GUTIK O.V.

ON LOCALLY COMPACT SHIFT-CONTINUOUS TOPOLOGIES ON SEMIGROUPS $\mathscr{C}_+(A,B)$ AND $\mathscr{C}_-(A,B)$ WITH ADJOINED ZERO

Let $\mathscr{C}_{+}(a,b)$ and $\mathscr{C}_{-}(a,b)$ be upper and down subsemigroups of the bicyclic semigroup defined in [15]. Let $\mathscr{C}_{+}(p,q)^{0}$ and $\mathscr{C}_{-}(p,q)^{0}$ be the semigroups $\mathscr{C}_{+}(a,b)$ and $\mathscr{C}_{-}(a,b)$ with the adjoined zero. We show that the semigroups $\mathscr{C}_{+}(p,q)^{0}$ and $\mathscr{C}_{-}(p,q)^{0}$ admit continuum many different Hausdorff locally compact shift-continuous topologies up to topological isomorphism.

Key words and phrases: semitopological semigroup, topological semigroup, left topological semigroup, locally compact.

Ivan Franko National University of Lviv, Universytetska 1, Lviv, 79000, Ukraine e-mail: oleg.gutik@lnu.edu.ua

In this paper we shall follow the terminology of [4, 5, 6, 18].

By ω we denote the set of all non-negative integers. Throughout these notes we always assume that all topological spaces involved are Hausdorff.

Definition 1 ([4, 18]). Let S be a non-void topological space which is provided with an associative multiplication (a semigroup operation) $\mu: S \times S \to S$, $(x,y) \mapsto \mu(x,y) = xy$. Then the pair (S,μ) is called

- (i) a right topological (left topological) semigroup if all interior left (right) shifts $\lambda_s \colon S \to S$, $x \mapsto sx$ ($\rho_s \colon S \to S$, $x \mapsto xs$), are continuous maps, $s \in S$;
- (ii) a semitopological semigroup if the map μ is separately continuous;
- (iii) a topological semigroup if the map μ is jointly continuous.

We usually omit the reference to μ and write simply S instead of (S, μ) . It goes without saying that every topological semigroup is also semitopological and every semitopological semigroup is both a right and left topological semigroup.

A topology τ on a semigroup S is called:

• a semigroup topology if (S, τ) is a topological semigroup;

УДК 512.536

2010 Mathematics Subject Classification: 22A15, 54D45, 54H10.

- a shift-continuous topology if (S, τ) is a semitopological semigroup;
- an left-continuous (right-continuous) topology if (S, τ) is a left (right) topological semi-group.

The bicyclic monoid $\mathscr{C}(a,b)$ is the semigroup with the identity 1 generated by two elements a and b subjected only to the condition ab=1. The semigroup operation on $\mathscr{C}(a,b)$ is determined as follows:

$$b^{k}a^{l} \cdot b^{m}a^{n} = \begin{cases} b^{k-l+m}a^{n}, & \text{if } l < m; \\ b^{k}a^{n}, & \text{if } l = m; \\ b^{k}a^{l-m+n}, & \text{if } l > m. \end{cases}$$

In [15] Makanjuola and Umar study algebraic property of the following anti-isomorphic subsemigroups

$$\mathscr{C}_{+}(p,q) = \left\{ q^{i}p^{j} \in \mathscr{C}(p,q) : i \leqslant j \right\} \quad \text{and} \quad \mathscr{C}_{-}(p,q) = \left\{ q^{i}p^{j} \in \mathscr{C}(p,q) : i \geqslant j \right\},$$

of the bicyclic monoid. In the paper [8] we prove that every Hausdorff left-continuous (right-continuous) topology on the monoid $\mathscr{C}_{+}(a,b)$ ($\mathscr{C}_{-}(a,b)$) is discrete and show that there exists a compact Hausdorff topological monoid S which contains $\mathscr{C}_{+}(a,b)$ ($\mathscr{C}_{-}(a,b)$) as a submonoid. Also, in [8] we constructed a non-discrete right-continuous (left-continuous) topology τ_{p}^{+} (τ_{p}^{-}) on the semigroup $\mathscr{C}_{+}(a,b)$ ($\mathscr{C}_{-}(a,b)$) which is not left-continuous (right-continuous).

Later by $\mathscr{C}_{+}(p,q)^{0}$ and $\mathscr{C}_{-}(p,q)^{0}$ we denote the semigroups $\mathscr{C}_{+}(a,b)$ and $\mathscr{C}_{-}(a,b)$ with the adjoined zero.

In [7] it is proved that every Hausdorff locally compact shift-continuous topology on the bicyclic monoid with adjoined zero is either compact or discrete. This result was extended by Bardyla onto the p-polycyclic monoid [1] and graph inverse semigroups [2], and by Mokrytskyi onto the monoid of order isomorphisms between principal filters of \mathbb{N}^n with adjoined zero [17]. In [9] the results of paper [7] onto the monoid \mathbb{IN}_{∞} of all partial cofinite isometries of positive integers with adjoined zero are extended. In [12] the similar dichotomy was proved for so called bicyclic extensions $\boldsymbol{B}_{\omega}^{\mathscr{F}}$ when a family \mathscr{F} consists of inductive non-empty subsets of ω . Algebraic properties on a group G such that if the discrete group G has these properties, then every locally compact shift continuous topology on G with adjoined zero is either compact or discrete studied in [16]. The above results are extended in [10] to the bicyclic extension $B_{[0,\infty)}$ of the additive group of reals with adjoined zero (see [13]) in the cases when on the semigroup $B_{[0,\infty)}$ the usual topology, the discrete topology or the topology determined by the natural partial order is defined. Also, in [11] it is proved that the extended bicyclic semigroup $\mathscr{C}^0_{\mathbb{Z}}$ with adjoined zero admits distinct \mathfrak{c} -many shift-continuous topologies, however every Hausdorff locally compact semigroup topology on $\mathscr{C}^0_{\mathbb{Z}}$ is discrete. In [3] Bardyla proved that a Hausdorff locally compact semitopological semigroup McAlister Semigroup \mathcal{M}_1 is either compact or discrete. However, this dichotomy does not hold for the McAlister Semigroup \mathcal{M}_2 and moreover, \mathcal{M}_2 admits continuum many different Hausdorff locally compact inverse semigroup topologies [3].

In this paper we show that the semigroups $\mathscr{C}_+(p,q)^0$ and $\mathscr{C}_-(p,q)^0$ admit continuum many different Hausdorff locally compact shift-continuous topologies up to topological isomorphism.

16 Gutik O.V.

Lemma 1. Every locally compact Hausdorff shift-continuous topology τ on the additive semigroup of non-negative integers $(\omega, +)$ is discrete.

Proof. Fix any $n_0 \in \omega$. The Hausdorffness of the space (ω, τ) implies that $n_0^{\downarrow} = \{k \in \omega : k \leq n\}$ is a closed subset of (ω, τ) . Then $\omega \setminus n_0^{\downarrow}$ is an open subset of (ω, τ) , and by Corollary 3.3.10 of [6], $\omega \setminus n_0^{\downarrow}$ is locally compact, and hence, Baire. By Proposition 1.30 of [14] the space $\omega \setminus n_0^{\downarrow}$ contains an isolated point n_1 , which is isolated in (ω, τ) because $\omega \setminus n_0^{\downarrow}$ is an open subset of (ω, τ) . This and the condition $n_0 < n_1$ imply that n_0 is an isolated point in (ω, τ) , because n_0 is the full preimage of n_1 under the continuous right shift $\rho_{n_1-n_0} : (\omega, +, \tau) \to (\omega, +, \tau)$, $i \mapsto i + (n_1 - n_0)$. This completes the proof of the lemma.

Later by $(\omega, +)^0$ we denote the additive semigroup of non-negative integers $(\omega, +)$ with adjoined zero. Without loss of generality we may assume that $(\omega, +)^0 = \omega \cup \{\infty\}$ with the extended semigroup operation $n + \infty = \infty + n = \infty + \infty = \infty$ for all $n \in \omega$, i.e., ∞ is the zero of $(\omega, +)^0$.

Proposition 1. Every Hausdorff locally compact shift-continuous topology on the semigroup $(\omega, +)^0$ is either compact or discrete.

Proof. Let τ_{lc} be an arbitrary non-discrete Hausdorff locally compact shift-continuous topology on the semigroup $(\omega, +)^0$. The Hausdorffness of $((\omega, +)^0, \tau_{lc})$ implies that ω is an open subset of $((\omega, +)^0, \tau_{lc})$. Then by Corollary 3.3.10 of [6], ω is locally compact, and by Lemma 1 is a discrete subspace of $((\omega, +)^0, \tau_{lc})$.

Since all point from ω are open-and-closed subsets of the locally compact space $((\omega, +)^0, \tau_{lc})$, there exists a base $\mathscr{B}_{\tau_{lc}}(\infty)$ of the topology τ_{lc} at the point ∞ which consists of compact-and-open subsets of $((\omega, +)^0, \tau_{lc})$. Hence, for any $U, V \in \mathscr{B}_{\tau_{lc}}(\infty)$ the set $U \setminus V$ is finite.

We state that for any $U \in \mathcal{B}_{\tau_{lc}}(\infty)$ the set $\omega \setminus U$ is finite. Suppose to the contrary that there exists $U \in \mathcal{B}_{\tau_{lc}}(\infty)$ the set $\omega \setminus U$ is infinite. The separate continuity of the semigroup operation in $((\omega, +)^0, \tau_{lc})$ implies that there exists $V \in \mathcal{B}_{\tau_{lc}}(\infty)$ such that $V \subseteq U$ and $1 + V \subseteq U$. Since $\omega \setminus U$ is infinite, there exists a sequence $\{x_n\}_{n \in \omega} \subseteq U$ such that $1 + x_i \neq U$ for any $i \in \omega$. This implies that $x_i \neq V$ for any $i \in \omega$, and hence, the set $U \setminus V$ is infinite, a contradiction. The obtained contradiction implies that τ_{lc} is a compact topology on $(\omega, +)^0$.

Later by τ_{lc} we denote a Hausdorff locally compact shift-continuous topology on the semigroup $\mathscr{C}_+(p,q)^0$.

Since every Hausdorff shift-continuous topology on the semigroup $\mathcal{C}_+(p,q)$ is discrete (see [8, Theorem 6]), the following statements holds.

Lemma 2. If U and V are any compact-and-open neighbourhoods of the zero in $(\mathscr{C}_+(p,q)^0, \tau_{lc})$, then the set $U \setminus V$ is finite.

For any $i \in \omega$ we denote

$$\mathscr{C}_{+}^{i}(p,q) = \{b^{i}a^{i+s} \in \mathscr{C}_{+}(p,q) \colon s \in \omega\}.$$

The semigroup operation of $\mathscr{C}_{+}(p,q)$ implies that $\mathscr{C}_{+}^{i}(p,q)$ is a subsemigroup of $\mathscr{C}_{+}(p,q)$, and moreover, $\mathscr{C}_{+}^{i}(p,q)$ is isomorphic to the additive semigroup of non-negative integers $(\omega, +)$ for any $i \in \omega$ [8].

Lemma 3. For any compact-and-open neighbourhood U of the zero in $(\mathscr{C}_+(p,q)^0, \tau_{lc})$ there exists $i \in \omega$ such that the set $U \cap \mathscr{C}_+^i(p,q)$ is infinite.

Proof. Suppose to the contrary that there exists a compact-and-open neighbourhood U of the zero in $(\mathscr{C}_+(p,q)^0,\tau_{\rm lc})$ such that $|U\cap\mathscr{C}_+^i(p,q)|<\infty$ for any $i\in\omega$. Then there exists a sequence $\{i_j\}_{j\in\omega}\subseteq\omega$ such that $U\cap\mathscr{C}_+^{i_j}(p,q)\neq\varnothing$ for any $j\in\omega$. The separate continuity of the semigroup operation in $(\mathscr{C}_+(p,q)^0,\tau_{\rm lc})$ and local compactness of $\tau_{\rm lc}$ imply that there exists a compact-and-open neighbourhood V of zero in $(\mathscr{C}_+(p,q)^0,\tau_{\rm lc})$ such that $V\subseteq U$ and $V\cdot a\subseteq U$. By the definition of the semigroup operation in $\mathscr{C}_+(p,q)$ we get that $\mathscr{C}_+^i(p,q)\cdot a\subseteq\mathscr{C}_+^i(p,q)$ for all $i\in\omega$. Since for any $j\in\omega$ the set $U\cap\mathscr{C}_+^{i_j}(p,q)$ is non-empty and finite, there exists maximal non-negative integer s_j such that $b^{i_j}a^{i_j+s_j}\notin V$. This implies that the set $U\setminus V$ is infinite, which contradicts Lemma 2. The obtained contradiction implies the statement of the lemma.

Lemma 4. For any compact-and-open neighbourhood U of the zero in $(\mathscr{C}_+(p,q)^0, \tau_{lc})$ there exists $i_0 \in \omega$ such that $\mathscr{C}_+^{i_0}(p,q) \cup \{0\}$ is a compact subset of $(\mathscr{C}_+(p,q)^0, \tau_{lc})$.

Proof. By Lemma 3 for any compact-and-open neighbourhood U of the zero in $(\mathscr{C}_+(p,q)^0, \tau_{\rm lc})$ there exists $i_0 \in \omega$ such that the set $U \cap \mathscr{C}_+^{i_0}(p,q)$ is infinite. Since $\mathscr{C}_+(p,q)$ is a discrete subspace of $(\mathscr{C}_+(p,q)^0, \tau_{\rm lc})$, $\mathscr{C}_+^{i_0}(p,q) \cup \{0\}$ is a closed subset of $(\mathscr{C}_+(p,q)^0, \tau_{\rm lc})$. By Corollary 3.3.10 of [6], $\mathscr{C}_+^{i_0}(p,q) \cup \{0\}$ is locally compact. Since the semigroup $\mathscr{C}_+^{i_0}(p,q) \cup \{0\}$ is isomorphic to the additive semigroup of non-negative integers with adjoined zero $(\omega, +)^0$, by Proposition 1 the semigroup $\mathscr{C}_+^{i_0}(p,q) \cup \{0\}$ is a compact subsemigroup of $(\mathscr{C}_+(p,q)^0, \tau_{\rm lc})$. \square

Lemma 5. $\mathscr{C}^i_+(p,q) \cup \{0\}$ is a compact subset of $(\mathscr{C}_+(p,q)^0, \tau_{lc})$ for any $i \in \omega$.

Proof. By Lemma 4 there exists $i_0 \in \omega$ such that $\mathscr{C}^{i_0}_+(p,q) \cup \{0\}$ is a compact subset of $(\mathscr{C}_+(p,q)^0, \tau_{lc})$. We fix an arbitrary $i \in \omega$. The semigroup operation in $\mathscr{C}_+(p,q)^0$ implies the following:

(1) if $i < i_0$, then

$$\begin{split} a^{i_0-i} \cdot \mathscr{C}_+^{i_0}(p,q) &= \left\{ a^{i_0-i} \cdot b^{i_0} a^{i_0+s} \colon s \in \omega \right\} = \\ &= \left\{ b^{i_0-(i_0-i)} a^{i_0+s} \colon s \in \omega \right\} = \\ &= \left\{ b^i a^{i_0+s} \colon s \in \omega \right\} = \\ &= \mathscr{C}_+^i(p,q) \setminus \left\{ b^i a^i, \dots, b^i a^{i_0-1} \right\}; \end{split}$$

(2) if $i > i_0$, then

$$\begin{split} b^i a^i \cdot \mathscr{C}_+^{i_0}(p,q) &= \left\{ b^i a^i \cdot b^{i_0} a^{i_0 + s} \colon s \in \omega \right\} = \\ &= \left\{ b^i a^i \cdot b^{i_0} a^{i_0} \cdot a^s \colon s \in \omega \right\} = \\ &= \left\{ b^i a^i \cdot a^s \colon s \in \omega \right\} = \\ &= \left\{ b^i a^{i + s} \colon s \in \omega \right\} = \\ &= \mathscr{C}_+^i(p,q). \end{split}$$

18 Gutik O.V.

Hence, if $i > i_0$, then $\mathscr{C}^i_+(p,q) \cup \{0\}$ is a compact subset of $(\mathscr{C}_+(p,q)^0, \tau_{lc})$ as a continuous image of compact space $\mathscr{C}^{i_0}_+(p,q) \cup \{0\}$ under the left shift $\lambda_{b^i a^i} : x \mapsto b^i a^i \cdot x$ in $(\mathscr{C}_+(p,q)^0, \tau_{lc})$. By a similar way, in the case when $i < i_0$ we obtain that $\mathscr{C}^i_+(p,q) \cup \{0\}$ is compact, because it is the union of the finite family of compact subsets $\{a^{i_0-i} \cdot \mathscr{C}^{i_0}_+(p,q), \{b^i a^i\}, \dots, \{b^i a^{i_0-1}\}\}$. \square

Example 1. Let $\{x_i\}_{i\in\omega}$ be any non-decreasing sequence of non-negative integers. We define the topology $\tau_{\{x_i\}}$ on the semigroup $\mathscr{C}_+(p,q)^0$ in the following way. Put

$$U^n_{\{x_i\}}(0) = \{0\} \cup \{b^k a^{k+x_k+s} : k, s \in \omega \text{ and } k+x_k+s > n\}.$$

We suppose that all points of the set $\mathscr{C}_+(p,q)$ are isolated in $(\mathscr{C}_+(p,q)^0, \tau_{\{x_i\}})$, and the family $\mathscr{B}_{\{x_i\}}(0) = \{U^n_{\{x_i\}}(0) : n \in \omega\}$ is the base of the topology $\tau_{\{x_i\}}$ at zero 0 of the semigroup $\mathscr{C}_+(p,q)^0$.

It is obvious that the space $(\mathscr{C}_+(p,q)^0, \tau_{\{x_i\}})$ is Hausdorff and locally compact.

Next we show that the semigroup operation in $(\mathscr{C}_+(p,q)^0, \tau_{\{x_i\}})$ is separately continuous. Suppose $b^m a^{m+x_m+s} \in U^n_{\{x_i\}}(0)$ and $m \leq n = i+j \geq i$. Then $m+x_m+s > n$, and hence, $i+j+x_m+s \geq n$, which implies that $b^i a^{i+j+x_m+s} \in U^n_{\{x_i\}}(0)$.

If $m > n = i + j \ge i$, then $b^i a^{i+j} \cdot b^m a^{m+x_m+s} = b^{m-j} a^{m+x_m+s}$. In the case when $m-j \le n$ we have that $m+x_m+s \ge n$ and $b^{m-j} a^{m+x_m+s} \in U^n_{\{x_i\}}(0)$. In the case when m-j > n we have that

$$m - j + x_{m-j} + s \leq m - j + x_m + s \leq m + x_m + s$$

because $\{x_i\}_{i\in\omega}$ is a non-decreasing sequence of non-negative integers, and hence $b^{m-j}a^{m+x_m+s}\in U^n_{\{x_i\}}(0)$. Therefore, the inclusion $b^ia^{i+j}\cdot U^n_{\{x_i\}}(0)\subseteq U^n_{\{x_i\}}(0)$ holds for any $n\geqslant i+j$.

If $m \ge n$, then $m + x_m + s > n$, and hence, we have that

$$b^{m}a^{m+x_{m}+s} \cdot b^{i}a^{i+j} = b^{m}a^{m+x_{m}+s-i+i+j} = b^{m}a^{m+j+x_{m}+s}$$

This implies that for any $n \ge i + j$ the following inclusion $U_{\{x_i\}}^n(0) \cdot b^i a^{i+j} \subseteq U_{\{x_i\}}^n(0)$ holds. Therefore, the semigroup operation in $(\mathscr{C}_+(p,q)^0, \tau_{\{x_i\}})$ is separately continuous.

Since there exist continuum many non-decreasing sequence of non-negative integers in ω , Lemma 5 and Example 1 imply the main theorem of this paper.

Theorem 1. On the semigroup $\mathscr{C}_+(p,q)^0$ ($\mathscr{C}_-(p,q)^0$) there exist continuum many Hausdorff locally compact shift-continuous topologies up to topological isomorphism.

Since for any non-decreasing sequence of non-negative integers $\{x_i\}_{i\in\omega}$ in ω and any $n\in\omega$ the set $\mathscr{C}_+(p,q)^0\setminus U^n_{\{x_i\}}(0)$ is either finite or infinite, we get the following corollary.

Corollary 1. On the semigroup $\mathscr{C}_+(p,q)^0$ ($\mathscr{C}_-(p,q)^0$) there exist exactly three Hausdorff locally compact shift-continuous topologies up to homeomorphism.

References

- [1] Bardyla S. Classifying locally compact semitopological polycyclic monoids. Mat. Visn. Nauk. Tov. Im. Shevchenka 2016, 13, 21–28.
- Bardyla S. On locally compact semitopological graph inverse semigroups. Mat. Stud. 2018, 49 (1), 19–28.
 doi: 10.15330/ms.49.1.19-28
- [3] Bardyla S. On topological McAlister semigroups, J. Pure Appl. Algebra 2023, $\bf 227$ (4), 107274. doi: 10.1016/j.jpaa.2022.107274
- [4] Carruth J.H., Hildebrant J.A., Koch R.J. The theory of topological semigroups, Vol. *I*, Marcel Dekker, Inc., New York and Basel, 1983.
- [5] Clifford A.H., Preston G.B. The algebraic theory of semigroups, Vol. I, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
- [6] Engelking R. General topology, 2nd ed., Heldermann, Berlin, 1989.
- [7] Gutik O. On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero, Visnyk L'viv Univ., Ser. Mech.-Math. 2015, 80, 33-41.
- [8] Gutik O. On non-topologizable semigroups, Preprint (arXiv: 2405.16992).
- [9] Gutik O., Khylynskyi P. On a locally compact submonoid of the monoid cofinite partial isometries of N with adjoined zero, Topol. Algebra Appl. 2022, 10 (1), 233–245. doi: 10.1515/taa-2022-0130
- [10] Gutik O.V., Khylynskyi M.B. On locally compact shift continuous topologies on the semigroup $B_{[0,\infty)}$ with an adjoined compact ideal, Mat. Stud. 2024, **61** (1), 10–20. doi: 10.30970/ms.61.1.10-20
- [11] Gutik O.V., Maksymyk K.M. On a semitopological extended bicyclic semigroup with adjoined zero, J. Math. Sci. 2022, 265 (3), 369–381. doi: 10.1007/s10958-022-06058-6
- [12] Gutik O., Mykhalenych M. On a semitopological semigroup $\mathbf{B}_{\omega}^{\mathscr{F}}$ when a family \mathscr{F} consists of inductive non-empty subsets of ω , Mat. Stud. 2023, **59** (1), 20–28. doi: 10.30970/ms.59.1.20-28
- [13] Gutik O., Pagon D., Pavlyk K. Congruences on bicyclic extensions of a linearly ordered group, Acta Comment. Univ. Tartu. Math. 2011, 15 (2), 61–80. DOI: 10.12697/ACUTM.2011.15.10
- [14] Haworth R.C., McCoy R.A. Baire spaces, Dissertationes Math., Warszawa, PWN, 1977. Vol. 141.
- [15] Makanjuola S.O., Umar A. On a certain subsemigroup of the bicyclic semigroup, Commun. Algebra 1997, **25** (2), 509–519. doi: 10.1080/00927879708825870
- [16] Maksymyk K. On locally compact groups with zero, Visn. Lviv Univ., Ser. Mekh.-Mat. 2019, 88, 51–58. (in Ukrainian).
- [17] Mokrytskyi T. On the dichotomy of a locally compact semitopological monoid of order isomorphisms between principal filters of \mathbb{N}^n with adjoined zero, Visn. Lviv Univ., Ser. Mekh.-Mat. 2019, 87, 37–45.
- [18] Ruppert W. Compact semitopological semigroups: an intrinsic theory, Lect. Notes Math., 1079, Springer, Berlin, 1984. doi: 10.1007/BFb0073675

Received 08.09.2024

20 Gutik O.V.

Гутік О.В. Про локально компактні трансляційно неперервні топології на напівгрупах $\mathscr{C}_+(a,b)$ і $\mathscr{C}_-(a,b)$ з приєднаним нулем // Буковинський матем. журнал — 2024. — Т.12, №1. — С. 14–20.

У праці [15] Маканюола та Умар вивчали алгебричні властивості верхньої $\mathscr{C}_+(a,b)=\{q^ip^j\in\mathscr{C}(p,q)\colon i\leqslant j\}$ та нижньої $\mathscr{C}_-(a,b)=\{q^ip^j\in\mathscr{C}(p,q)\colon i\geqslant j\}$ піднапівгруп біциклічного моноїда $\mathscr{C}(a,b)$. Приймемо $\mathscr{C}_+(p,q)^0$ і $\mathscr{C}_-(p,q)^0$ — напівгрупи $\mathscr{C}_+(a,b)$ і $\mathscr{C}_-(a,b)$ з приєднаним нулем. Відомо [7], що на біциклічній напівгрупі з приєднаним нулем $\mathscr{C}(p,q)^0$ кожна гаусдорфова локально компактна трансляційно неперервна топологія є або копактною, або дискретною. У цій праці описано всі гаусдорфові локально компактні трансляційно неперервні топології на адитивній напівгрупі невід'ємних цілих чисел з приєднаним нулем $(\omega,+)^0$ і на напівгрупах $\mathscr{C}_+(p,q)^0$ і $\mathscr{C}_-(p,q)^0$. Зокрема доведено, що на напівгрупах $\mathscr{C}_+(p,q)^0$ і $\mathscr{C}_-(p,q)^0$ і гочністю до топологічного ізоморфізму, причому таких топологій на напівгрупах $\mathscr{C}_+(p,q)^0$ і $\mathscr{C}_-(p,q)^0$ і снує рівно три з точністю до гомеоморфізму.