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ASYMPTOTIC BEHAVIOR OF P, (Yy, Y1, +00)-SOLUTIONS OF THE
SECOND ORDER DIFFERENTIAL EQUATIONS WITH THE PRODUCT
OF DIFFERENT TYPES OF NONLINEARITIES FROM AN UNKNOWN

FUNCTION AND ITS FIRST DERIVATIVE

The task of establishing the conditions of existence, as well as finding asymptotic images
of solutions of differential equations, which contain nonlinearities of various types in the right-
hand side, is one of the most important tasks of the qualitative theory of differential equations.
In this work, second-order differential equations, which contain in the right part the product of
a regularly varying nonlinearity from an unknown function and a rapidly varying nonlinearity
from the derivative of an unknown function when the corresponding arguments are directed to
zero or infinity, are considered. Necessary and sufficient conditions for the existence of slowly
varying P, (Yo, Y1, £00) solutions of such equations have been obtained. Asymptotic repre-
sentations of such solutions and their first-order derivatives have also been obtained. When
additional conditions are imposed on the coefficients of the characteristic equation of the corre-
sponding equivalent system of quasi-linear differential equations, it is established that there is
a one-parameter family of such P, (Yp, Y7, +00)-solutions to the equation. Similar results were
obtained earlier when considering second-order equations, which contain on the right-hand side
the product of a rapidly varying function from an unknown function and a properly varying
function from the derivative of an unknown function when the arguments go to zero or infinity.
Results for the equation, considered in this paper, are new.

Key words and phrases: mnonlinear second-order differential equations, asymptotic repre-
sentations of solutions, P, (Yp, Y7, Ag)-solutions, rapidly varying functions, regularly varying
functions, slowly varying first-order derivative.
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INTRODUCTION

Let’s consider the following differential equation

/

y" = aop(t)wo(y')e1(y). (1)
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In this equation the constant g € {—1;1} is responsible for the sign of the equation,
functions p : [a,w[—]0, +o0], (—o00 < a < w < 4+00) and ¢; : Ay, —]0,+o00] (7 € {0,1}) are
continuous, where Ay, is the some one-sided neighborhood of Y; € {0, +00}.

We also suppose that function ¢;: Ay, —]0,+o0[ is a regularly varying as y — V)
function of the index oy (|7], p.10-15), function ¢o: Ay, —]0,+oo[ is twice continuously
differentiable on Ay, and satisfies the next conditions

/ ! /
wo(y) #0 as y' € Ay, lim @o(y) € {0, +o0},  lim 2ol )eoly) _ (2)

2
sy Jeno (oY)

It follows from the above conditions(2) that the function ¢y and its derivative of the
first order are rapidly varying functions as the argument tends to Yy ([1]). So we have the
second order differential equation that contains the product of a regularly varying function
of unknown function and a rapidly varying function of its first derivative correspondingly.

From the conditions (2) it also follows that the function ¢y and its first-order derivative
belong to the class I'y,(Zy), that was introduced in the works of V. M. Evtukhov and
A. G. Chernikova [3] as a generalization of the class I" (L. Khan, see, for example, [1], p.
75). The properties of the class I'y, (Zy) were used to get our results.

For the equations of type (1) let’s consider the following class of solutions.

Definition 1. The solution y of the equation (1), that is defined on the interval [to, w[C [a,w],
is called P, (Yo, Y1, Ao)-solution (—oo < Ay < +00), if the following conditions take place

/ t 2
i 10 _
thw 4" ()y(t)
This class of solutions was defined in the work of V. M. Evtukhov and
A M. Samoilenko [4] for the n-th order differential equations of Emden-Fowler type and was

y @ [to,w[— Ay, ltiTmy(i)(t) =Y, (i=0,1),

concretized for the second-order equation. Due to the asymptotic properties of functions
in the class of B, (Yy, Y1, Ag)-solutions [4], every such solution belongs to one of four non-
intersecting sets according to the value of A\g: A\g € R\{0,1}, \g =0, A\g = 1, Ay = £oo. In
this article we consider the case Ao = 00 of such solutions, every P, (Yp, Y7, £00)-solution
and its derivative satisfy the following limit relations

WOV L w0
o O W0

The class of P,(Yp, Y7, £oo)-solutions for equations of the form (1) is one of the most

—0. (3)

difficult to study due to the fact that the second-order derivative is not explicitly expressed
through the first-order derivative. From (3) it follows that the the first order derivative of
each such P, (Yp, Y1, £00)-solution is a slowly varying function as t 1 w.

The conditions for the existence of P,(Yp, Y], Ag)-solutions in equation (1) were estab-
lished in the case A\ € R\{0, 1} in the work [2].

The purpose of this work is establishing the necessary and sufficient conditions for the
existence of P, (Yy, Y, £oo)-solutions of the equation (1), as well as asymptotic images for
these solutions and their first-order derivatives as t T w in case of the existence of some
infinite limit. We also indicate the number of such solutions.
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1 SECTION WITH RESULTS

To formulate the main results, we introduce the following definitions

Definition 2. Let Y € {0,00}, Ay is some one-sided neighborhood of Y. Continuous-
differentiable function L : Ay —]0;+4o0[ is called ( [6], p.2-3) a normalized slowly varying
function as z — Y (z € Ay) if the next statement is valid

L/
iy yL (v) _ 0.
o Ly)

Definition 3. We say that a slowly varying as z — Y (z € Ay) function 0 : Ay —]0; 00|
satisfies the condition S as z — Y, if for any continuous differentiable normalized slowly
varying as z — Y (z € Ay) function L : Ay, —]0; +o0[ the next relation is valid

0(zL(2)) =0(2)(14+0(1)) as z—=Y (z€Ay).

Condition S is satisfied, for example, for such functions as In |y, | In|y||* (¢ € R), InIn|y|.
The following theorem is obtained.

Theorem 1. Let’s o1 # 1, ¢yukmis p1(y')|y' |~ satisfies the condition S asy' — Y, (y €
Ay,). Then each P,(Yy, Y1, 00)-solutions of the equation (1) can be represented as

y(t) = mo(t) (1), (4)

in which L : [ty, w[— R is twice continuously differentiable and satisfies the next conditions

Wr,()L(t) >0, L'(t)#0 npm t€ [t,w] (tg <t <w), (5)
. . . _ - m(t)L(E)
ltlTrLrul L(t) € {0; £oo}, ltlTrLrul 7o (t)L(t) = Yo, ltlTIng O 0. (6)
Thus, in the case of the existence of a finite or infinite limit
()L (t)
lim =~ /~ \"
R T (7)
the following relations take place
L)L (t
lt#m%(t)() = —1, ()10[/(15) >0 mnpm te [tl,W[(tO <t < w), (8)

agL/(t)
I OLOI 1 (malt) - 0 (L(0) [1+ 4020

Proof. Let the function y : [ty, w[— Ay, P, (Y0, Y1, £00) is the solution of equation (1). Then
this solution and its first- and second-order derivatives retain their sign on some interval
[t1,w[(to < t1 < w) and conditions (3) are fulfilled. Due to the first of the conditions (3),
there exists (|7], p.15) the normalized slowly variable as ¢ T w function L(t) : [to,w[— R,

plt) = 1+01)] mpu ttw  (9)
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which satisfies the first of conditions (5) and the last of conditions (6), as well as for which
equality (4) holds.
From (3) Ta (4) it follows that

y'(t) = L(t) [1 + —W“(Lt)(f)/(t)

from where, considering (2), the first and second conditions of (6) theorem are fulfilled.
From (4), (6) and from the condition that y is a solution of the equation (1) we have the

} =L(t)[1+o(1)] wmpn t1Tw, (10)

following relation

2L (t) + (1) () L7(2) = cop(t)@o(me (8) L(t)) o1 (4 (1)) (11)

In the case of the existence of a finite or infinite limit (7), using Lopital’s rule in the form
of Stolz, using conditions (5) and (6), we have
mo(t) L (1)

w . m,L"(t)
e L(t) T

(12)

whence follows the first of the conditions (8). From (10), (11) and (12), we have as ¢ T w

cantn (200 |14 ZDEO] ) oimoze) = o |2+ =020) — v+ o)

Since the function 0,(y) = ¢1(y)]y'|~7" satisfies the condition S and (10) is fulfilled,
then

aop(t) o (L(t) [1 + %g(t)

D T () L(8)7 01 (7o (t)) = L'(D)[1 + 0(1)] as &1 w.
Therefore, the second of the conditions (8) and the asymptotic representation (9) are
valid. The theorem is proved.

Definition 4. We will say that condition N is fulfilled if for some continuously differentiable
function L(t) : [to,w][—> R(to € [a,w]), which satisfies conditions (4)—(6) and (8), the
following image takes place

apL/(t)

(t) = — )
O I OLOP o mal0) - o (L) 1 + =@ual)

where r(t) : [tg,w[—>] — 1;+00] is a continuous function that tends to zero ast 1 w.

Let’s introduce the following notations

po = signeg(y'),  0i(y) = 1)y, X(t) = L(t) - ex(t),

L2(t) e (X (1))

HO = 00000 (X (D)

q1 (t) = 2
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T ()L (t) o (1) L"(2)
=1+ t 24+ ————=.
WO Ty WL
For these functions, from (2) and (6), the following statements hold:
1)
ltlTrB el(t) = ltlTril ea(t) =1 (13)
ltiTm H(t) = o0, hTm q(t) =0, (14)
2) if there is exists the limit

py L0 0
ttw L/(t) |H(t)|2
then Lt [
L0
i L'(8) | H(1)[s
Really, the statement (1) directly follows from conditions (6) and (8). Statements (14)
follow from the validity of the statements:

(15)

L) X (X)) 1
HO=T00®  w(X®)  a@)’
<¢qu»y
(X)X W) _,  \e(X(D)
(X (1)) A(X(0)
(X))

Statement (15) is proved analogously to the corresponding statement given in the work of
V.M. Evtukhov. and A.G. Chernikova [3].

Theorem 2. Let’s 01 # 1, the function 6, satisfies the condition S, the condition N is true
and the following statement takes place

. mu(t)L(t) 1
1t1¢r£l W|H(t)|2 = +o00. (16)

Then if the following condition is true
aoftg > 0 (17)

the differential equation (1) has a one-parameter family of P, (Yy, Y1, £00)-solutions, for each
of which the following asymptotic representations take place as t 1 w:

y(t) = molt) - L)1+ o(1)), (18)
o — i s PXO)
() = X0+ Gy IO -o(1), (19)
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Proof. Let’s o1 # 1, the function 6, satisfies the condition S, the conditions N and (16) are
true. Then we apply the transformation to the equation (1):

y(t) = mu(t) - L(t) - [1 + z1(2)],
s X (O)
y(t) = X(t) + (X (1) 9(1).

We obtain a system of differential equations

2= @ [—e1z1 + 1+ K(t)er(t)z), (20)

-0 245

aop(t) |7y (t) - L()]701 (o (t))po(Ya(t, 22)) - N(Z, 21)
L'(t)

X

. [1—|—21]01 — 1+Zg'ql(t) s (21)

where

_ o(X(1)) Ly = At 2))
M= xogxor M T e
Yi(t, ) = 1 (t) - L(t) - [L+ 21(8)],  Yalt,zs) = X(£) + % ().

Since the function Y;(t, z1) is properly a variable of order 1, the function 6; satisfies the
condition S, then

11
ltiTm N(t, z1) = 1 piBHOMIpHO 3a 2] € [—5, 5] ) (22)

From the condition N it follows that

aop(t) |7 (1) L(#)| 701 (1 (1) )po(Ya(l, 22))  o(Ya(t, 22))
L(t) po(X (1))

Expanding the right-hand side of (23) at a fixed ¢ € [t1;w[ according to Maclauren’s

1+ r(t)]. (23)

formula with a remainder in Lagrange form, we have

oM 2)) L 21 ()] (14 2) + R(E ),

2o(X (1))
where
o (0 + B ) x0)
R(t, 2) = [1 +r(t)] - ul
A (X (D)
€] < |2l
As
1

X(®)po(X (1)) JE
Po(X ()
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then from the conditions (2) and (6) it follows that

2 900<X(t)> .
p (0 20 ) ke i), [+ dyfh.2)
" 2o(X(0) 20(X (1) R
(X0 + B3R

where

11
ltlTIng dy(t, z9)= 0 evenly for 2z € {—5, 5} .

From the lema 1.2. in [3] and ¢o,¢ € I'y; (Z1) with the additional function
g= %, then the equality is true
0

o(X(t)) £> wi (X (1)) ¥

" ¥
ot (X0 + 5 ) = Sy + el

where

11
ltlTIUIJl di(t,z2)= 0 evenly for 2z € {—5, 5} . (24)

Therefore, for any £ > 0 there exist such ¢; € [tp;w[Ta 0 < § < %, then

|R(t,2)| < (1+¢€)|z)* nmpn t€ [t;w] |z <6 (25)

We arbitrarily choose the number £ > 0 and consider the system (20)—(21) on the set
1
Q= [t;w[xD, where D ={(21;22) € R?, |21 <6, |z|< 5} (26)

The system (20)—(21) on € has the form

A z 29
Zl = 7Tw(t> [AH 1 -+ Alg + 1], (27)
26 = L'(t)es(t) - % - [Agi ()21 + Aga(t)ze + Ri(t, 21, 22) + Rao(t, 21, 22)] (28)

All(t) = —61(t), A12 = K(t)el(t), Agl(t) =01, Agg(t) = 1,

o (1+T1)N(t7 Zl)
Rl(t7 21, ZQ) — ( 62<t>
(L+7)N(t, z)
e2(t)

- 1) (14 0121 + 22) + q122,

R2(t7 21, 22) =

(12120 + (14 22) (L +21)7 =1 —0121)) +

(T4 29)(1+ 21)* N(t, 21)

+R(t, z) - (0]

Note that from (2), (14) and (22) we have

limAH == —]_, limA12 = 0.
ttw tTw
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In addition, we have

1
i Ry (t; 215 29)= 0 piBHOMIpHO 38 21,29 : |2| < 5 ,

, Ry(t; 215 22)
m —F ==
t=too 21| + |2g]

We apply an additional transformation to the system (27)—(28)

z1(t) = vi(1),

2(t) = [H (1) 2va(t).

As a result, we get

Ui = h(t) . [Cll(t)Ul + C19V2 + ].], (29)
1 H'(t)signH (t) es(t)

vy = h(t) 5 ]H(t)\% vy + e%(t)A2lvl+
ex(t)  Ago . ea(t) ” 1, es(t) . “1,
+6%(t) |H(t>|% 2+ e%(t)Rl(t’ 17|H(t)| Q(t))+ e%(t)RQ(ta 17|H(t)| Q(t)) ’ (30)
where Loy (s
h(t) = %“ﬁ](mé, c = ao/ﬁo%(mﬂ(t)ﬁa Cl2 = Qfip (31)

From (5), (6),we have

t
/h(T)dT = +o0.
t1
From (12)—(15) we have
13%1 c1a(t) = aopo
ea(t)  Ag
im — T
thw €1 () |H(t)|2
L
1m1H (t)&gnf](t) _
e 2 |H(t)|2

Because of

LN e OL)
Ht) = (w)) |

Y

y=mw (t)L(t)




ASYMPTOTIC BEHAVIOR OF P, (Yp, Y], +00)-SOLUTIONS OF NONLINEAR DIFFERENTIAL EQUATIONS 49

we have

2%
==
—
~
—
~
N~—
_I_
N
Sy
—~
~
N—
~
S
~
SN—
SN—

From the last and from the conditionals (6) and (8) we have

a(t)|H(t) = :

L'(t)ey(t) |H (t) e Trw(z)(g/(t) cer ()| H(t) 1 - signH'(t)

as tTw. (32)

L(t) H'(t) 1+o(1)
| |

In (32), the first term on the right goes to zero due to (15), and the second also goes to zero
due to condition (16).
So,

limey (¢) = 0. (33)

tTw

From (31), (32), (33) the characteristic equation of the limiting matrix of coefficients as
0 agpo
1 0

p* — appg = 0.

V1 Ta Uy

18

It follows from the conditions of the theorem that this equation has exactly two real roots
of different signs.

We get that for the differential system of equations (29)—(30), all the conditions of The-
orem 2.2 with [5] are fulfilled. According to this theorem, the system (29)-(30) has a
one-parameter family of solutions {v;}?_; : [t*, +oo[—> R? (tx > t;), which go to zero at
t 1 w. These solutions correspond to the solutions y : [tx, +0o[— R (t*x > t1) equation (1),
which allow for ¢ 1 w asymptotic images (19).

By virtue of the appearance of these images, it is clear that they were obtained solutions
are P, (Yp, Y], 00)-solutions of equation (1). The theorem is completely proved.

REFERENCES

[1] Bingham N.H., Goldie C.M., Teugels J.L. Regular variation. Encyclopedia of mathematics and its
applications. Cambridge university press, Cambridge, 1987.

[2] Chepok O. O. Asymptotic Representations of Regularly Varying P, (Yo, Y1, Xo)-Solutions of a Differ-
ential Equation of the Second Order Containing the Product of Different Types of Nonlinearities of the
Unknown Function and its Derivative. J. Math. Sci. (N.Y.) .2023, 274 (1), 142-155. d0i:10.1007/s10958-
023-06576-x. (translation of Neliniini Kolyvannya. 2022, 25(1), 133--144. doi:10.4213/mzm9371 (in
Ukrainian))



50

13l

4]

5]

7]

CHEPOK O.0O.

Evtukhov V. M., Chernikova A. G. On the asymptotics of solutions of second-order ordinary differential
equations with rapidly varying nonlinearities. Ukrainian Math. J. 2019,71 (1), 73-91. (in Russian)

Evtukhov V.M., Samoilenko A.M. Asymptotic Representations of Solutions of Nonautonomous Ordi-
nary Differential Equations with Regularly Varying Nonlinearities Differ. Equ. 2011, 47 (5), 627-649.

doi:10.1134/S001226611105003X

Evtukhov V.M., Samoilenko A.M. Conditions for the existence of solutions of real nonautonomous
systems of quasilinear differential equations vanishing at a singular point. Ukrainian Math. J. 2010, 62

(1), 56-86. doi:10.1007/s11253-010-0333-7(in Russian)

Maric V. Regular Variation and differential equations. Springer (Lecture notes in mathematics,

1726).2000.

Seneta E. Regularly varying functions. Lecture Notes in Math. Berlin: Springer-Verlag. 1976, 508.

doi:10.1007/BFb0079658

Received 25.11.2023

Yenok 0.0. Acumnmomuuna nosedinka P, (Yo, Y1, £00)-pose’asxrie dudeperyiaronux pienans
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nepwot noxionot // BykoBuncbkuit mareM. ypuasa — 2023. — T.11, Ne2. — C. 41-50.

3ajilada BCTAHOBJIEHHsI YMOB ICHYBAHHsI, 8 TaKOXK 3HAXOJKEHHHS aCUMITOTUYHUX 300pa-
JKEHb PO3B’S3KiB AudepeHIliagbHIX PIBHIHHS, fKi MICTATH y IpaBiit 9acTuHi HeTiHIfHOCTI pi-
3HUX THIIB € OJHIEI0 3 HANBaXKIUBIMINX 33/a4 SKICHOI Teopil mAudepeHIiagbHIX PiBHAHD. Y
JaHiit poboTi po3risaHyTi nudepeHniagbHI PIBHAHHS JIPYyroro MOPSAKY, Ki MICTATH y mpasiit
JacTuHi JOOYTOK MPaBUJIBHO 3MIHHOI HeJIHIHOCTI Bij HeBigomol (yHKIH Ta IIBUIKO 3MiH-
HOI HeJTHITHOCTI Bij mOXimgHOI HEBimoMol (DYHKINI TpU IPAMyBaHHI BiJNOBIIHUX apryMeHTiB
Ji0 Hysist abo HeckindernnocTi. OTpuMaHO HEOOXiJHI Ta JOCTATHI yMOBH iCHYBaHHS HNOBLIHHO
aminuux P, (Yo, Y1, £00)-po3s’sa3kiB Takux piBHsHb. Takoxk orpuMani acHMITOTHYHI 306pazKe-
HHSI TAKUX PO3B’A3KiB Ta IX MOXiTHUX Tepmioro nopsaky. llpm Hak/ajganHi JTOJATKOBUX YMOB
Ha, KOe(IIIEHTH XapaKTePUCTUIHOTO PIBHAHHSI BiAIIOBIIHOT eKBIBAJIEHTHOI CUCTEMU KBA31TiHi-
HUX audepeHIiajbHuX PIBHAHL BeTaHoBjeHO, mo Takux P, (Yy, Y1, +00)-po3s’a3kis y piBHsHHS
icaye omnomapamerpudHa cim’s. [Tomibni pesyabraTn Oyru oTpUMaHi paHime Ipu PO3TIsiai piB-
HAHBb JPYTOTrO TMOPSIKY, SIKi MICTATH y TpaBiit 1acTuHi JOOYTOK MIBUIKO 3MIiHHOI (DYHKILI BisT
HeBioMol (PYHKIIT Ta MpaBUIbHO 3MIiHHOT (PYHKINI Bij moxijgHOol HeBimoMol (DYHKITT Tpu Ipsi-
MyBaHHI apryMeHTIB 10 HyJisi a0 HecKiHYeHHOCTI. JlJist piBHSIHB, SIKi PO3IVIAIAIOTHCS Y JTaHIi
poboTi, momiOHI Pe3yIbTATH € HOBUMU.



