Bukovinian Math. Journal. 2024, 12, 2, 27-36 BykoBuHcbkuii matem. xypHan 2024, T.12, Ne2, 27-36

MYKHAYLYUK V.V.}2 MYRONYK V.I.!

UNIFORMLY CONTINUOUS MAPPINGS ON PREMETRIC SPACES

We study the notion of uniformly continuous mapping between quasi-metric spaces and
construct an example of the topological homeomorphism between two compact Hausdorff par-
tially metric spaces such that the corresponding mapping between quasi-metric spaces is not
uniformly continuous. This example shows, in particular, that Theorem 4.4 from [6] is not
true. In addition, we prove an analogue of the classical Heine-Cantor theorem on the uniform
continuity of any continuous mapping f : X — Y between a premetric space X, which satisfies
a strengthened condition of the countable compactness, and a uniform space Y. We also give
an example of a continuous mapping f : X — Y between a compact Hausdorff premetric space
X and a uniform space Y, which is not uniformly continuous.
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INTRODUCTION

According to the classical Heine-Cantor theorem, for any compact metric space (X, d)
and any metric space (Y, g) every continuous mapping f : X — Y is uniformly continuous
[3, Theorem 4.3.32|. It is well known that an arbitrary metric d on a set X induces the
uniformity U; on X, which consists of all sets U for which there exists a number € > 0 such
that

{(z,y) € X*:d(z,y) < e} CU.

Moreover, for any metric spaces (X,d) and (Y, p) the uniform continuity of a mapping
f:(X,d) — (Y, p) is equivalent to the uniform continuity of the corresponding mapping
[ (X, Ug) = (Y,U,) (see, for example, [3, Exercise 8.1.A]).

On the other hand, for every compact Hausdorff space X there exists exactly one unifor-
mity &4 on X which is compatible with the topology of X. This uniformity U consists of all
neighbourhoods U of the diagonal A = {(z,z) : z € X} in X? (see [1, Chapter II, § 4, The-
orem 1]). So, the following theorem (see [1, Chapter II, § 4, Theorem 2|) is a generalization
of the Heine-Cantor theorem.
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Theorem 1. Every continuous mapping from a compact Hausdorff space X to a uniform
space (Y,U) is uniformly continuous.

Notice that the metric version of the concept of uniformly continuous mapping can be
naturally adapted to more general classes of spaces: quasi-metric, quasi-pseudometric and
premetric. Since the corresponding metric analogues do not possess the symmetry property;,
the study of the uniform continuity of mappings between such spaces cannot be reduced to
the consideration of uniform spaces. Therefore, analogs of Theorem 1 for mappings between
spaces from such classes require separate study and are of independent interest.

The paper [6, Theorem 4.4] contains the following result (see Section 1 for corresponding
definitions and denotations).

Theorem 2. Let f : (X,p1) — (Y,p2) be a continuous mapping from a compact partial
metric space (X,p;) to a partial metric space (Y,ps). Then f is uniformly continuous as
mapping between the quasi-metric spaces (X, q,,) and (Y, qp, ).

In this article, we study the notion of uniformly continuous mapping between quasi-metric
spaces and construct an example of the topological homeomorphism between two compact
Hausdorff partially metric spaces such that the corresponding mapping between quasi-metric
spaces is not uniformly continuous. This example shows, in particular, that Theorem 2 is
not true. In addition, we prove an analogue of Theorem 1 on the uniform continuity of any
continuous mapping f : X — Y between a premetric space X, which satisfies a strengthened
condition of the countable compactness, and a uniform space Y. We also give an example
of a continuous mapping f : X — Y between a compact Hausdorff premetric space X and
a uniform space Y, which is not uniformly continuous.

1 BASIC NOTIONS AND DENOTATIONS
A function ¢ : X? — [0, +00) is called a quasi-metric on X (see [7]) if
(1) q(z,x) = 0;
(42) a(z,2) < q(z,y) +qly, 2);

(g3) 2=y q(z,y) =q(y,x) =0

for all z,y, z € X.
Every quasi-metric ¢ on X induces a conjugate quasi-metric ¢=' : X2 — R defined by
q¢ (z,y) = q(y, z) for every z,y € X. Moreover, the function d, = ¢+ ¢~* is a metric on X.
Let (X, q) be a quasi-metric space. For every x € X the balls

By(x,e) ={y € X : q(z,y) <e}, >0

form a base of the quasi-metric topology 7, at the point z.
A function p: X2 — [0, +00) is called a partial metric on X (see |7]) if

(p1) z=y & p(z,r) =p(z,y) = p(y,y);
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(p2) plz,x) < pla,y);
(p3) p(z,y) = ply, 2);

(pa) p(,2) < px,y) +ply, 2) —pY,y)

for all z,y,z € X.
For any partial metric p : X? — [0, 400) the function g, : X? — R,

qp(x7y> = p(x,y) —p(l’,ﬂ?),

is a quasi-metric on X and the topology of the partial metric space (X, p) is the topology of
the quasi-metric space (X, q,) (see |7, Theorem 4.1]). Moreover, the function d, : X? — R,

dp(z,y) = dy,(2,y) = 2p(z,y) — p(z,2) — p(y,y)

is a metric on X.

For any partial metric space (X,p) we have that p is a metric on X if and only if
p(z,z) = 0 for every x € X. Moreover, ¢, = p and d, = 2p if p is a metric.

Let X be a nonempty set and A = {(z,z) : € X}. A system U C 2X° is called a
uniformity on X if it satisfies the following conditions:

(Uy) A CU for every U € U,

(Uy) if Ueld and U CV C X2 then V € U,
(Us) UNV €U for every U,V € U;
(Us)

Uy) for every U € U there exists V' € U such that

VoV ={(x,2): By X)((z,9)(y,2) €V)} CU;

(Us) U™t ={(x,y): (y,x) €U} €U for every U € U.

The pair (X,U) is called a uniform space and an element U € U is called an entourage.
Let (X,U) be a uniform space. For every x € X the sets

Ul ={ye X : (x,y) €U}, Uecl

form the system of all neighbourhoods of x in some topology 7. This topology is called the
topology induced by U (see |1, Chapter II, § 1, Proposition 1 and Definition 3]). In particular,
for a metric space (X, d) and corresponding uniformity ¢; on X the topology Ty, coincides
with the topology generated by d.

Let X be a topological space, 7 be the topology of X and U be a uniformity on the set
X. We say that U is compatible with T if T, =T.

Let X be a topological space. A point x € X is called a cluster point of a sequence
(xn)52, of points x, € X if for every neighborhood U of x the set {n € N : z,, € U} is
infinite.

A topological space X is called countably compact if every countable open cover of X
has a finite subcover, or equivalently, every sequence (x,)32, of points x, € X has a cluster
point z € X.
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2  UNIFORMLY CONTINUOUS MAPPINGS BETWEEN QUASI-METRIC SPACES

Let (X, ¢q) and (Y, r) be quasi-metric spaces. Following [6, Definition 4.1] we say that a
mapping f : X — Y is uniformly continuous if for every € > 0 there exists > 0 such that
for every x1,x9 € X the inequality q(z1,22) < ¢ implies r(f(z1), f(x2)) < &.

Clearly, every uniformly continuous mapping between quasi-metric spaces is continuous.

Proposition 1. Let (X, q) and (Y,r) be quasi-metric spaces and f : X — Y. Then the
following conditions are equivalent.

(1) f:(X,q) — (Y,r) is uniformly continuous.
(i1) f:(X,q7') — (Y,r1) is uniformly continuous.

Proof. Tt follows immediately from the equalities

q(x1,22) = q71<I2, z1) and  r(f(21), f(72)) = Tﬁl(f(xl)a f(x2))
for all z1,25 € X. O

Proposition 2. Let (X, q) and (Y,r) be quasi-metric spaces and f : (X,q) — (Y,r) be a
uniformly continuous mapping. Then f : (X,d,) — (Y, d,) is uniformly continuous.

Proof. Fix any € > 0 and choose § > 0 such that for every x;,zo € X the inequality
q(x1, 1) < 6 implies r(f(21), f(22)) < §. Then for every , 2 € X with dy(z1,72) <6 we
have that

max{q(x1, 2),q(z2, 1)} < dg(z1,22) <9

and therefore,

d(f(z1), f(z2)) = v(f(z1), f(22) +7(f(72), f(21) <5+ 5=¢.

The following example shows that the converse implication is not true.

Proposition 3. There exist quasi-metrics ¢ and r on the set X = R such that the identity
mapping f : (X,q) — (X,r), f(z) = =z, is everywhere discontinuous and d, = d,, in
particular, f : (X,d,) — (X,d,) is uniformly continuous.

Proof. Consider the function ¢ : X? — R defined by

1,if y <z,
y—ux,if y > .

q(z,y) = {

According to [5, Example 2|, ¢ is a quasi-metric on X and ¢ generates the topology of
Sorgenfrey line on X, that is, for every € X the family ([x,z 4 ¢) : € > 0) forms a base of
neighbourhoods of z in (X, ¢). Notice that

0,if x =y,
1+ |y — x|, if x #y.

dg(z,y) = {
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_ 1 ~ _
Now let r = 3d,. Since dy(v,y) = dy(y, ),

d(z,y) = r(z,y) +7r(y,z) = dy(2,y)

for every x,y € X. Moreover, for any z,y € X with d,(z,y) < 1 we have that = y and, in
particular, d,.(z,y) = 0 < ¢ for every € > 0. ]

It follows from the following example that Theorem 2 is not true.

Theorem 3. There exist a compact metric space (X,d), a compact partial metric space
(Y,p) and a homeomorphism f : X — Y such that f : (X,d) — (Y,qp) is not uniformly
continuous.

Proof. Let g =0, x,, = + for every n € N, X = {z, : n > 0} and d(z,y) = |z — y|.
Now Y = {y, : n > 0} where all elements y,, are distinct and

1, ifx =y = yo,
0,ifr=y=yp,neN,

1—1—%, ifxr=vyp,y =yn,n €N,

1L, ife =y, vy =ym,nméeNn#£m.

p(z,y) =ply, ) =

Notice that p is a partial metric on Y. Conditions (p;) — (p3) are obvious. It remains to
verify (p4) for distinct points z,y, z € X. If y # 1, then

p(z,2) +ply,y) = p(x,2) <2< p(x,y) + ply, 2).
If y = yo, then p(z, 2) = p(y,y) = 1 and
p(z,2) +p(y,y) =2 < pla,y) + p(y, 2).

Thus, (Y, p) is a partial metric space.
Notice that
0, ifz =y,
Life =yo,y =y neN,
1—1—%, ify =y, x =y,,n €N,
Lifx =9y, ¥y = Ym,n,m € N.n #m.

qp('T? y) =

Clearly, all points y # yo are isolated in (Y,p) and y, — yo. Therefore, the mapping
f:X =Y, f(x,) = yn, is a homeomorphism. Moreover, for any distinct n,m € N we
have that d(z,, ) = |2 — +| and g,(yn, ym) = 1. So, f : (X,d) = (Y, q,) is not uniformly
continuous. [

Remark 1. In the proof of Theorem 2 the authors use the following inequality

sup{q(y,z) : y,z € By(x,e)} < 2,

which may not hold for quasi-metric space (X, q).
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3 UNIFORMLY CONTINUOUS MAPPINGS ON PREMETRIC SPACES

In this section we study uniformly continuity of mappings from a premetric space to a
uniform space.

A nonnegative function p : X% — [0, +00) is called a premetricon X (see [2]) if p(z,z) = 0
for every x € X.

The following statement has an obvious proof.

Proposition 4. Let (X, p) be a premetric space. Then the system T, of all sets G C X such
that for every x € G there exists € > 0 such that

{ye X:p(r,y) <e} CG
forms an topology on X.

The topology 7, from Proposition 4 is called a topology of premetric space (X, p).

Let X be a topological space, T be the topology of X and p be a premetric on the set
X. We say that p is compatible with T if T, =T.

Clearly, any quasi-metric ¢ : X — R is a premetric on X and the topologies 7, of the
quasi-metric space (X, ¢) and 7, of the premetric space (X, ¢) coincides.

Notice that, in general, a ball

By(z,e) ={y € X : p(x,y) < e}

might not be open in a premetric space (X,p). Moreover, B,(x,c) might not be a neigh-
bourhood of x (see |2, Section 2|).

Nevertheless, the following characterization of continuous mapping on premetric spaces
follows immediately from the characterization of continuity in the terms of open sets.

Proposition 5. Let (X, p) be a premetric space, Y be a topological space and f: X — Y.
Then the following conditions are equivalent.

(1) f is continuous.

(17) For every x € X and every neighborhood V' of f(x) in'Y there exists 6 > 0 such that
f(u) € V for every u € X with p(z,u) <.

Proof. (i) = (i1). Let V be an open neighbourhood of f(z) in Y. Then the set U = f~1(V)
is open in X by (7). Therefore, there exists 6 > 0 such that B,(z,d) C U.
(it) = (i). Let G be an open set in Y. Then the set f~(G) is open in X by (). O

We consider the following generalization of the uniform continuity of mappings between
metric spaces.

Definition 1. Let (X, p) be a premetric space, (Y,U) be a uniform space and f : X — Y.
We say that f is uniformly continuous if for every U € U there exists 6 > 0 such that
(f(z), f(y)) € U for very x,y € X with p(x,y) < J.
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The following property follows immediately from Proposition 5.

Proposition 6. Let (X, p) be a premetric space, (Y,U) be a uniform space and f : X —Y
be uniformly continuous. Then f is continuous.

We say that a premetric space (X, p) satisfies (x) if for any sequences (x,,)%2; and (y,, )52,
of points z, € X and y, € X with Ji_)rglop(xn,yn) = 0 the sequence (z,)5°, of points
Zn = (Tn,Yn) € X? has a cluster point z € A = {(z,z) : z € X}.

The following statement shows that (%) is a strengthened condition of the countable
compactness.

Proposition 7. If a premetric space (X, p) has (), then (X, p) is countably compact.

Proof. Let (x,)7, be a sequence of points z,, € X. Since p(x,,x,) = 0 for every n € N, the
sequence of points (x,,z,) € X? has a cluster point (z,z) € X2 Then the point z € X is a
cluster point of the sequence (z,)3%,. So, X is a countably compact space. O

For quasi-metric spaces (X, ¢) the condition (%) is equivalent to the countable
compactness.

Proposition 8. A quasi-metric space (X, q) has () if and only if (X, q) is countably com-
pact.

Proof. According to Proposition 7, it is enough to verify that every countably compact
quasi-metric space (X, q) has (x).

Now let (X, ¢) be countably compact, (z,)%; and (y,)5, be sequences of points z,, € X
and y, € X with 1i_r>n q(Zn,yn) = 0. Since (X, q) is countably compact, the sequence (z,,)5,
has a cluster poith :CL)‘O € X. Show that the point (z,x) is a cluster point of the sequence of
points (x,, y,) in X?. Fix any neighbourhood W of (z,z) in X2 There exists € > 0 such that

)

By(x,€) x By(z,e) € W. Since lim g(xy,y,) = 0, there exists ng € N such that q(z,,y,) < §
n—oo

for every n > ng. Since z is a cluster point of (z,)5°,, the set

N ={n>ng:z, € By(z,5)}

is infinite. Then for every n € N we have that

)

q(ﬁ’ y") < Q(x,l'n) + q(‘rmyn) < % + 5 =€

and therefore,
(Tnsyn) € By(x,5) x By(w,e) CW.

The following example shows that the premetric analog of Proposition 8 is not true.

Proposition 9. There exists a compact Hausdorff premetric space (X, p) which has no (x).
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Proof. Let X =[0,1] x {0, 1} be the linearly ordered compact with the lexicographical order,
iLe. (y,1) < (z,5)ify<zory=zandi<j (the space X is known as the two arrow space,
[3, Exercise 3.10.C]). Notice that for any = (y,0) € X the sets

B(z,e) ={z}U{(zi) e X:0<y—2z<e}, >0
form a base of the neighbourhoods of x in X and for any = = (y,1) € X the sets
B(z,e) ={z}U{(z,i) e X:0<z—y<e}, >0

form a base of the neighbourhoods of z in X.
For any 1 = (y,1), 22 = (z,7) € X we set

1,if 72=1and z<uy;
,if  i=0and z > y;
p(e1,2) = 1, if y=zandi#j;

ly — z|, otherwise.

Clearly, the function p : X? — R is a premetric on X.
Fix any zo = (i,y) € X and € € (0,1). If i = 0 then

{r e X :p(xg,x) <e}={xo}U{(j,2) € X : 2 <yand |z —y| < e} = B(xg,¢).

Analogously, {z € X : p(zo,z) < e} = B(xo,¢) if ¢ = 1. Therefore, p is compatible with the
topology of X.

It remains to show that the premetric space (X, p) has no (x). Consider the sequences
(u,)22; and (v,)22; of points

u,=(3—5,.1) and v, =3+

Notice that p(un,v,) = 2n—1_1 for every n € N and (u,,v,) — (x1,22) where x; = (%,O) and

25 = (3,1). Thus the compact space (X, p) has no (x). O

Now we give a variant of the theorem on the uniform continuity of a continuous mapping
on a compact premetric space.

Theorem 4. Let (X,p) be a premetric space with (%), (Y,U) be an uniform space and
f X —Y be a continuous mapping. Then f is uniformly continuous.

Proof. Assume that there exists U € U such that for every n € N there exists x,,, y, € X with
p(zn,yn) < = and (f(z), f(y)) € U. Since (X, p) has (x), the sequence of points (2, y,,) has
a cluster point (g, o). Let V € U such that V =Vt and VoV C U. Using the continuity
of f at xy choose a neighborhood W of xg in X such that (f(z¢), f(x)) € V for every x € W.
Since (g, 7o) is a cluster point of the sequence (z,,4,)°%,, the set {n € N : (z,,,y,) € W?} is
nonempty. Therefore, there exists n € N with x,,,y, € W. Then (f(x,), f(xo)) € V1=V,
(f(@0), f(3)) € V and
(f(@n), F(g)) €V oV C U,

— a contradiction. O
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Corollary 1. Let (X, q) be a countable compact quasi-metric space and (Y,U) be a uniform
space. Then every continuous mapping [ : (X, q) — (Y,U) is uniformly continuous.

Remark 2. Notice that countable compactness of a quasi-metric space is not equivalent
to the compactness (see [4]). But for partial metric spaces compactness and countable
compactness are equivalent [8, Theorem 5.7].

The following example shows that for premetric space the analog of Corollary 1 is not
true.

Theorem 5. There exist a compact Hausdorft X, a compatible premetric p on X and a
compatible uniformity U on X such that the identity homeomorphism f : (X,p) — (X,U)
is not uniformly continuous.

Proof. Consider the premetric space (X, p) from Proposition 9. According to
[1, Chapter II, § 4, Theorem 1|, there exists a uniformity & on X which is compatible with
7,. Verify that the identity mapping f : (X,p) — (X,U) is not uniformly continuous.

Let 21 = (3,0), 23 = (3,1). Since the uniformity U consists of all neighbourhoods U of
the diagonal A = {(z,z) : * € X} in X?, there exists a closed in X? entourage U € U such
that (z1,x2) € U. There exist open neighbourhoods V; and V5 of z; and x5 in X such that
(Vi xVo)NU = @. According to the proof of Proposition 9, there exist sequences (u,)5°; and
(v,)22, of u,,v, € X such that u,, — x1, v, = x2 and p(u,,v,) — 0. Then for every § > 0
there exists N € N such that uy € Vi, vy € Vo and p(uy,vy) < 0. Therefore, uy,vy) € U

and f is not uniformly continuous. O]
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Muxaitnmiok B.B., Muponuk B.I. Pistnomipro wenepepeni 6idobpasicerns Ha NpemempuyHuT
npocmopax // BykoBuncbkuit Mmarem. xKypuaa — 2024, — T.12, Ne2. — C. 27-36.

BuBuatoTbcsi piBHOMIpHO HelepepBHi BijjoOparkeHHsS MiXK KBa3iMETPIYHUME IIPOCTOPAMU i
100y TOBAHO TOTOJIOTIYHAN roMeoMOpdi3M MiXK JBOMa KOMIIAKTHUMHE T'ayCA0P(MOBUMEI IaCTKO-
BO METPUYHMMH IIPOCTOPAMH TAKHI, IO BigoOparkKeHH MiXK BiAHOBIIHUMHI KBa3iMeTPUIHUMUI
npocTopamu He € piBHOMipHO HenepepBHuM. lleit nmpukiaz, 30kpeMa, MOKa3ye, IO TeopeMma
4.4 3 [6] € xubnO0. KpiM TOTO, MOBOAMTRCs anasor Teopemu leitne-KanTopa npo piBHOMIpHY
HEIIePEPBHICTD JIOBIILHOIO HerepepBHOro Bijobpakennsi f : X — Y, BUZHAYEHOTO Ha IIpPEMe-
TPUYIHOMY IpocTOpi X, AKNit 3a7J0BOJIbHSAE AEAKY IMiJICHJIEHYy YMOBY 3JIiY€HHOI KOMIAKTHOCTI, i
nalyBae 3HaYEHDb y piBHOMiIpHOMY mpocTopi Y. Takoxk mogaHo npuKJIIa] HEIePpEePBHOTO BimoOpa-
xenust f: X — Y, BUSHAYEHOI0 H& KOMIIAKTHOMY IaycaopdoBOMY IIPEMETPUYHOMY IIPOCTOPI
X, i 31 3HaveHHaMu y piBHOMipHOMY TpocTopi Y, sike He € PiBHOMIPHO HEllepepBHUM.



