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ON SOLVABILITY AND WELL-POSEDNESS OF (N + 1)-TIMES
INTEGRATED CAUCHY PROBLEM

For a closed operator A in a Banach space X, the (n+ 1)-times integrated Cauchy problem
Cnt1l7], 0 < 7 < 00, of finding a solution v(¢) of the problem v'(t) = Av(t) + %x,v(o) =
0,(t € [0,7],z € X) is considered. In the case where the operator A is normal in a Hilbert
space, all its solutions are described. The necessary and sufficient conditions on the spectrum
of A under which this problem is well-posed are established.
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INTRODUCTION

Let A be a closed linear operator in a Banach space X with norm || - || and 0 < 7 < 0.
By Cy[r] we mean the Cauchy problem

u e C([0,7]; D(A)) N C([0, 7]; X),
uw'(t) = Au(t), te€]0,7], Co[7]
(0) .CE’

where D(-) is the domain of an operator, C([0,7]; D(A)) (C*([0,7]; X)) is the space of all
continuous (continuously differentiable) vectop-valued functions u(t) : [0, 7] — D(A) (u(t) :
[0,7] = X), D(A) is considered with the graph norm ||z||4 = ||z| + ||Az]|.

If u(t) is a solution of Cy[7], then the vector-valued function

t

t_
v(t)—/( 3)" ds—// / toet) dpsrdtn . .. db
0
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is a solution of the problem

v E C([O,T];D(A)Lﬂ c([o, 7]; X),

V(t) = Av(t) + %x te 07, Coarl7]
v(0) = 0.
[(t—s)"

Really, by differentiating / u(s) ds in the parameter ¢ and taking into account that

n!
0
not only the integrand but the upper limit of the integral depends on ¢, we obtain

/

V() = /t (t;!s)nu(s)ds _ /t <<t;!3>nu(s)>;ds+t'(t;!8)nu(s) _

"(s)ds =

In accordance with [1], C,41[7] is called the (n + 1)-times integrated Cauchy problem.
By the definition, C,[7],n € Ny = NU {0} is well-posed if for any € X it has a unique
solution.

It should be noted that if A is the generator of a Cy-semigroup of linear operators in X,
then for all z € D(A) there exists a unique solution of Cy[7] (see, for example, [2]). As has
been shown in [3]|, the converse, generally, is not true. However, C[7] is well-posed if and
only if A generates a Cy-semigroup.

In this paper, all the solutions of the problem C,,1[7] are described in the case where A
is a normal operator in a Hilbert space, and the criterion of its well-posedness is presented.
The results without proof were announced in [4].

1 PRELIMINARIES

For A € C, n € Ny, we put

It is obvious that
o~ tkAk (n+1) > tp+n+1Ap tn+1 o PP

D, (N t) = _ = = 1
a0 1) Z k! — (p+n+1) n+1'zn+2 (n+p+1) (1)

k=n+1 p=0

The function ®,,(\, t) possesses the following properties:
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1) for a fixed A (a fixed t), ®,(A,t) is entire with respect to t (to A);
4o, (N, ¢
2 @D g e

d*®, () 1)
dtF
d*®,,(\, 1)
dt* t=0
d" 1P, (N, 1) 1
dentt t=0 '
The properties 2) - 4) can be verified directly. The fact that for a fixed ¢, the function
®,,(\, t) is entire in A follows from the relation (see [5])

k*ltn tn*k‘kl

= \ed, (Nt e
e IR promy

3)

)

1] _ I I 2]
(/(n+2)-..(n+p+1) C/(n+2).. (n+p+1) S /(D)

which shows that

N t
lim i

= ¢/(n+2)...(n+p+1) -0

so, the convergence radius of the series in (1) is infinite. It is also evident that for a fixed
A, @,(\, ) is entire in ¢ as a product of two entire functions.

2 THE CONDITIONS FOR SOLVABILITY AND WELL-POSEDNESS OF THE PROBLEM

In this section, the main attention is focussed on the case of normal A. So, let X = §) be
a Hilbert space with scalar product (-, -) and A be a normal operator in it. Starting from the
properties 1)-4) of the function ®,(\, ) and the operational calculus for normal operators
(see |6, 7]) we arrive to the following assertion.

Theorem 1. Suppose that the operator A is normal in §), FE(\) and o(A) are its resolution
of identity and spectrum respectively. The problem C,1[7] has a solution if and only if

vt € [0,7] : / 1@, (0D BNz, 7) < oo (@)
o(A)
Moreover, the solution may be represented in the form
ot) = / (M 1) dE(\)z. (3)
o(A)

In order that this problem be well-posed, it is necessary and sufficient that

sup |®,—1 (A, t)] < oo, t€]0,7]. (4)
A€o (A)
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Proof. Assume that condition (2) is fulfilled. This condition stipulates the inclusion z €
D(D,(A,1)).
Really, it follows from the property 2) of @, (A, ) that

t

D, (N t) = /<I>n_1()\, s)ds,

0

/|q> D)2 d(E(N) // d(E(N)z, 1) <

a(A) 10

S0,

2

g/ /t|<I>n_1()\,s)|ds d(E(\ //|<I>n 1(A,s)ldsd(E(N)z,z) | =
o(A) \O 0

o(A)

_ / ds / @, 1 ()| d(E(V)z, )

0 o(A)

2

Since the function / |®,,_1 (N, s)| d(E(N)x, x) is continuous on [0, 7] (see [6]), we have

o(A)

/ds / 1@, 1(A, )| d(E(\)z, 7) < 00,

a(4)
Thus, x € D(P,(A,t)) for any ¢t € [0, 7]. Then the property 2) implies the relation

A, (A1) 1"
AP, (N, 1)[2 = ’—dt —

tn th
< (10l + ) < (@n (B + 7) |

whence

/ A, (N, )P d(E(N)z,z) < 2 / 1D (N )P A(E(N)z, 2) + 2 (g) lz]|? < oo,
o(A)

that is, ®,,(A,t)z € D(A).
By the direct verification one can ascertain that vector-valued function (3) is a solution
of the problem C,,;1[7]. Indeed,

dz()i_it) = / O, 1 (N t)d(E(N)zx,x) = / AP, (A ) d(E(N)x, z) + ;—n':v = Av(t) + %n'a’;
o(4) o)
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It is also obvious that, in view of (1), v(0) = 0.
Now prove the necessity of the condition. Suppose that the problem C,4[7] is solvable
and v(t) is its solution. Then

V(t) — Av(t) = %x — B, (M) — ADL (N ),

which implies the inclusion x € D(®,_1(A,t)) [ D(AP,(A,t)). Therefore condition (2) is
valid.

The well-posedness of C,,11[7] in the case of normal A is equivalent to the definability of
the closed operator @, _1(A,t), t € [0,7], on the whole space §, so, by the Banach closed
graph theorem, to the boundedness of this operator, i.e. inequality (4). O

Theorem 2. Let A be a normal operator in §). The problem C,1[r] is well-posed if and
only if there exist constants R > 0 and ¢ > 0 such that

o(A) C Ky U E.(n,T),

where

Kr={\eC: |\ <R},
E.n,7) = {)\ € C: ReX >0, |Im)\| > ce%}.

Proof. Suppose that the problem C,,1[7] is well-posed. Then, in accordance with Theorem
1, there exists ¢ > 0 such that

VA€ oa(A): |P,1(\T)] <e,

that is,
1
1 AT N (T)\)k
N P
k=0
cTReX n—1 Tk|/\|k eTRex n—1 Tk

> — N T
AR [Al*EL A A"~k
k=0 k=0
For this reason, for A\ € 0(A) with Re\ > 3, where § > 0 is arbitrary fixed, we obtain

n—1 n—1
eTRe)\ Tk eTReA Tk

> N
¢ ReA)™ Rkl = A[* &= Gnor]

Z R
AP 2T

eTRe)\ 1 nzl (Tﬁ)k eTRe)\ e’rﬁ

pr— —_—— > —_ .

k=0

Set now (§ = " Then for ReA > 0 we have
T

en TReA

=T 2y - emn - (%)

67'Re/\

T
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e™s n
Since minimum of the function —, 8 > 0, is attained at the point —, it follows for any
T

671

o e+ (5)) e

ReA TReA TReA
e’ e e
A" > >

() (wen ) e

n

ReA > 0 the inequality

whence

and, consequently,
TReA

Al > cre

where ¢; = (/c + er)~! does not depend on Re.
For a a fixed ReA = 8 > 0, we have

[ImA| = || sin (arccos %) > coen

with ¢y = ¢q sin (arccos |§|

Assume now that ReA < 0. As has been shown in [8],
A)C{AeC|x=tz:t€[l,00),|z| <R},

where R is the norm of the bounded normal operator A(I + A*)~!. Since Re) = tRez < 0,
we have Rez < 0, namely, Rez € [-R,0]. Taking into account correlation (1), we conclude
that

o 0o Tk>\k 7 0 ktkk
> 1P, (N 7)| = =—
€2 |Pna(A )] n! ;(nwtl)...(n%—k: n! ;nﬂLl (n+ k)| ®)

Let now A\g = zotg € 0(A). Then the power series

Z;n—l—l (n+k)

converges at the point \g. By the former Abel theorem (see, for instance, [9]), the circle
|A] = |Ao| divides the whole plane C into the convergence region {\ : |A| < [A\o|} of series (5)
and its divergence one {A : |[\| > |\g|. Thus, there are no poits of spectrum of the operator
A outside the circle [A| < |Ag|. As |20] < R and the minimal value of ¢, is equal to 1, Kr =
{A € C:|A} < R is the minimal circle containing all the points A € o(A) : ReA < 0. O
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Ax Bimomo, kimacuana Teopist Cp-TiBrpyI JHINHAX OMEPATOPIB € BAXKJIMBUM 1HCTPYMEHTOM
JI7IsT BUBYEHHSI 0araTboxX MHUTAaHb Teopil audepeHItiaJbHuX PiBHSHL ¥y 0aHAXOBOMY MIPOCTOPI,
sokpema 3azauai Komi Co[7] Bimmykamns poss’ssky u(t),t € [0,7] pisuauna u'(t) = Au(t),
o 3a10BosbHsie yMoBy 4(0) = x € X, ne A - 3aMkHenuil JiHiiiHuil oneparop y 6aHaxoBOMY
upocropi X . Bugapigerncst, 10 oJHUM i3 caMUX LI IHUX METOIB Aocimkenns (n+1)-pas (n €
N) npoinrerposanoi 3ajaui Kot Cy11[7] : v/ (t) = Av(t)+ %x, v(0) = 0, € BUBUECHHS BBEJICHAX
Apengrom Tak 3BaHHX (n + 1)-pa3 OPOIHTErpoOBaHUX INBIPYI, TEOPIIO SKHUX y [OJAJBIIOMY
pospobssiin Kenmepman i I'ebep, Tanaka i Miszepa, mge/laybendenc ta in.

VY wiit craTTi OCHOBHA yBara CKOHIIEHTPOBaHA Ha BUMAJKY, KO A € HOpMAJIBHUM OIEPATO-
poMm y rigpbeproBoMy mpocTopi. Buxomsgum 3 BiacruBocreit dbyHKIT

L k
(N t) = 57 (M= 2 (t,z‘l) ) , A € C, oB’s13aHOT TIEBHUM IMHOM 3 BianosigHoo (n+1)-
k=0

pa3 IPOIHTErPOBAHOIO MIBIPYIOI0, Ta ONEPAIIMHOTO YUCJIEHHs JIJIsi HOPMaJIbHUX OIEPaTOpPiB,3
JIOTIOMOTOI0 3a3HaveHol (DyHKIT onucano Bei poss’asknu 3agaai Cp,y1[7] 1 3HalIEHO yMOBH, He-
00XiJtHi i JtocTaTH Jijist 11 KOPEKTHOI ITOCTAHOBKU. bBijibiile TOro, yCTAHOBJIEHO KPUTEPiil Kope-
KTHOCTI 1€l 38124l B TepMiHax JioKaJizallil crekTpa omneparopi A.



