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LAZORYK A.B., MELNYK H.V., MELNYK V.S.

APPLICATION OF GENERATIVE FUNCTIONS TO THE
PROBLEMS OF MAXIMUM CHESS ARRANGEMENTS OF N
FIGURES.

A generating function is a formal structure that is closely related to a numeri-
cal sequence, but allows us to manipulate the sequence as a single entity, with the
goal of understanding it better. Roughly speaking, generating functions transform
problems about sequences into problems about functions. They provide a system-
atic way to encode sequences of numbers or other combinatorial objects, allowing
for elegant solutions to complex problems across diverse mathematical domains.

In this article, we will approach a range of problems, involving placing n chess
pieces on an n X n chessboard so that no two pieces attack each other, using the
generating functions approach.
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GENERATING FUNCTIONS.

Given sequence {a,} € R the generative function for it is defined as: f(z) =

oo

> a,z™. Generative functions provide a great way to operate over sequences, solve
n=0

recurrent series, understand different enumeration problems etc. [2]

Lets take a look at a simple example of a famous Euler’s problem, and how it
can be solved using generating functions.
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Example 1. Which weights can be weighted using given weights 1, 2, 22,..., 2",
. and in how many ways?

Consider the function f(x) = (1 + 2)(1 + 2?)(1 + z%)... = lo_o[ (14 2%") =

n=0

1+ a1z + ayx® + .... Here, the a,, is exactly the amount of different ways one can
add numbers 1,2,22,23,...,2% .. in order to get n. Now we can calculate these a,,,
by first calculating the function f(z). For that, lets multiply it by (1 — z):

(1—2)f(z) = (1=2) [[(1+2") = (1=2”) [J(1+2”") = 1= [J(14+2™) = .. =1

By dividing by (1 — z):

1 o0
fla)=7——=> a"
n=0

So we have, that a, = 1 for every n € NU {0}. That implies, that there is always
exactly one way to weight the n using weights 2%, k € N U {0}.

Generative functions can be used to solve the recurrent series. Take, for exam-
ple, famous Fibonacci sequence:

Example 2. Given sequence: ag =1, ay =1, a,, = a,,_1 +a,_o, find its generating
function.

For it we can write generative function

f(x) = Z a,x” = ag + a1z + Z(an_l + an_g)x"
n=0 n=2

o0 oo o0 o
=ayg+ a1x + E Ap_12" + 5 Apor” =1+ + E a,x" Tt — o+ g a,x" 2
n=2 n=2 n=0 n=0

— 1+x2anx”+x22anwn =1+xzf(z) +x2f(x).
n=0 n=0

So, we got the following equality: f(z) = 1+ zf(z) + 2?f(x). From this, we get
the generating function for Fibonacci sequence:

1
r)=-———.
Now, we can write partial fraction expansion for this function:
1 1 1

fx) = —=(

5 1—%(1+\/5)$_1—%(1—\/3)x)
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N QUEENS PROBLEM AND SOME APPROACHES.

The n queens problem is the problem of placing n chess queens on an n x n
chessboard so that no two queens attack each other. Solutions exist for all natural
numbers n with the exception of n = 2 and n = 3. Although the exact number of
solutions is only known for n = 27, the asymptotic growth rate of the number of
solutions is approximately (0.143n)".

Although the n-queens problem is often commonly used as a benchmark for
algorithms that solve combinatorial optimization problems; it has found several
real-world applications, including practical task scheduling and assignment, com-
puter resource management, and VLSI testing. [1])

Counting the number of solutions for the n queen problem is not easy. Since no
known exact mathematical formula was found, just approximation, the solution’s
number became too large to enumerate one by one except for small n.

Interestingly, there is no guarantee to increase the number of solutions as n
increases. For instance, the number of solutions for the six-Queen chessboard is
less than that for the five-Queen. The 27 x 27 board is the highest-order board
that has been wholly enumerated in approximately one year for more information
see project Q27 on the web.

Other figures are also often considered as problems for non-attacking chess
arrangements [3].

So far, there still remains open problem on the maximum arrangements of n
queens on the board n x n.

PARTIAL SOLUTION FOR SOME FIGURES.

Lets consider the following figure: partial bishop — the figure, that will only be
attacking on one line. We will denote the amount of different ways we can place
k such figures on a board n x n by bF.
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In case of board 1 x 1, we get the amount of possible allocations of one such
bishop is 1; so b} =1 and ) = 1.

Let’s assume, that we have the amount of possible allocations of k figures for
the board (n — 1) x (n — 1). The board n x n will contain board (n —1) x (n —1)
as it’s part (consider lower part to the left, see pic.). If we place (k — i) figures in
the part (n — 1) x (n — 1), in that case in the remaining 2n — 1 squares we place
the rest i figures. But the remaining 2n — 1 slice has only 2n — 1 — (k — ¢) squares
available (as the rest (k — i) squares are under the attack from the already placed
(k — i) bishops). That implies the total amount of placements for the remaining

slice as C;n_l_(k_i) (where C* = — amount of combinations from n to k).

!
(n—n}c)!k! ‘ .
From that we get, that there are in total bf:l . ;n—l—(k—i) ways to place k — @

figures on (n—1) x (n— 1) part of the board and 7 figures on the rest of the board.

(n-1)x(n-1)
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By adding all these products for ¢ = 0,1,....,k we get the total amount of
placements of k£ figures on the board n x n: bfl = i bﬁ:il . ;nflf(kfi)'

This way, we have proven the following theoreg?
Theorem 1. The amount of possible arrangements of k partial bishops on the

board n x n is given by the following recursive formula:

by = Zbﬁj - Cop 1 (i) (1)

Lets calculate b* for the case of k = 2.

Theorem 2. The amount of arrangements of two partial bishops on board n x n
is:

b = 1—10(n+1)+%(n+2)(n+1)+§(n+3)(n+2)(n—H)—i—%(n+4)(n—|—3)(n—|—2)(n+1).

Proof. By the recursive formula (1) we have: b = bfﬂl + b%l)(2n —-2)+ %b;o)@n -
1)(2n — 2). Considering, that bﬁ?)l =1 and bfj}l = (n — 1)? (there are always 1
way to place 0 figures on any board and n? ways to place 1 figure on the board
n xn) we get bie) = b2, +2n3 — 4n? + 3n — 1.

Lets find the generating function for this recursive sequence, and after that,
we will be able to find the solution to this sequence. First, we will write down the

generative function:

fl@) =" 0@ =" (b7, +2n® — 4n? + 3n — 1)z"
n=1 n=1

= i bﬁ)lx" + i 2ndz" — i 4nPa™ + i 3nx" — i x".
n=1 n=1 n=1 n=1 n=1

Therefore, after taking all sums to the left side, we get:

[ee] o)

Z b — Z bff_)lx” -2 in?’x” + 4§:n2x” - 3§:na:" + ix” =0 (2
n=1 n=1 n=1 n=1 n=1 n=1

In order to get the value of the generating function, we first have to find the
generating functions for sequences

o0
E n®x".
n=1
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First, we already know, that

o0 . 1
;x :1—.75

(and thus, Y 2™ = == —1). Then,

n=1

n __ n—1 __ n\/ __ !
;nx —x;nx —z;(z ) _x(l—x_l) T

Similarly, we get

o o o 2
2. n __ 2 n—1 __ n\/ __ x I T+
;nx —x;nx —x;n(x ) _I<(1—x)2> BRCETSE

and

1—2x)

3,..n __ 3. .n—1 __ 2/ n\/ __ i ,_IL'(ZU +4l’+1)
nz_:lnx —x;nx —x;n(x)—x(( ) = Az

56

Now we can use these generating functions (and the fact, that f(z) = > bg)x”)

n=1
in order to calculate (2):

(22 + 4z + 1) P+ T 1

fo) =ef(@) = 2= I—2P “(I-a? 1-z

From that result we get that:

z* + 62 + Hz?

Using partial fraction expansion, we get

1 10 29 32 12
flx) = 1—x_(1—x)2+(1—x)3_(1—1’)4+(1_x)5'

+4 ~3 + —1=0.

This way of writing down the generating function is very useful, as we can now,

similarly to fibonacci sequence, write down the solution to bg). For that, we

consider the following:

1 = .
1—x:;x’
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(1 —1x)2 = (11110)/ = (an)/ = Z(xn)/ Z(n—i— 1)z"

1 1 1 " 1 - I 1 > N 1 s .
ooy =2 = s =3 L = 3 2 2t e
(1 —1x)4 N %Qix)m - éz(n+3><n+2>(n+ 1z
(1 —1:1:)5 N i(ﬁ)w - 214 Z<“+4)(”+3)<”+ 2)(n+ 1)z"

Using that expansion of these functions, we get the following way to write down
the generative function for bff)

i bz

n=0

- 29 16 1
=> (1-10(n+1)+ 5 (42)(n+ 1)+ (n43) (n+2) (n+ 1)+ 5 (n44) (n43) (n42) (n-+1) )2
n=0
Form this we get the initial statement of the theorem.
O

In case of the & > 2 the problem of calculation of the generative function
somewhat increases.
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TBipua dyHKIsg — 1€ CTPYKTYPa, KA TICHO TTOB’si3aHa 3 YUCJIOBOIO TTOC/TiIOBHI-
CTIO, 1 JIO3BOJISIE HAM MAHIIIYJIIOBATH IOC/IJIOBHICTIO SIK €JIMHOIO CYTHICTIO 3 METOIO
i1 kpamoro po3yminas. ['pybo kaxky«uwu, TBipHI (DyHKII IepeTBOPIOIOTH MpobJTe-
MM PO TOCJIOBHOCTI B mpobsiemu mipo ¢dyHKIil. Born 3abe3nedyoTh cucreMaT-
9HHUHA CIOCIO KOIyBaHHs MTOCTIIOBHOCTEH Trces abo iHIIIX KOMOIHATOPHUX 00’ €KTIB,
JIO3BOJISIIOYH BUIIIYKAHO PO3B’sA3yBAaTU CKJIAJHI IPOOIEMH B PI3HUX MaTEMaTUIHUX
00JTaCTSIX.

V wiit cTarTi MU PO3IVISHYJIN Psifi TPOOJIEM, ITOB’SI3aHUX 13 PO3MIMIEHHSIM 1, II1a-
xoBuX iryp Ha n X n maxiBauii Tak, mod a8l dirypu He arakyBaJid OIHA OJIHY,
BUKOPHUCTOBYIOUHN T/xXij TBipHUX (DyHKIi. 3ajada mpo po3MilIeHHs 72 KOPOJIEB
Ha, JIOIII 1 X M JI0 CUX TP € BIIKPUTOI0 KOMOIHATOPHOIO 3a/1a9ei0, TOIHOI hopMy-
JI ODYUCJIEHHS TIOKU HE BiJIOMO, Jiuiie TpuOu3Hi anpokcumariii. Tum He MeHire,
qaCTO PO3IVISIAOTHCS YACTKOBI BUIMAJIKHU, 30KpeMa CIerudivHi yMOBY PO3MIIIEHb,
inmi ¢irypu, siki MaroTh iHm JTiHil atak i T.7.

Xouya mpobsiema n-KOpoJIeB YaCTO BUKOPUCTOBYETHCH K IMPAKTUIHUN TPUKJIIAJ
JI7ISI QJITOPUTMIB, SKi BUPINIYIOTH 33/1a9i KOMOIiHATOPHOI ONTUMI3aIlil; BiH 3HANUIIIOB
KiJTbKa peajibHUX 3aCTOCYBAaHb, BKJIIOYAIOYUN MPAKTUYIHE TIJAHYBAHHS Ta TPU3HAUC-
HHsI 3aBJIaHb, KEPYBaHHsI KOMIT FOTEDHUMHI PECYPCAMU Ta TECTYyBAHHS CXEM HaJBe-
JIMKOTO PiBHS iHTerpartii.

B miit craTTi 6ys10 pO3TISHYTO CrieiaabHAN TUTT MTaxoBuX Miryp, Ta modyI0BaHO
pPeKypeHTHY (hOpMYIIY /it OOUUCIeHHS KiTbKOCTI pO3MIIieHb k 1ux (piryp Ha IO
posmipy n X n. Hamu Oysio BKazaHO crocib6 o04YnCjIeHHsT KIJIBKOCTI PO3MIIIEHD ITUX
diryp Ha J0mIIi N X 1 3 BAKOPUCTAHHSM TBIpHUX (DYHKIIINA, Ta IPOIEMOHCTPOBAHO
e obuncsenus upu k = 2. s nporo 6yino obuncaeHo TBipHY BYHKIHIO s I[HOTO
9acTKOBOTO BUMaaKy. IloTiMm mio TBipHY (byHKIIIO OY/T0 PO3KIaIEHO HA IPOCTi IPO-
6u, 111 aKkux Oys10 obuncyieno ixHi Biamosigai psau. Takum TuHOM, TPUPIBHABIIN
JBa psiad, OyJI0 OTPUMAHO 3HAYEHHs KiJBKOCTI pO3MIillleHb BiimoBimHux diryp Ha
MaxMaTHIN JOMII 1 X 1.



