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AVERAGING IN MULTIFREQUENCY SYSTEMS WITH LINEARLY
TRANSFORMED ARGUMENTS AND INTEGRAL DELAY

The question of existence and uniqueness of the continuously differentiable solution for a
multifrequency system of differential equations with variable linearly transformed and integral
delay is investigated. The method of averaging by fast variables on a finite interval is substan-
tiated. An estimate of the averaging method was obtained, which clearly depends on the small
parameter and the number of fast variables and their delays.
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INTRODUCTION

An oscillatory system of n oscillators with a delay and a small interaction force in a fairly
general case takes the form

d*u
- + wl%(T)uV - 5fl/(7—7u7 Up,

@dﬂ)
dt’ dt "’

v=1,n,7=c¢t, 0 <e— small parameter, uy(t) = (ul(t — A1), un(t — /\n)), A, > 0 and
characterize the delay, w,(7) > 0 — slowly changing natural frequencies. After making the

replacement
du,,

dt

we obtain a system of equations with n slow variables a, and fast variables ¢, of the form

U, = @, COS Py, = —a,w, sin g, (1)

da, , a,(1 —2cos2p,) dw,(T)
= Al/ ) ) v )
dr (7, a0, 0a) sin oy, + 2w, (1) dr
dp,  wy(T) sin 2¢,, dw, (T)
— Al/ ) ) - )
dr £ AT ax,00) 2w, (T) dr

where functions A, = f according to (1), depend on 7,a, p, as, pa, v = 1,n.
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This type of systems, the general form of which is

da dp w(T,a)
E - X(Ta a, 90)’ dr - c + Y(T7 a, 90)7 (2)

is difficult to study and solve, so the averaging procedure for fast variables on the cube of pe-
riods is used [1, 2, 3|. Multifrequency systems of ordinary differential equations were studied
in the works of V. I. Arnold [1], E. O. Grebenikov, Yu. A. Mitropolsky and Yu. A. Ryabov [2]
and others. A. M. Samoilenko and R. I. Petryshyn obtained significant results when research-
ing multifrequency systems by the averaging method [3].

Multifrequency systems with a delay were studied in the works of [4, 5, 6] and others.
A well-studied case is where the delay is set by linearly transformed arguments for systems
with initial, multipoint, and integral conditions |7, 8|.

The solution of the averaged system in the general case may deviate from the solution of
the exact system by O(1) on time intervals of the length O(e™') or by (0,00). The reason
is the resonance phenomena, the condition of which is at the point 7 for multifrequency
systems (2)

(k,w) = kiwi + -+ kpwn =20, k#0.

For the systems with the delay, the condition takes the form

q

() =Y (k. 6w(8,7)) =0, k, €Z", k#0, (3)
v=1
0<b;<by<---<0, <1, pp (1) =p(0,7), as shown in [4].
In this work, we investigated by averaging method a multifrequency system with delays,
which are set by linearly transformed arguments and also contains variable integral delays

of the form T

v(a)= [ g.(s)a(s)ds, v=1,r, 0<A, <1 (4)
]

Parabolic systems with an integral delay of a similar form were studied in [9].

1  FORMULATION OF THE PROBLEM

We investigate a system of differential equations of the form

da
d_ - X(Tv aA7UA(a)7 4,0@), (5)
=
d w(T
% 0 |y ap,va(a), 2o, )
T €
where 7 = et € [0,L], a € D — limited closed area in R", ¢ € R™, small parameter
€ € (0,50], gg K 1, ap = (ah,...,a)\p), Yo = (QOgl,...,QOQq), 0< A < < )\p <1,
0<b < <0, <1, a\(T) = a(\T), ©9,(T) = @(0;7). Vector-functions X and Y are
2m-periodic by components of the vector ¢g. The integral delay of the form (4) is set by the

components of the vector va(a).
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The corresponding (5), (6) system averaged over fast variables takes the form

da _

d_ = XO(Ta aAavA)7 (7>
-

dp _ w(r)

dr

To prove the existence and uniqueness of the classical solution of the system of equations

—I—YO(T,EA,UA). (8)

(5), (6), the initial conditions of which coincide with the initial conditions of the solution of
the averaged system (7), (8) and to justiy the averaging method we apply the estimate of
the oscillatory integral corresponding to the system (5), (6)

S

Ii(r,e) = / fls.e)exp (£ [ n(a)dz) s (9)

0

where the function f is determined through the Fourier coefficients of the vector functions X
and Y. For a sufficiently small e* € (0, £¢], sufficient conditions for performing the estimation
are specified

w(; g, 0,€) = |la(r; 5,9, ¢) —a(m; 9| + lo(737, ¢, €) = B(1: 7,9, €) || < e, (10)

for0 <e<e*andforall0 <7 <L, a=1/mg.

2 TECHNICAL LEMMA

Let d = const > 0, J = [1p, L], 70 > 0.

Lemma 1. Let the following conditions be satisfied:

1) nondecreasing on J differentiable functions o, : J — J, o, (1) < 7, v = 1,p;
2) nondecreasing continuous on J functions 3, : J — J, B,(17) <71, v =1,r;
3) [,€C(J), [, =Ry, v=T1,p;
4) h, € C(J), h,:J >Ry, v=1r;
5) the inequality is true

ay(T) T s

u(t) < d+ i / fo(s)u(s)ds + /i ( h,,(z)u(z)dz) ds, Te€.J (11)

v=1

(10) 70 Bu(s)

Then for 7 € J

u(t) < d-exp</ifl,(a,,(s))a;(s)ds+/i( / h,,(z)dz)ds). (12)
v=1 5 v=l g

v(s)

70
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Proof. We denote by v(7) the right-hand side of the inequality (11). Then
v(rg) =d; u(r) <wv(r), TEJ
Since
V() =0, ula,(r)) < vlaw(r)) < o(r)

and similarly for 3,(7), then calculating the derivative v'(7), we obtain

(1) =Y fulaw(n))a, (Mulan (7)) + / ho(2)u(z)dz

1/:1/51/ (r)

T

< (i fl,(ozl,(T))oz;(T)—i—i / hu(2)dz ) u(7).

V:15V(T)
Dividing by v(7) and integrating, we obtain the inequality (12). O

Corollary 1. Let T € [0, L], f, and h, — non-negative numbers, o;(1) = N7, 0 < A\ < Ag <
e <A <1 B =47, 0 < Ay <Ay <o <A, <1, and the inequality (11) holds true.
Then

u(t) <d- ewp(i fud, +0.5 i h,(1—A)7)7,7 € [0, L]. (13)

Corollary 2. Let h, =0, v = 0,7, p=1. Then the solution of the integral inequality (11)
takes the form[10]

T a(r)
u(r) < d-exp </f,,(a(s))a/(s)ds> =d-exp ( / fl,(s)ds).

(
a(ro)

For a(t) = 7, 7 € [0, L] the Bellman inequality is obtained[10]
u(r) < d-exp </f(s)ds>.
0

3  JusTiFICATION OF THE AVERAGING METHOD

Theorem 1. Let the conditions be satisfied:

1) vector functions X and Y are defined and continuously differentiable by all variables at
(1,a,9) € G =[0,L] x D x R™ and are bounded together with the first derivatives by the
constant oy;

2) vector function w € C™1(0, L] and according to the system {w(617), ..., w(0,7)} Vronsky
determinant

W(r)#0, 7€l0,L];
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3) in the area G; = [0, L] x A

2 (sup 16+ rmr\@(S}}P a1+ 5|
90X, Ova,
+Z (1-A (%AIZ gi )) < 02

4) functions g, € C([0, L]);

5) there is a unique solution (6(7;@),@(7;?, 1, 5)) of the averaged problem, which lies in ID
for T € [0, L] together with some p-circumference.
Then for a sufficiently small e* > 0 there is a unique solution of the system of equations
(5) — (6) with initial conditions (7, 1) and for each & € (0,*] and for 7 € [0, L] the estimation
(10) is performed.

Proof. From the differentiability of the right parts of the system of equations (5), (6) it
follows the existence of a solution on the interval (0,7'). From the equation (5), (7) for
€ (0,T) we have

T

Jatriv..2) ~atrip)l| = [ (X(s.0,vs.00) ~ Xals.a78) ) ds

0
-

:/(X(S7aA7,UAa()09)_X(‘SaaAa@A7¢®)>d$+/X(S7GA7UAa()09)dS:Il+127
0

where
q

Iy(T,¢€) /Xk 5,n,Ta)e'"0)ds,  (k,p0) = > (kv s,).
k#0 7 v=1

Let’s construct estimates for the norms I; and 5. We have

T

I = / <X(37aA7UA7906) —X(SﬁA,UANP@))dS

0
-

+/(X(SvaAaUA,SOG)—X(SﬁAﬁA,SO@))dS

0
r

+/ <X(375A,UA,<P@) - X(3>aAaUA:¢®)>d3 = Iy + Lo + I3
0

It follows from condition 1 of the theorem, that

AT

I <alz/|y% 7, ||ds_012A /||a—a||ds (14)

1/10
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Since
-

VA, — Tp, = /gy(s)(a —a)ds,

AT

then for estimation of the norms I;» we have

il < [ ([ lolla-alaz)as (19
=10 Aus

For the norm 7,3 we obtain

Il < VEY 1] / > len, = Falts =2 36, / i~ lds,

k40

where ¢, = v/2 3 || k]| max | Xk (T,a(7), ).
k#0
We estimate the norm [2 based on the estimation of the oscillatory integral (9)

1 dfkTg)‘>7

1o |
q
where k # 0, Gy = [0, L] x (0,¢0], [|klle = >_ 0,]|ky||, o3 > 0 and does not depend on «.
v=1

I1:(r. )| < 03" (sup 7l )| +

Let’s represent I, in the form (9), where

q 0,1

q
fu(T,€) = Xi(7,@n, Va) exp ZZ (kv,0)) exp ZZ/ (K, Yo(z aA,UA)))CWE

v=1 v=1 0

= Xk(T, EA,@A) . [3[4.

It follows from the form of the vector function fj, that

1fx(T, )l = [ Xk (7, @n, va)]-

Since y
vA, (77| — _
|=2]| < = Ayeimax a(r:pll = (1 - A)es,
then we will get an estimate
dfy 0Xy, an : 0X1, OUa,
1—A))||— kllel| Xkl -
G <152+ o onGa |+ e o - a5 T |+ alibeli i

Let ¢3 = max(1 4 oy, ). Then the estimate for 5 takes the form

| I2(7,¢)|| < c303¢ Z (sup | Xk + —— ||k||® sup Han H + Z)\ sup ngik H
0 ’ (16)

+;(1 — A)sup | 0% o )) = cie”

8UAZ, or
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where o = 1/mgq, 7 € [0, L], € € (0,£1], &1 < &y.
Based on the estimates (14)—(16) we obtain

AT

la(r:, %) — a(r;) r<ale /Ha—auds

+012/ /\gl, ’Ha_aud'z>d‘9+6229 /HSO ?llds + cae”.

1/10

1/

A similar inequality is obtained in the estimation ||¢(7;7, ¥, ) — @(7;7)||. Therefore, in
the end we have for 7 € (0,7) and € € (0, &]

p AT

U(T;g, Ev 8) S 2C4‘€a + 01 Z >\l/ / U(&@a @7 8)d$

v=1 0

+c229/ syl/)ads—l-(rlZ/ /|gl, Wulz:7, 9, )dz)

1/10

Let us apply the integral inequality (13) from the corollary 1, where d = 2¢4e®, h, =

max lg(7)].

We obtain
p q r
u(rs99,€) < 2ex (0 (01 30 A 02 D000 080T Y (1= A))7 ) = ()",
v=1 v=1 v=1

where 7 € [0,7), 0 < e <e¢y.

It follows from the satisfaction of condition 5 of the theorem that for cs5(L)e® < p/2,
that is ¢ < ey = (p/2c5(L))™ the component of the solution a(7;7,,¢) lies in the p-
circumference of the solution a(7;y). Therefore, for e* = min(eq,e2) we have T'= L and the
estimate (10) is performed for all 7 € [0, L] with the constant ¢; = ¢5(L).

[l

4 MODEL EXAMPLE

Example 1. Consider the single-frequency system of equations

T

d

ﬁ = bpa + bray + by / a(s)ds + bs cos(kp + lpy),
AT

dp 1+27

—_— = —_ ]_ = =

- — a(0) v(0) =0,

where b, € R/{0}, v =10,3, \,0 € (0,1), k,l € Z, k+ 16 = 0.
The solution of the equation for the fast variable is ¢(7,e) = 7(1 + 7)/e, therefore
ko +lpg = k1?/e, k =k +10* # 0.
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The resonance condition is satisfied because vy (T7) = 27k =0 at 7 = 0.
The averaged equation for the slow variable is

;l—a = boa + biay + by /E(s)ds, 6(0) = 1.
-

AT

If by = by = 1 — by, then the solution of the problem is a(T) = €.
Then we have

T

v(1,¢e) :=a(r,e) —a(r) = bo/ (a(s,e) —a(s))ds
Ar 0 NN

+o A7t / (a(s,e) —a(s))ds + by // (a(z,e) —a(z))dzds + % / cos 2°dx.
K
0 0 s 0
Based on the inequality (13) we obtain
lv(T, )| < dexp(bo + b1 + boT(1 — X)/2)T.

Let ¢ < 4k /72, then T < 1. It follows from the asymptotics of the Fresnel integral [11]

d= ﬁﬁ—f—O(\y&_?’) S C5\/E,C5 = \/%

Therefore, for T € [0, 1] we have
lu(r,e)] < |v(1,e)] < Ve, = csexp (bo + b1+ by(1 = N)/2).

It should be noted that if k + 16> = 0, then k + 10 # 0, there is no resonance and the
estimation of the error of the averaging method is of € order.
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MaTeMaTuIHIMEI MOJEISMHU DAraThOX KOJUBHUX CUCTEM € JUQEPEHIaJIbHI PIBHIHHS 3 IO~
BlrbauMEu a(7) 1 mBuakuMu ©(7) 3minauMu.  [Jiag mocsimpkenHs 1 nmoGyJ0BH HAOJIUKEHOTO
PO3B’A3KY 3aCTOCOBYETBHCS IPOIELYyPa YCEPEIHEHHS 32 MIBUIKIMHI 3MIHHUMH.

Y crarTi J0CTiI2KEHO iCHYBaHHSI 1 €IMHICTD JIUMEPEHIaIbHOr0 PO3B I3KYy M-IaCTOTHOI CH-
CTEeMU BUTJISLY

j—j = X(7,an,va(a), po), % = @ +Y(r,ap,va(a), po),
i3 moyarkosumu ymosamu B Touni 7 = 0. Tyr 7 € [0, L], e—masmii napamerp. KomuoneHnTH
BekTOpPiB A, A, O 3a1a10Th JIIHIHO IEPEeTBOPEH] APryMEHTH, IKi XapaKTepPU3yIOTh 3ali3HEHHS.
3MIHHOIO VA 33IA€ThCSA PO3IOILICHE 3aIi3HEHHS.

Cucrema B IPOIECi €BOJIIONIT MOXKe MTPOXOIUTU Ye€pPe3 PE30HAHCH, YMOBA SKUX

> (kv 6w (6,7)) = 0.

v=1

Bkazano yMoBuU, Ipu BUKOHAHHI SIKMX ICHY€ €IMHAN PO3B’SI30K I OTPUMAHO OIHKY ITOXUOKM
METOJly yCepeJHEHHsI, IOPIoK Kol €%, o = 1/(mq).



