2 the authors use the following inequality

sup{q(y, z) : y, z ∈ Bq(x, ε)} ≤ 2ε,

which may not hold for quasi-metric space (X, q).
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3 Uniformly continuous mappings on premetric spaces

In this section we study uniformly continuity of mappings from a premetric space to a
uniform space.

A nonnegative function p : X2 → [0,+∞) is called a premetric on X (see [2]) if p(x, x) = 0

for every x ∈ X.
The following statement has an obvious proof.

Proposition 4. Let (X, p) be a premetric space. Then the system Tp of all sets G ⊆ X such
that for every x ∈ G there exists ε > 0 such that

{y ∈ X : p(x, y) < ε} ⊆ G

forms an topology on X.

The topology Tp from Proposition 4 is called a topology of premetric space (X, p).
Let X be a topological space, T be the topology of X and p be a premetric on the set

X. We say that p is compatible with T if Tp = T .
Clearly, any quasi-metric q : X → R is a premetric on X and the topologies τq of the

quasi-metric space (X, q) and Tq of the premetric space (X, q) coincides.
Notice that, in general, a ball

Bp(x, ε) = {y ∈ X : p(x, y) < ε}

might not be open in a premetric space (X, p). Moreover, Bp(x, ε) might not be a neigh-
bourhood of x (see [2, Section 2]).

Nevertheless, the following characterization of continuous mapping on premetric spaces
follows immediately from the characterization of continuity in the terms of open sets.

Proposition 5. Let (X, p) be a premetric space, Y be a topological space and f : X → Y .
Then the following conditions are equivalent.

(i) f is continuous.

(ii) For every x ∈ X and every neighborhood V of f(x) in Y there exists δ > 0 such that
f(u) ∈ V for every u ∈ X with p(x, u) < δ.

Proof. (i) ⇒ (ii). Let V be an open neighbourhood of f(x) in Y . Then the set U = f−1(V )

is open in X by (i). Therefore, there exists δ > 0 such that Bp(x, δ) ⊆ U .
(ii) ⇒ (i). Let G be an open set in Y . Then the set f−1(G) is open in X by (ii).

We consider the following generalization of the uniform continuity of mappings between
metric spaces.

Definition 1. Let (X, p) be a premetric space, (Y,U) be a uniform space and f : X → Y .
We say that f is uniformly continuous if for every U ∈ U there exists δ > 0 such that
(f(x), f(y)) ∈ U for very x, y ∈ X with p(x, y) < δ.
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The following property follows immediately from Proposition 5.

Proposition 6. Let (X, p) be a premetric space, (Y,U) be a uniform space and f : X → Y

be uniformly continuous. Then f is continuous.

We say that a premetric space (X, p) satisfies (∗) if for any sequences (xn)
∞
n=1 and (yn)

∞
n=1

of points xn ∈ X and yn ∈ X with lim
n→∞

p(xn, yn) = 0 the sequence (zn)
∞
n=1 of points

zn = (xn, yn) ∈ X2 has a cluster point z ∈ ∆ = {(x, x) : x ∈ X}.
The following statement shows that (∗) is a strengthened condition of the countable

compactness.

Proposition 7. If a premetric space (X, p) has (∗), then (X, p) is countably compact.

Proof. Let (xn)
∞
n=1 be a sequence of points xn ∈ X. Since p(xn, xn) = 0 for every n ∈ N, the

sequence of points (xn, xn) ∈ X2 has a cluster point (x, x) ∈ X2. Then the point x ∈ X is a
cluster point of the sequence (xn)

∞
n=1. So, X is a countably compact space.

For quasi-metric spaces (X, q) the condition (∗) is equivalent to the countable
compactness.

Proposition 8. A quasi-metric space (X, q) has (∗) if and only if (X, q) is countably com-
pact.

Proof. According to Proposition 7, it is enough to verify that every countably compact
quasi-metric space (X, q) has (∗).

Now let (X, q) be countably compact, (xn)
∞
n=1 and (yn)

∞
n=1 be sequences of points xn ∈ X

and yn ∈ X with lim
n→∞

q(xn, yn) = 0. Since (X, q) is countably compact, the sequence (xn)
∞
n=1

has a cluster point x ∈ X. Show that the point (x, x) is a cluster point of the sequence of
points (xn, yn) in X2. Fix any neighbourhood W of (x, x) in X2.There exists ε > 0 such that
Bq(x, ε)×Bq(x, ε) ⊆ W . Since lim

n→∞
q(xn, yn) = 0, there exists n0 ∈ N such that q(xn, yn) <

ε
2

for every n ≥ n0. Since x is a cluster point of (xn)
∞
n=1, the set

N = {n ≥ n0 : xn ∈ Bq(x,
ε
2
)}

is infinite. Then for every n ∈ N we have that

q(x, yn) ≤ q(x, xn) + q(xn, yn) <
ε
2
+ ε

2
= ε

and therefore,
(xn, yn) ∈ Bq(x,

ε
2
)×Bq(x, ε) ⊆ W.

The following example shows that the premetric analog of Proposition 8 is not true.

Proposition 9. There exists a compact Hausdorff premetric space (X, p) which has no (∗).
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Proof. Let X = [0, 1]×{0, 1} be the linearly ordered compact with the lexicographical order,
i.e. (y, i) < (z, j) if y < z or y = z and i < j (the space X is known as the two arrow space,
[3, Exercise 3.10.C]). Notice that for any x = (y, 0) ∈ X the sets

B(x, ε) = {x} ∪ {(z, i) ∈ X : 0 < y − z < ε}, ε > 0

form a base of the neighbourhoods of x in X and for any x = (y, 1) ∈ X the sets

B(x, ε) = {x} ∪ {(z, i) ∈ X : 0 < z − y < ε}, ε > 0

form a base of the neighbourhoods of x in X.
For any x1 = (y, i), x2 = (z, j) ∈ X we set

p(x1, x2) =


1, if i = 1 and z < y;

1, if i = 0 and z > y;

1, if y = z and i ̸= j;

|y − z|, otherwise.

Clearly, the function p : X2 → R is a premetric on X.
Fix any x0 = (i, y) ∈ X and ε ∈ (0, 1). If i = 0 then

{x ∈ X : p(x0, x) < ε} = {x0} ∪ {(j, z) ∈ X : z < y and |z − y| < ε} = B(x0, ε).

Analogously, {x ∈ X : p(x0, x) < ε} = B(x0, ε) if i = 1. Therefore, p is compatible with the
topology of X.

It remains to show that the premetric space (X, p) has no (∗). Consider the sequences
(un)

∞
n=1 and (vn)

∞
n=1 of points

un = (1
2
− 1

2n
, 1) and vn = (1

2
+ 1

2n
, 0).

Notice that p(un, vn) =
1

2n−1 for every n ∈ N and (un, vn) → (x1, x2) where x1 = (1
2
, 0) and

x2 = (1
2
, 1). Thus the compact space (X, p) has no (∗).

Now we give a variant of the theorem on the uniform continuity of a continuous mapping
on a compact premetric space.

Theorem 4. Let (X, p) be a premetric space with (∗), (Y,U) be an uniform space and
f : X → Y be a continuous mapping. Then f is uniformly continuous.

Proof. Assume that there exists U ∈ U such that for every n ∈ N there exists xn, yn ∈ X with
p(xn, yn) ≤ 1

n
and (f(x), f(y)) ̸∈ U . Since (X, p) has (∗), the sequence of points (xn, yn) has

a cluster point (x0, x0). Let V ∈ U such that V = V −1 and V ◦V ⊆ U . Using the continuity
of f at x0 choose a neighborhood W of x0 in X such that (f(x0), f(x)) ∈ V for every x ∈ W .
Since (x0, x0) is a cluster point of the sequence (xn, yn)

∞
n=1, the set {n ∈ N : (xn, yn) ∈ W 2} is

nonempty. Therefore, there exists n ∈ N with xn, yn ∈ W . Then (f(xn), f(x0)) ∈ V −1 = V ,
(f(x0), f(yn)) ∈ V and

(f(xn), f(yn)) ∈ V ◦ V ⊆ U,

– a contradiction.
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Corollary 1. Let (X, q) be a countable compact quasi-metric space and (Y,U) be a uniform
space. Then every continuous mapping f : (X, q) → (Y,U) is uniformly continuous.

Remark 2. Notice that countable compactness of a quasi-metric space is not equivalent
to the compactness (see [4]). But for partial metric spaces compactness and countable
compactness are equivalent [8, Theorem 5.7].

The following example shows that for premetric space the analog of Corollary 1 is not
true.

Theorem 5. There exist a compact Hausdorff X, a compatible premetric p on X and a
compatible uniformity U on X such that the identity homeomorphism f : (X, p) → (X,U)
is not uniformly continuous.

Proof. Consider the premetric space (X, p) from Proposition 9. According to
[1, Chapter II, § 4, Theorem 1], there exists a uniformity U on X which is compatible with
Tp. Verify that the identity mapping f : (X, p) → (X,U) is not uniformly continuous.

Let x1 = (1
2
, 0), x2 = (1

2
, 1). Since the uniformity U consists of all neighbourhoods U of

the diagonal ∆ = {(x, x) : x ∈ X} in X2, there exists a closed in X2 entourage U ∈ U such
that (x1, x2) ̸∈ U . There exist open neighbourhoods V1 and V2 of x1 and x2 in X such that
(V1×V2)∩U = ∅. According to the proof of Proposition 9, there exist sequences (un)

∞
n=1 and

(vn)
∞
n=1 of un, vn ∈ X such that un → x1, vn → x2 and p(un, vn) → 0. Then for every δ > 0

there exists N ∈ N such that uN ∈ V1, vN ∈ V2 and p(uN , vN) < δ. Therefore, uN , vN) ̸∈ U

and f is not uniformly continuous.
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Михайлюк В.В., Мироник В.I. Рiвномiрно неперервнi вiдображення на преметричних
просторах // Буковинський матем. журнал — 2024. — Т.12, №2. — C. 27–36.

Вивчаються рiвномiрно неперервнi вiдображення мiж квазiметрчними просторами i
побудовано топологiчний гомеоморфiзм мiж двома компактними гаусдорфовими частко-
во метричними просторами такий, що вiдображенн мiж вiдповiдними квазiметричними
просторами не є рiвномiрно неперервним. Цей приклад, зокрема, показує, що теорема
4.4 з [6] є хибною. Крiм того, доводиться аналог теореми Гейне-Кантора про рiвномiрну
неперервнiсть довiльного неперервного вiдображення f : X → Y , визначеного на преме-
тричному просторi X, який задовольняє деяку пiдсилену умову злiченної компактностi, i
набуває значень у рiвномiрному просторi Y . Також подано приклад неперервного вiдобра-
ження f : X → Y , визначеного на компактному гаусдорфовому преметричному просторi
X, i зi значеннями у рiвномiрному просторi Y , яке не є рiвномiрно неперервним.


