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ON LOCALLY COMPACT SHIFT-CONTINUOUS TOPOLOGIES ON
SEMIGROUPS %, (4, B) AND %_(A, B) WITH ADJOINED ZERO

Let €4 (a,b) and €_(a,b) be upper and down subsemigroups of the bicyclic semigroup
defined in [15]. Let € (p,q)° and €_(p, q)° be the semigroups %’y (a,b) and €_(a,b) with the
adjoined zero. We show that the semigroups % (p,q)° and €_(p, ¢)° admit continuum many
different Hausdorff locally compact shift-continuous topologies up to topological isomorphism.
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In this paper we shall follow the terminology of [4, 5, 6, 18|.
By w we denote the set of all non-negative integers. Throughout these notes we always
assume that all topological spaces involved are Hausdorff.

Definition 1 ([4, 18]). Let S be a non-void topological space which is provided with an
associative multiplication (a semigroup operation) u: S x S — S, (x,y) — u(x,y) = xy.
Then the pair (S, p) is called

(i) aright topological (left topological) semigroup if all interior left (right) shifts \s: S —
S, x v sx (ps: S — S, x— xs), are continuous maps, s € S;

(77) a semitopological semigroup if the map p is separately continuous;
(#7i) a topological semigroup if the map p is jointly continuous.

We usually omit the reference to p and write simply S instead of (S, ). It goes without
saying that every topological semigroup is also semitopological and every semitopological
semigroup is both a right and left topological semigroup.

A topology 7 on a semigroup S is called:

e a semigroup topology if (S, 7) is a topological semigroup;
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e a shift-continuous topology if (S, 7) is a semitopological semigroup;

e an left-continuous (right-continuous) topology if (S, 7) is a left (right) topological semi-

group.

The bicyclic monoid %'(a,b) is the semigroup with the identity 1 generated by two ele-
ments a and b subjected only to the condition ab = 1. The semigroup operation on % (a, b)
is determined as follows:

pr-ttman i | < my
vhal - bma™ = { bFan, ifl=m
beat=mtn o if 1> m.

In [15] Makanjuola and Umar study algebraic property of the following anti-isomorphic
subsemigroups

C(p,q) ={dY €€p,q):i<j} and C_(p,q) ={dP €€p,q):i>j},

of the bicyclic monoid. In the paper [8] we prove that every Hausdorff left-continuous (right-
continuous) topology on the monoid €, (a,b) (¢-(a,b)) is discrete and show that there exists
a compact Hausdorff topological monoid S which contains €, (a,b) (¢-(a, b)) as a submonoid.
Also, in [8] we constructed a non-discrete right-continuous (left-continuous) topology 7,7 (7,)
on the semigroup %, (a,b) (¢_(a,b)) which is not left-continuous (right-continuous).

Later by €, (p,q)" and €_(p,q)° we denote the semigroups %, (a,b) and €_(a,b) with
the adjoined zero.

In [7] it is proved that every Hausdorff locally compact shift-continuous topology on the
bicyclic monoid with adjoined zero is either compact or discrete. This result was extended by
Bardyla onto the p-polycyclic monoid [1] and graph inverse semigroups [2], and by Mokryt-
skyi onto the monoid of order isomorphisms between principal filters of N® with adjoined
zero [17]. In [9] the results of paper |7] onto the monoid IN,, of all partial cofinite isome-
tries of positive integers with adjoined zero are extended. In [12] the similar dichotomy was
proved for so called bicyclic extensions By when a family .% consists of inductive non-empty
subsets of w. Algebraic properties on a group G such that if the discrete group G has these
properties, then every locally compact shift continuous topology on GG with adjoined zero
is either compact or discrete studied in [16]. The above results are extended in [10] to the
bicyclic extension B ) of the additive group of reals with adjoined zero (see [13]) in the
cases when on the semigroup By ) the usual topology, the discrete topology or the topol-
ogy determined by the natural partial order is defined. Also, in [11] it is proved that the
extended bicyclic semigroup 4, with adjoined zero admits distinct ¢-many shift-continuous
topologies, however every Hausdorff locally compact semigroup topology on %7 is discrete.
In [3] Bardyla proved that a Hausdorff locally compact semitopological semigroup McAlister
Semigroup M is either compact or discrete. However, this dichotomy does not hold for the
McAlister Semigroup My and moreover, My admits continuum many different Hausdorff
locally compact inverse semigroup topologies [3].

In this paper we show that the semigroups €, (p,q)° and € (p,q)° admit continuum
many different Hausdorff locally compact shift-continuous topologies up to topological iso-
morphism.
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Lemma 1. Every locally compact Hausdorff shift-continuous topology T on the additive
semigroup of non-negative integers (w,+) is discrete.

Proof. Fix any ng € w. The Hausdorflness of the space (w,7) implies that nj = {k € w: k <
n} is a closed subset of (w, 7). Then w\n}, is an open subset of (w,7), and by Corollary 3.3.10
of [6], w\ n} is locally compact, and hence, Baire. By Proposition 1.30 of [14] the space w\ nj,
contains an isolated point n;, which is isolated in (w, 7) because w \ né is an open subset of
(w, 7). This and the condition ny < ny imply that ng is an isolated point in (w, 7), because
no is the full preimage of n; under the continuous right shift p,, n,: (w,+,7) = (w, +,7),
i+ i+ (ny —ng). This completes the proof of the lemma. O

Later by (w,+)° we denote the additive semigroup of non-negative integers (w,+) with
adjoined zero. Without loss of generality we may assume that (w,+)° = w U {oo} with the
extended semigroup operation n 4+ 0o = 00 +n = 0o + 0o = oo for all n € w, i.e., oo is the
zero of (w, +)°.

Proposition 1. Every Hausdorff locally compact shift-continuous topology on the semigroup
(w, +)° is either compact or discrete.

Proof. Let 1. be an arbitrary non-discrete Hausdorff locally compact shift-continuous topol-
ogy on the semigroup (w,+)°. The Hausdorffness of ((w,+)?, 7.) implies that w is an open
subset of ((w, +)%, 7). Then by Corollary 3.3.10 of [6], w is locally compact, and by Lemma 1
is a discrete subspace of ((w,+)°, 7).

Since all point from w are open-and-closed subsets of the locally compact space
((w, +)%, 71c), there exists a base %,_(c0) of the topology 7. at the point oo which consists
of compact-and-open subsets of ((w,+)°, 7i.). Hence, for any U,V € %, _(0o) the set U\ V
is finite.

We state that for any U € %, _(0o) the set w \ U is finite. Suppose to the contrary
that there exists U € %, (c0) the set w \ U is infinite. The separate continuity of the
semigroup operation in ((w, +)", 7i.) implies that there exists V' € %, _(o0) such that V C U
and 1+ V C U. Since w \ U is infinite, there exists a sequence {,}ne, € U such that
1+z; # U for any ¢ € w. This implies that z; # V for any i € w, and hence, the set U\ V is
infinite, a contradiction. The obtained contradiction implies that 7. is a compact topology
on (w,+)°. O

Later by 7. we denote a Hausdorff locally compact shift-continuous topology on the
semigroup %, (p, q)°.

Since every Hausdorff shift-continuous topology on the semigroup %, (p, q) is discrete (see
[8, Theorem 6]), the following statements holds.

Lemma 2. If U and V' are any compact-and-open neighbourhoods of the zero in
(€. (p,q)°, 1), then the set U \ V is finite.

For any 7 € w we denote

€y (p,q) = {V'a"™ € € (p,q): s € w}.
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The semigroup operation of € (p, ¢) implies that €} (p, ¢) is a subsemigroup of €, (p, ¢), and
moreover, ijr (p,q) is isomorphic to the additive semigroup of non-negative integers (w, +)
for any i € w [8].

Lemma 3. For any compact-and-open neighbourhood U of the zero in (€, (p, q)°, 1ic) there
exists ¢ € w such that the set U N €} (p, q) is infinite.

Proof. Suppose to the contrary that there exists a compact-and-open neighbourhood U of
the zero in (€ (p, q)°,7ic) such that |U N €L (p,q)| < oo for any i € w. Then there exists a
sequence {i;}je, C w such that U N ‘Kf (p,q) # @ for any j € w. The separate continuity
of the semigroup operation in (%, (p,q)°, 1) and local compactness of 7. imply that there
exists a compact-and-open neighbourhood V' of zero in (¢, (p,q)°, 7ic) such that V. C U
and V -a C U. By the definition of the semigroup operation in %, (p,q) we get that
€i(p,q) - a C € (p,q) for all i € w. Since for any j € w the set U N %f(p, q) is non-
empty and finite, there exists maximal non-negative integer s; such that b+ € U but
biia'itsi ¢ V. This implies that the set U \ V is infinite, which contradicts Lemma 2. The
obtained contradiction implies the statement of the lemma. O

Lemma 4. For any compact-and-open neighbourhood U of the zero in (€, (p, q)°, 1ic) there
exists iy € w such that €°(p,q) U {0} is a compact subset of (€. (p,q)°, Tic)-

Proof. By Lemma 3 for any compact-and-open neighbourhood U of the zero in (€, (p, q)°, 7ic)
there exists iy € w such that the set U N €2°(p,q) is infinite. Since €\ (p,q) is a discrete
subspace of (¢, (p,q)°, Tic), €1°(p,q) U {0} is a closed subset of (¢, (p,q)°, 7). By Corol-
lary 3.3.10 of [6], €°(p,q) U {0} is locally compact. Since the semigroup €1°(p, q) U {0} is
isomorphic to the additive semigroup of non-negative integers with adjoined zero (w, +)°, by
Proposition 1 the semigroup € (p, ¢)U{0} is a compact subsemigroup of (€ (p, ¢)°, 7). [
Lemma 5. €} (p,q) U {0} is a compact subset of (€4 (p,q)°, 1) for any i € w.

Proof. By Lemma 4 there exists ip € w such that €°(p,q) U {0} is a compact subset of
(€, (p,q)° 7ic). We fix an arbitrary ¢ € w. The semigroup operation in ¢ (p, ¢)° implies the
following;:

(1) if i < g, then
a® " €L (p,q) = {a®" Va0 s ew) =
_ {biof(iofi)aioJrs: sew) =
= {biai(’“: s € w} =
= ‘Ki(p, q)\ {biai, . ,biaio_l} :
(2) if i > i, then
b'a' - €L (p,q) = {V'a' b s €w} =
= {biai bah . at: s € w} =
= {biai~a3: sz} =
= {bia”s: s € w} =
=€, (p,q)-
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Hence, if ¢ > io, then € (p,¢) U {0} is a compact subset of (€ (p,q)° 7ic) as a continuous
image of compact space €2°(p, ¢)U{0} under the left shift Ayiqi: 2 +— bia’-x in (€, (p, q)°, 7ic)-
By a similar way, in the case when ¢ < iy we obtain that ‘é’r (p, )U{0} is compact, because it is
the union of the finite family of compact subsets {a"~" - €}°(p, q), {bia’} ..., {bia0"1}}. O

Example 1. Let {z;},
the topology T, on the semigroup €. (p,q)® in the following way. Put

be any non-decreasing sequence of non-negative integers. We define

U,y (0) = {0} U {bkak”’”sz k,sc€w and k+mzp+s>n}.

We suppose that all points of the set € (p, q) are isolated in (€4 (p, q)°, Tix,}), and the family
Bi21(0) = {U{lei}(()): ne w} is the base of the topology T(,; at zero 0 of the semigroup
€ (p,q)°.

It is obvious that the space (€4 (p, q)°, T(z,}) is Hausdorff and locally compact.

Next we show that the semigroup operation in (¢4 (p, q)°, T(s,3) is separately continuous.

Suppose b™matrmts Up,,(0) andm <n=i+j >i. Thenm+zy,+s>n, and hence,
i+ j + xm + s = n, which implies that bla'tit+em+s ¢ Ut,;(0).

Ifm >n=i+j >1i, then bia'™7 - pma™tom*s = pm—igm+tem+s [n the case when m—j < n
we have that m + x,, + s > n and b"7a™**n* € Uy ,(0). In the case when m — j > n we
have that

M—J+Tpmj+8<M—J+ Ty +s<m+x,+s,

because {x;},.,, Is a non-decreasing sequence of non-negative integers, and hence
pIgmtemts € Up 1(0). Therefore, the inclusion b'a’™*7 - UP, ,(0) € UP,,(0) holds for any
nzi+7j.

If m > n, then m + x,, + s > n, and hence, we have that

bmam+fc7n+s . biai+j — bmam—&-xm-ks—i—&-i—f—j _ bmam-l—j—&-xm-i-s'

This implies that for any n > i+ j the following inclusion U}, ,(0) - bla't C UY,,1(0) holds.
Therefore, the semigroup operation in (€4 (p, q)°, Tz,3) is separately continuous.

Since there exist continuum many non-decreasing sequence of non-negative integers in w,
Lemma 5 and Example 1 imply the main theorem of this paper.

Theorem 1. On the semigroup €, (p, q)° (¢-(p,q)°) there exist continuum many Hausdorff
locally compact shift-continuous topologies up to topological isomorphism.

Since for any non-decreasing sequence of non-negative integers {x;}._, in w and any n € w

€W

the set €y (p,q)° \ Ur,.,1(0) is either finite or infinite, we get the following corollary.

Corollary 1. On the semigroup €, (p,q)° (¢-(p,q)°) there exist exactly three Hausdorff
locally compact shift-continuous topologies up to homeomorphism.
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T'yrik O.B. IIpo 40kaA5HO KOMNAKMHT MPAHCAAUTTHO HENEPEPSHT TONOA02TE HA HATIE2PYNAT
€+ (a,b) i €_(a,b) 3 npuednarnum nysem // BykoBuncbkuii marem. xypaana — 2024, — T.12,
Nel. — C. 14-20.

VY npani [15] Makastoosa ta Ymap BuUB4Yasn aareSpudHi BaacTusocTi BepxHbOI €4 (a,b) =
{qipj €€(p,q):i< j} Ta HUKHBOI 6 (a,b) = {qipj €€(p,q):i> j} OiTHAIIBIPYII GinuK-
sgiwrOTO MOHOINA € (a,b). Ilpuitmemo €4 (p,q)° i €-(p,q)° — manisrpymu € (a,b) i €_(a,b) 3
npueTHAHIM HyJaeM. Bigomo [7], mo ma 6inukmivniit mamisrpymi 3 npueamamnM mymem € (p, q)°
KOXKHa TaycopdoBa JIOKAJbHO KOMIIAKTHA, TPAHCJISIIHO HellepepBHA TOIOJIOTist € ab0 KoIa-
KTHO, 800 IUCKPETHOIO. Y IIiiif IIpaIlli OIMUCAHO BCi raycopdoBi JTOKAJIBHO KOMIIAKTHI TPAHCIIs-
[IfHO HellepepPBHi TOMOJIOTIT HA A UTHUBHIM HANIBIPYIN HEBLA €MHUX IIJINX IUCEJT 3 TIPUETHAHIM
mynem (w, +)° i ma mamisrpynax €y (p, q)° i €_(p, q)°. 3okpema 0BeIeHO, MO Ha HAIBIPYIIaX
€ (p,q)° 1 €_(p,q)° icuye koHTHHYYM DisHEX Tayc0pdOBHX JTOKATBLHO KOMIAKTHHEX TPAHC-
JISIIAHO HEITEPEPBHUX TOIIOJIOTIH 3 TOYHICTIO JI0 TOIOJIOTIYHOTO 130MOPMI3MYy, IIPUIOMY TAKUX
Tomotoriit Ha Hamisrpynax € (p, ¢)° i € (p, q)° icuye piBHO TpH 3 TOUHICTIO 0 TOMEOMOPDI3MY.



