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SHEREMETA M.M., TRUKHAN YU.S.

ON THE GROWTH OF THE MAXIMUM MODULUS OF DIRICHLET
SERIES

For an entire Dirichlet series F(s) = >~ fnexp{sA,} with 0 < X,, T 400, a connection
between the growth of the maximum modulus M (o, F') = sup{|F(c +it)| : t € R} and the de-
crease of the coefficients is studied. For example, it is proved that if hm a(Ag)/B ( o n W)

= @ > 0, where «, 8 are positive continuous functions on [a:o,Jroo) increasing to 400, then
@ (exp{a(ln M(B7'(B(c) +In q), F))} — pexp{a(In M(c, F))}) = +oo for any ¢ > 1 and

og—

p > 1 such that In p/ln ¢ < Q. Similar results are obtained for Dirichlet series with zero
abscissa of absolute convergence .
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INTRODUCTION

For an entire transcendental function f(z) = Z anz™ let My(r) = max{|f(2)| : |z| =7}

It is known [5] that M(ar)/Ms(r) S +oo as r —> +o00 for every a > 1. S. Singh [9] gave
a more simple (on his opinion) proof of this fact, using the relation between My(r) and the
maximal term of the power expansion of f. A much simpler proof is given in [6] for entire
functions given by both power series and Dirichlet series.

Let’s remark that Dirichlet series

= Z foexp{sA,}, s=o0+it, (1)
n=1

with non-negative increasing to +00 exponents A, are direct generalization of power series.
We suppose that series (1) has the abscissa of absolute convergence o, € (—00, 00|, and

for o < 0, we put M(o, F) = sup{|F(c +it)| : t € R}. If 0, = +00 and series (1) is not

reduced to an exponential polynomial then [6] M (o + h, F')/M (o, F) /* +00 as 0 — +00

for every h > 0.
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By L we denote a class of continuous non-negative on (—oo, +00) functions a such that
a(z) = a(zg) > 0 for z < z and a(x) T +oco as rg < x — +oo. We say that a € L) if
a € Land a((1+o(1))x) = (1 4+ 0(1))a(x) as © — +oo. Finally, « € Ly, if « € L and
alcz) = (1 +o(l))a(z) as ¢ — +oo for each ¢ € (0, +00), i. e. « is a slowly increasing
function. Clearly, L,; C L. We remak that for every o € L,; there exists o; € L such

/
that aq(x) = (1 + o(1))a(x) and xal((sv)) — 0 as © — +00. Therefore, in the future we will
a1\ T
: : . xd(x)
assume that the function o € L,; satisfies the condition ) — 0 as z — +o0.
a(x
In [6] the following theorems are proved.
— Inln~y(\,)
Theorem A. Let 0, = +oo, v € L, p>1. If lim =n* >0 then
= (L )
n |fn|
— y(In M F
— ol Mg F) o)

oo ~v?(In M (o, F))
for each q > p'/"".
If the function ~ is continuously differentiable, In y(e*) € Lg, Inln (A1) =
1 —1
= (I1+o(1)lnln~v(\,), Inn = O(\,) as n = oo, k,[F]| = n | fo| —In | fog S 4o

/\n+1_)\n

In 1 An

as ng < n — oo and lim nIn 7(An)
"—mln(ﬁlnﬁ>

(i M(go,F))
B lin M(o,F)) @)

=1, < 00, then

for each q < p'/".

Theorem B. Let 0, = 0, p > 1, y(e®) € L and In In y(z) = o(ln z) as — +oo. If
—  Inlny(\,)

ntse In (A, /I | f)

=n*> 0 then

—3(n M(o/g. F)
ot0 yP(In M(o, F))

for each q > p'/"".
If the function v is continuously differentiable, In v(x) € Lg;, k,[F] /0 andIn In v(A,41) =

— Inlnn . In In v(\,)
= < -
(1+o0(1)Inln~y(A,) as ng < n — oo, nh—{ilo W <1 and n11_>_n(r>10 I v/ £
=1, < 00 then
i Y0 M(o/q, F)) _

oto P(In M(o, F))
for each q < p'/"=.
For the proof of these theorems in [6] the following theorem was used.
Theorem C. Let ¢ > 1, p>1,v € L and ® be a positive function continuous on (g, +00)

— (@ — Inlny(® 1
and increasing to +oo. If lim M < & < +oo then Tim n ln v(®(0)) < np and
s—tos YP(P(0)) cs+o Ino In ¢
7(®(g0))

P . Inln~y(®(0)) _Inp
if lim > & >0 then lim > )
fo_>+oo v (P(0)) — & o5 too In o “lng
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Using the generalized growth scale, here we will continue the studies started in [6].

1 ENTIRE DIRICHLET SERIES

Ifae L, €L and F is an entire function then the quantities

— Tm a(ln M(o, F)) — lim a(ln M(o, F))
QQWB[F] o UL+°° B(U) ’ )\a,,B[F] ‘ UL_+00 ﬁ(U)

are called [7], [8] the generalized (a, §)-order and the generalized lower (v, §)-order of F

respectively. We put

Then the following lemma is true [7], [§].

d -1

Lemma 1. Let a € Lg;, B € L° and dp” (calz)) = 0(1) as ¢ — +oo for each ¢ € (0, +00).
n

If In k = o\ (ca(Mg))) as k — oo for each ¢ € (0,+00) then oo 5[F] = QaplF]. If,
moreover, a(Ag11) ~ a(Ng) and ki[F] 7 400 as kg < k — 0o then A\, g[F| = qa.p[F].

If we choose a(z) = In In y(z) and B(x) = In* z then n* = Qus[F], N« = qup[F] and
equalities (2) and (3) can be written, respectively, in the form

UETEOO (exp{a(ln M(qo, F))} — pexp{a(ln M (o, F))}) = +o0 (4)
and
i (expfa(in M(go, F))} — pexpla(in M(o, F))}) = —oo. (5)

We remark also that Theorem C implies the following statement.

Lemma 2. Let ¢ > 1, p > 1, « € L and ® be a positive function continuous on (zg, +00)
and increasing to +oo. If

i o(®(0)

al—lgloo In o In ¢
then
Jim (exp{a(®(go))} = pexp{a(®(0))}) = +oo,
and if
i a(®(0)) - In p
cotoo N o In ¢
then

lim (exp{a(®(q0))} — pexp{a(®(0))}) = —c0.

o——+00

Using Lemmas 1 and 2 we prove the following theorem.
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Theorem 1. Let 0, = +0o, « € L and 8 € L°. If Q, 4[F] > 0 then

lim (exp{a(ln M(87'(B(0) +1n q), F))} — pexp{a(ln M(c,F))}) = +o0.  (6)

o——+00
for each p > 1 and q > 1 such that Q,p[F]| > In p/In q.
)

If o € Ly, B € L° and df™ (calz) _ = O(1) as v — +oo, In k = oA\ (ca(Mr)))

T
as k — oo for each ¢ € (0,400), a(Agr1) ~ a(Ay), kilF] / +o00 as kg < k — oo and
a,8[F] < +00 then

lim (exp{a(ln M(87'(8(c) +1n q), F))} —pexp{a(ln M(o,F))}) = —c0  (7)

for each p > 1 and q > 1 such that g, g[F] <In p/In q.
Proof. Tf we put ®(c’) = ®1(3~'(In o)) then
i (exp{a(@1(87(B(0) +In q)))} = pexpia(®i(0))}) =
= Tim (exp{a(®:(87"(In (¢¢”))))} — pexp{a(@1(8~" (In ("))} =
Z T (expfal@ (57 (1 42)))) — pesp{a@i(5-1n ) -
= lim (exp{a(®(g0))} — pexp{a(®(0))}),

o—+400

lim (exp{a(®:(87"(B(0) +1n )))} — pexp{a(®i(0))}) =

= Jl_i)_nﬁoo(exp{a(q)(qa))} — pexp{a(®(0))}),
—a@0) o a@®( o) a@(@) o al@®i)
o—too Ino o400 Ino T—+00 x o—too  ((0)
and (@ (0))
Ul—i>_n+loo In o :Ul—i>_n—i-loo B(o)

Therefore, in view of Lemma 2 if ®; is a positive function continuous on (zg, +00) and

increasing to +o00 and
— ®(Pi(0)) Inp

UETOO B(o) In ¢
then
UETOO(GXP{OA( 1(B7H(B(0) +1n )} — pexp{a(Pi(0))}) = +oo,
and if
lim a(®Pi(o)) Inp
o—+00 B(U) In ¢
then

lim (exp{a(®:(67'(B(0) +1n q)))} — pexp{a(®:i(0))}) = —o0

o—400
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Finally, we choose ®(c) = In M(o, F'). Then from hence it follows that if

— a(ln M(o,F)) Ilnp
AT Be) g ®)

then (6) holds and if

lim a(ln M(e,F)) Inp
o400 B(o) In ¢

(9)

then (7) holds.

If QuplF] > 0 then for every @ € (0, Qnp[F]) there exists an increasing to oo sequence
(k) such that In | fg,| > — i, 87 H(a(M,)/Q) for all n. We choose o, = 7 (a()\,)/Q) + 1.
Then by the Cauchy inequality

In M(0w, F) > In | fi, | + 00, = =, 87 (a(Mk,)/Q) + i, (B (M, )/Q) +1) =

=, = o~ (QB(0n — 1)),

whence in view of the condition 8 € L° and of the arbitrariness of ) we get

— a(ln M(o,F)) . — a(ln M(o,, F))
lim > lim > QaplF).
o—+00 B(o‘) n—00 ﬂ(o‘n) ’B[ ]
Therefore, if Q4 3[F] > In p/In ¢ then (8) and, thus, (6) hold. The first part of Theorem 1

is proved.
If ¢o,8[F] < 400 then by Lemma 1

lim a(ln M(o, F))

o——+00 6(0-)

= Aag[F] = Go,plF].

Therefore, if g, 3[F] < In p/In ¢ then (9) and, thus, (7) hold. The proof of Theorem 1 is
complete. O

We remark that if 3(z) = In* z then (6) and (7) imply (4) and (5).
If we choose a(x) = In" x and 8(z) = 2t then we get the following result in the R-order
scale.

— Aeln A
Corollary 1. Let 0, = +00. If Qg[F] := klim % > 0 then
—0o0 — 11N k

lim (In M(oc+1n ¢, F)—pln M(0, F)) = +o0

o—400

for each p > 1 and q > 1 such that Qg[F] > In p/1In q.

If Ink = oAln Ag), In Ay ~ In Ny, we[F] 7 +o00 as kg < k — oo and

Apln A
qr[F] = lim 2R 4 oo then

lim (In M(o+1Ingq, F)—pln M(0,F)) = -0

o—+00

for each p > 1 and q > 1 such that qg[F| <1In p/In q.
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2 DIRICHLET SERIES ABSOLUTELY CONVERGENT IN A HALF-PLANE

If 0,[F] =0, « € L and 8 € L then the quantities

—a(ln M(o, F)) a(ln M(o, F))

(0) 0) — T
Oo,plF] = lim , Agplf]=1lm
o oto  B(1/]o]) i ot0  B(1/|o])
are called [3], [4] the generalized (a,f)-order and the generalized lower
(e, B)-order of F' accordingly. We put
QUF) = T 20y gy )

koo BN/ In* |fo]) P koo B/ ™ [ fi])”

The following lemma is correct [3], [4].
Lemma 3. Let a € Lg;, 8 € L,; and

T x
— T +o0, a(—)zl—i—ol ax 10
ERIENE) 5 T(eatay) ) oW 1
as xo(c) < = — +oo for each ¢ € (0,400). Suppose that o,[F] = 0 and In k =
=0 (\e/B Hca(N))) as k — oo for each ¢ € (0,+00). Then g( ) slF] = QEYO/)Q[F] If, moreover,
a(Mes1) ~ a(\) and ki [F] 70 as ko < k — oo then AV} [F] = qg,gm.
Using Lemmas 2 and 3 we prove the following theorem.
Theorem 2. Let 0, = 0, f € Ly, a(e*) € Ly and a(z) = o(f(z)) as  — +oo. If

QS))B[F] > 0 then

iy (e {o (01 (- g i 7)) | - repletn Mo ) ) = Wéh)

for each p > 1 and q > 1 such that Q&O)B[F] >In p/ln q.

If the functions a € Lg; and 8 € Ly; satisfy conditions (10), In k = o (A\/B7 (ca(M\))) as
k — oo foreach ¢ € (0,400), a(Agt1) ~ a(Mg), ke[F] /0 asky < k — oo and qéo)B[F] < +00
then

i (e o (10 M (g £) ) | —pewletn Mo ) = T

for each p > 1 and q > 1 such that q [F] <In p/In g.
Proof. If we put ®(z) = ®, (—1/87'(In z)) then

5 (o (0 (i) o)
ol (o ) ool e o))
(o G}l i)

= lim (exp{a(®(qz))} — pexp{a(®(x))}),

T—+400
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i (exp o (9 (g g )) | ~Pete@n) -
= lim (exp{a(®(qr))} — pexp{a(®(z))}),

T—+00

i A@@) _ = a(@ (217 (I ))) e a®i(0))

z—too  In x T—400 In z "r{]l B(1/lol)

and

a(®(x) . a®i(0)

lim
eotoo a0 B(1/|0])
Therefore, in view of Lemma 2 if ®; is a positive function continuous on (zq,0) and
increasing to 400 and
—a(d 1
lim (®1(0)) > 2P
at0 B(1/|o]) = Ingq

then
0 (oo (o (e g) )} -revte@en) =
and if . o(@1(0) Inp
B/l g
then

i (oo (o (5 ) ) | - rewte@ent) = -

Finally, we choose ®(c) = In M(o, F'). Then from hence it follows that if

—a(ln M(o,F))  Inp
R A/l g (13)

then (11) holds, and if
. o(ln M(o,F)) Inp
lim

oo BJlel) “g

(14)

then (12) holds.
If Q((J%[F ] > 0 then for every @ € (0, Qa5[F]) there exists an increasing to co sequence

\ 1
(k,) such that In™ |f, ﬁl(a(i;n)/Q) for all n. We choose o, = _2671(6)&(}\1@”)/@)'

Then by the Cauchy inequality

>

1 1
In M{on, F) 2 In ||+ onhe, 2 A, (ﬂlwkn)/@ - 2ﬁl<a<m>/@>) -

= Ak = onl = lo,la™! L
= B Q) 17l = loule (Qﬂ ( )
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whence in view of the conditions € Ly, a(e®) € Ly and a(x) = o(f(z)) as x — 400 we
get

Q(1+0(1))B(1/]on|) < a(In M(oy, F)/|oy]) = a(exp {In In M(0y, F) +In(1/|o,])}) <
< a(exp{2max{ln In M(o,, F),In(1/|o,])}}) =
= (14 0(1))a (exp {max{Iln In M(o,, F),In(1/|o.|)}}) =
= (1+o(1)) max{a(ln M(o,, F)),a(1/]|o,])} <
< (L+o0(1)) (a(ln M(on, F)) + a ((1/]on])) =
= (14 o0(1))a(In M(oy, F)) +0(B((1/[on]))), o 10.

Therefore, in view of the arbitrariness of () we have

—a(ln M(o, F)) _ — a(ln Moy, F))
at0  B(1/|o]) T noee  B(1/]on])

and if QgO)B[F] > In p/1In ¢ then (13) and, thus, (11) hold. The first part of Theorem 2 is
proved.
If qg])ﬁ[F | < 400 then by Lemma 3

> QY [P, (15)

i 20 Mo, F)) o) )
=Bl Neelf) = ol

Therefore, if qg?)ﬁ [F] < ln p/In g then (14) and, thus, (12) hold. The proof of Theorem 2 is
complete. O

From conditions of Theorem 2 it follows that the function @ grows more slowly than the
function §. In the case if the function S grows more slowly than the function «, the following
theorem is true.

_ 1 n
Theorem 3. Let 0, =0, 3 € L and o € L°. If Péog[F] = lim o(n |fn])
holds for each p > 1 and q > 1 such that Pc(yog[F] >In p/In gq.

If the functions « € Lg; and [ € Lg; satisfy conditions

> 0 then (11)

W T oo, a (W) = (1+0(1))8(z), x— +oo. (16)

for each ¢ € (0, +oo)

nn)=o(f(M\)), BAui1) ~ B(A\n) and k,[F] /0 asng <n — o0
and p(o) [F] = 1'1_ |

< 400 then (12) holds for each p > 1 and q > 1 such that

Proof. 1f P(E?g [F] > 0 then for every P € (0, P, g[F]) there exists an increasing to co sequence
(k,) such that In |f, | > a Y (PB(Ax,)) for all n. We choose 0,, = —1/)\,. Then by the
Cauchy inequality

In M(0,, F) > a Y (PB(A,)) + 0ndi, = H(PB(A,)) — 1 =a (PB(1/]o,])) —
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whence we obtain (15) with P;Og[F ] instead Qg))ﬁ [F], and thus, the first part of Theorem 3
is proved.
If the functions @ € Ly and f € Ly satisfy conditions (16), y(Inn) = o(8(\.)),

In M(o, F
B(Ans1) ~ B(An) and k,[F] 7 0 as ng < n — oo then [4] li_ma( n M(o, 7)) = p&o)ﬁ[F]
oo B(1/]o]) ’
and as above we get the correctness of the second part of Theorem 3. O]

As a conclusion, we present two statements corresponding to scales of finite order and
finite R-order.

— In"In|f,
Proposition 1. Let o, = 0. If lim iul

n—00 n A,

=71 € (0, 1) then
@(m M(o/q, F) —pln M(o,F)) = +oo.

for each p > 1 and q > 1 such that 7/(1 —7) > In p/In q.

— InT In |f,]
Iflnlnn=o(ln A,), In \yy1 ~In A, k,[F] /0 asng <n— oo and lim T -
n—00 n A,

=1 <1 then

lim (In M(o/q,F) —pln M(o,F)) = —oc.
o0

for each p > 1 and ¢ > 1 such that n/(1 —n) <1n p/In gq.

Proof. If 7 > 0 then for every 70 € (0, 7) there exists an increasing to co sequence (k,,) such
that In |fy, | > /\EZ for all n. We choose o,, = —(1/ 2))@2’1. Then by the Cauchy inequality

o Lo 1o 11\
lnM(UTHF)zAZn_§)\£n_§)\7’;”_§(m) )

i. e. in view the arbitrariness of 70 we have

—1Inln M(o, F) 70
lim > >0
ot0  In(1/]o|) 1—70

whence we obtain (15) with a(z) = 8(x) = In" z and 7°/(1 — 7°) instead ng)ﬂ [F], and thus,
the first part of Proposition 1 is proved.

To prove the second part, it is enough to note that if In In n = o(In \,,), In A, 11 ~ In A,

Inln M(o, F
nn[F]/‘Oasnogn—>ooand77<1then[1]li_mnn (0, )> 1 < 400. O

o0 In(l/lo]) T 1-n

In )\k

Proposition 2. Let o, = 0. If lim In™ | fx| = Qr > 0 then

k—o0

11%(111 M(oc+1Ingq,F)—pln M(o,F)) = +oo.

for each p > 1 and q > 1 such that Qg > In p/In q.
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Inln k&
If Tim ——o I, nmAgyr ~ In g, wke[F] 7 0 as kg < kK — oo and
k—oo In )\k
|
lim n A In™ | fx| = qr < +oo then
koo Ak

lim (In M(oc +1n ¢, F) —pln M(o, F)) = —c0.
10

for each p > 1 and q > 1 such that qg < In p/1In q.

Proof. If Qr > 0 then for every @ € (0, Qg) there exists an increasing to oo sequence (k)
such that In |f,| > QAg,/In g, for all n. We choose o,, = =&/ 1In Ay, where 0 < £ < Q.
Then by the Cauchy inequality

Q Q-9 Q-¢ ¢
1nM(U”’F)Z>\k"(ln)\kn+a>_ . € |a|exp{|g|}

i. e. in view the arbitrariness of ) and & we have

%](ﬂln In M(o,F)>Qr>0

whence we obtain (15) with a(z) = In™ z, 8(z) = 2 and Qg instead Q&O’)B [F], and thus, the
first part of Proposition 2 is proved.

— Inlnk
To prove the second part, it is enough to note that if klim . <1, In Agyq ~1In Ag
—+o0 I Ag
and ki[F] 70 as ky < k — oo then [2] lim|o|In In M(o, F) = qr < +00. O
o0
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st pany Hipixae F(s) = > 07 o fnexp{sA,} 3 HeBLI €MHEME 3pOCTAIOMHME +00 MOKA3HU-
KaMu A, 1 abcmcoro abeomoTHOT 361KHOCTI 0, € (—00, +00] BUBUEHO 3B’sI30K MiXK 3POCTAHHSIM
Ha (—00,0,) Makcumyma Monynst M (o, F') = sup{|F (o +it)| : t € R} i noBomzkenuam koedini-
eHuriB f,,. g mporo yepes L mo3HaveHO KJac HEIEPEPBHUX 3POCTAIOYMX 10 +00 Ha (Xg, +00)
dbynxuiit o. Hanexxnicts o j10 kiaacy L° osznauae, mo « € L i a((1+ o(1))z) = (1 + o(1))a(x)
upn & — 400, a o € Lg;, axmo o € L i aex) = (14 o(1))a(x) upu x — +o0.

Has ninux pagie dipixie (o, = +00), HAIPUKIA, JOBEIEHO, IO KO « € L, 3 € LY 10
aliEloo (exp{a(ln M(B7Y(B(c) +1n q), F))} — pexp{a(In M (o, F))}) = +00 JJIg Takux p >
lig>1, mo n@(}a()\n)/ﬁ (A'In(1/]fn])) > Inp/Ing. Skmo x « € Ly, B € LY,
45~ (co(a))

dln x

¢ € (0,400), a(Apt1) ~ a(A,) mpu n — oo i

= O() upu z — +oo i lnn = o(A\,87(ca(\,))) pu n — 00 JJIs KOXKHOTO

I [fo] = In | fria]
)\n+1 - )\n
lim (exp{a(ln M(87'(B(c) +In q),F))} — pexp{a(ln M(c,F))}) = —oo mnsa rakux p > 1

o——+0o0

ig>1mo lim a(\,)/8 (A, ' In(1/|fa])) <Inp/Ing.

n—oo
IMoni6ui pesynbraTn oTpuMaHo aus paais Jipixie, aGcomoTHO 361:KHUX y MBIIONMHL {5 :

Res < 0}. Hanpukiaz, nosejeno, mo skimo o, = 0, 8 € Lg;, a(e®) € Lg; 1 a(x) = o(B(x)) upn
r — +00, TO

g (ew{a (0 (e T g F) ) | el Mo mny) = o

Jast Takux p > 11 ¢ > 1, mo lim %
T oo BN/ In |l

' 400 pu ng < n — 00, TO

>In p/In q.



