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ASYMPTOTIC BEHAVIOR OF Pω(Y0, Y1,±∞)-SOLUTIONS OF THE

SECOND ORDER DIFFERENTIAL EQUATIONS WITH THE PRODUCT

OF DIFFERENT TYPES OF NONLINEARITIES FROM AN UNKNOWN

FUNCTION AND ITS FIRST DERIVATIVE

The task of establishing the conditions of existence, as well as finding asymptotic images
of solutions of differential equations, which contain nonlinearities of various types in the right-
hand side, is one of the most important tasks of the qualitative theory of differential equations.
In this work, second-order differential equations, which contain in the right part the product of
a regularly varying nonlinearity from an unknown function and a rapidly varying nonlinearity
from the derivative of an unknown function when the corresponding arguments are directed to
zero or infinity, are considered. Necessary and sufficient conditions for the existence of slowly
varying Pω(Y0, Y1,±∞) solutions of such equations have been obtained. Asymptotic repre-
sentations of such solutions and their first-order derivatives have also been obtained. When
additional conditions are imposed on the coefficients of the characteristic equation of the corre-
sponding equivalent system of quasi-linear differential equations, it is established that there is
a one-parameter family of such Pω(Y0, Y1,±∞)-solutions to the equation. Similar results were
obtained earlier when considering second-order equations, which contain on the right-hand side
the product of a rapidly varying function from an unknown function and a properly varying
function from the derivative of an unknown function when the arguments go to zero or infinity.
Results for the equation, considered in this paper, are new.

Key words and phrases: nonlinear second-order differential equations, asymptotic repre-
sentations of solutions, Pω(Y0, Y1, λ0)-solutions, rapidly varying functions, regularly varying
functions, slowly varying first-order derivative.
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Introduction

Let’s consider the following differential equation

y′′ = α0p(t)φ0(y
′)φ1(y). (1)
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In this equation the constant α0 ∈ {−1; 1} is responsible for the sign of the equation,
functions p : [a, ω[→]0,+∞[, (−∞ < a < ω ≤ +∞) and φi : ∆Yi

→]0,+∞[ (i ∈ {0, 1}) are
continuous, where ∆Yi

is the some one-sided neighborhood of Yi ∈ {0,±∞}.
We also suppose that function φ1 : ∆Y0 →]0,+∞[ is a regularly varying as y → Y1

function of the index σ1 ([7], p.10-15), function φ0 : ∆Y1 →]0,+∞[ is twice continuously
differentiable on ∆Y0 and satisfies the next conditions

φ′
0(y

′) ̸= 0 as y′ ∈ ∆Y0 , lim
y′→Y0
y′∈∆Y0

φ0(y
′) ∈ {0,+∞}, lim

y′→Y0
y′∈∆Y0

φ0(y
′)φ′′

0(y
′)

(φ′
0(y

′))
2 = 1. (2)

It follows from the above conditions(2) that the function φ0 and its derivative of the
first order are rapidly varying functions as the argument tends to Y0 ([1]). So we have the
second order differential equation that contains the product of a regularly varying function
of unknown function and a rapidly varying function of its first derivative correspondingly.

From the conditions (2) it also follows that the function φ0 and its first-order derivative
belong to the class ΓY0(Z0), that was introduced in the works of V. M. Evtukhov and
A. G. Chernikova [3] as a generalization of the class Γ (L. Khan, see, for example, [1], p.
75). The properties of the class ΓY0(Z0) were used to get our results.

For the equations of type (1) let’s consider the following class of solutions.

Definition 1. The solution y of the equation (1), that is defined on the interval [t0, ω[⊂ [a, ω[,
is called Pω(Y0, Y1, λ0)-solution (−∞ ≤ λ0 ≤ +∞), if the following conditions take place

y(i) : [t0, ω[−→ ∆Yi
, lim

t↑ω
y(i)(t) = Yi (i = 0, 1), lim

t↑ω

(y′(t))2

y′′(t)y(t)
= λ0.

This class of solutions was defined in the work of V. M. Evtukhov and
A .M. Samoilenko [4] for the n-th order differential equations of Emden-Fowler type and was
concretized for the second-order equation. Due to the asymptotic properties of functions
in the class of Pω(Y0, Y1, λ0)-solutions [4], every such solution belongs to one of four non-
intersecting sets according to the value of λ0 : λ0 ∈ R\{0, 1}, λ0 = 0, λ0 = 1, λ0 = ±∞. In
this article we consider the case λ0 = ±∞ of such solutions, every Pω(Y0, Y1,±∞)-solution
and its derivative satisfy the following limit relations

lim
t↑ω

πω(t)y
′(t)

y(t)
= 1, lim

t↑ω

πω(t)y
′′(t)

y′(t)
= 0. (3)

The class of Pω(Y0, Y1,±∞)-solutions for equations of the form (1) is one of the most
difficult to study due to the fact that the second-order derivative is not explicitly expressed
through the first-order derivative. From (3) it follows that the the first order derivative of
each such Pω(Y0, Y1,±∞)-solution is a slowly varying function as t ↑ ω.

The conditions for the existence of Pω(Y0, Y1, λ0)-solutions in equation (1) were estab-
lished in the case λ0 ∈ R\{0, 1} in the work [2].

The purpose of this work is establishing the necessary and sufficient conditions for the
existence of Pω(Y0, Y1,±∞)-solutions of the equation (1), as well as asymptotic images for
these solutions and their first-order derivatives as t ↑ ω in case of the existence of some
infinite limit. We also indicate the number of such solutions.
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1 Section with results

To formulate the main results, we introduce the following definitions

Definition 2. Let Y ∈ {0,∞}, ∆Y is some one-sided neighborhood of Y . Continuous-
differentiable function L : ∆Y →]0; +∞[ is called ( [6], p.2-3) a normalized slowly varying
function as z → Y (z ∈ ∆Y ) if the next statement is valid

lim
y→Y
y∈∆Y

yL′(y)

L(y)
= 0.

Definition 3. We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y →]0; +∞[

satisfies the condition S as z → Y , if for any continuous differentiable normalized slowly
varying as z → Y (z ∈ ∆Y ) function L : ∆Yi

→]0; +∞[ the next relation is valid

θ(zL(z)) = θ(z)(1 + o(1)) as z → Y (z ∈ ∆Y ).

Condition S is satisfied, for example, for such functions as ln |y|, | ln |y||µ (µ ∈ R), ln ln |y|.
The following theorem is obtained.

Theorem 1. Let’s σ1 ̸= 1, функцiя φ1(y
′)|y′|−σ1satisfies the condition S as y′ → Y1 (y′ ∈

∆Y1). Then each Pω(Y0, Y1,±∞)-solutions of the equation (1) can be represented as

y(t) = πω(t)L(t), (4)

in which L : [t0, ω[→ R is twice continuously differentiable and satisfies the next conditions

y00πω(t)L(t) > 0, L′(t) ̸= 0 при t ∈ [t1, ω[ (t0 ≤ t1 < ω), (5)

lim
t↑ω

L(t) ∈ {0;±∞}, lim
t↑ω

πω(t)L(t) = Y0, lim
t↑ω

πω(t)L
′(t)

L(t)
= 0. (6)

Thus, in the case of the existence of a finite or infinite limit

lim
t↑ω

πω(t)L
′′(t)

L′(t)
, (7)

the following relations take place

lim
t↑ω

πω(t)L
′′(t)

L′(t)
= −1, α0L

′(t) > 0 при t ∈ [t1, ω[(t0 ≤ t1 < ω), (8)

p(t) =
α0L

′(t)

|πω(t)L(t)|σ1θ1(πω(t)) · φ0

(
L(t)

[
1 + πω(t)L′(t)

L(t)

]) [1 + o(1)] при t ↑ ω. (9)

Proof. Let the function y : [t0, ω[→ ∆Y0 Pω(Y0, Y1,±∞) is the solution of equation (1). Then
this solution and its first- and second-order derivatives retain their sign on some interval
[t1, ω[(t0 ≤ t1 < ω) and conditions (3) are fulfilled. Due to the first of the conditions (3),
there exists ([7], p.15) the normalized slowly variable as t ↑ ω function L(t) : [t0, ω[−→ R,
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which satisfies the first of conditions (5) and the last of conditions (6), as well as for which
equality (4) holds.

From (3) та (4) it follows that

y′(t) = L(t)

[
1 +

πω(t)L
′(t)

L(t)

]
= L(t)[1 + o(1)] при t ↑ ω, (10)

from where, considering (2), the first and second conditions of (6) theorem are fulfilled.
From (4), (6) and from the condition that y is a solution of the equation (1) we have the

following relation

2L′(t) + πω(t)(t)L
′′(t) = α0p(t)φ0(πω(t)L(t))φ1(y

′(t)). (11)

In the case of the existence of a finite or infinite limit (7), using Lopital’s rule in the form
of Stolz, using conditions (5) and (6), we have

0 = lim
t↑ω

πω(t)L
′(t)

L(t)
= 1 + lim

t↑ω

πωL
′′(t)

L′(t)
, (12)

whence follows the first of the conditions (8). From (10), (11) and (12), we have as t ↑ ω

α0p(t)φ0

(
L(t)

[
1 +

πω(t)L
′(t)

L(t)

])
φ1(πω(t)L(t)) = L′(t)

[
2 +

πω(t)L
′′(t)

L′(t)

]
= L′(t)[1 + o(1)].

Since the function θ1(y
′) = φ1(y

′)|y′|−σ1 satisfies the condition S and (10) is fulfilled,
then

α0p(t)φ0

(
L(t)

[
1 +

πω(t)L
′(t)

L(t)

])
|πω(t)L(t)|σ1θ1(πω(t)) = L′(t)[1 + o(1)] as t ↑ ω.

Therefore, the second of the conditions (8) and the asymptotic representation (9) are
valid. The theorem is proved.

Definition 4. We will say that condition N is fulfilled if for some continuously differentiable
function L(t) : [t0, ω[−→ R(t0 ∈ [a, ω[), which satisfies conditions (4)–(6) and (8), the
following image takes place

p(t) =
α0L

′(t)

|πω(t)L(t)|σ1θ1(πω(t)) · φ0

(
L(t)

[
1 + πω(t)L′(t)

L(t)

]) [1 + r(t)],

where r(t) : [t0, ω[−→]− 1;+∞[ is a continuous function that tends to zero as t ↑ ω.

Let’s introduce the following notations

µ0 = signφ′
0(y

′), θ1(y) = φ1(y)|y|−σ1 , X(t) = L(t) · e1(t),

H(t) =
L2(t)φ′

0 (X(t))

πω(t)L′(t)φ0 (X(t))
, q1(t) =

(
φ′
0(y)

φ0(y)

)′

(
φ′
0(y)

φ0(y)

)2

∣∣∣∣∣
y=X(t)

,
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e1(t) = 1 +
πω(t)L

′(t)

L(t)
, e2(t) = 2 +

πω(t)L
′′(t)

L′(t)
.

For these functions, from (2) and (6), the following statements hold:
1)

lim
t↑ω

e1(t) = lim
t↑ω

e2(t) = 1 (13)

lim
t↑ω

H(t) = ±∞, lim
t↑ω

q1(t) = 0, (14)

2) if there is exists the limit

lim
t↑ω

L(t)

L′(t)
· H ′(t)

|H(t)| 32
,

then
lim
t↑ω

L(t)

L′(t)
· H ′(t)

|H(t)| 32
= 0. (15)

Really, the statement (1) directly follows from conditions (6) and (8). Statements (14)
follow from the validity of the statements:

H(t) =
L(t)

πω(t)L′(t)
· X(t)φ′

0 (X(t))

φ0 (X(t))
· 1

e1(t)
,

φ0(X(t))φ′′
0(X(t))

(φ′
0(X(t)))

2 = 1 +

(
φ′
0(X(t))

φ′
0(X(t))

)′

φ′
0(X(t))

φ′
0(X(t))

.

Statement (15) is proved analogously to the corresponding statement given in the work of
V.M. Evtukhov. and A.G. Chernikova [3].

Theorem 2. Let’s σ1 ̸= 1, the function θ1 satisfies the condition S, the condition N is true
and the following statement takes place

lim
t↑ω

πω(t)L
′(t)

L(t)
|H(t)|

1
2 = ±∞. (16)

Then if the following condition is true

α0µ0 > 0 (17)

the differential equation (1) has a one-parameter family of Pω(Y0, Y1,±∞)-solutions, for each
of which the following asymptotic representations take place as t ↑ ω:

y(t) = πω(t) · L(t)(1 + o(1)), (18)

y′(t) = X(t) +
φ0(X(t))

φ′
0(X(t))

· |H(t)|
1
2 · o(1). (19)
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Proof. Let’s σ1 ̸= 1, the function θ1 satisfies the condition S, the conditions N and (16) are
true. Then we apply the transformation to the equation (1):

y(t) = πω(t) · L(t) · [1 + z1(t)],

y′(t) = X(t) +
φ0(X(t))

φ′
0(X(t))

· z2(t).

We obtain a system of differential equations

z′1 =
1

πω(t)
· [−e1z1 + 1 +K(t)e1(t)z2], (20)

z′2 = L′(t) · e2(t) ·
φ′
0(X(t))

φ0(X(t))
×

×
[
α0p(t)|πω(t) · L(t)|σ1θ1(πω(t))φ0(Y2(t, z2)) ·N(t, z1)

L′(t)
· [1 + z1]

σ1 − 1 + z2 · q1(t)
]
, (21)

where

K(t) =
φ0(X(t))

X(t)φ′
0(X(t))

, N(t, z1) =
θ1(Y1(t, z1))

θ1(πω(t)
,

Y1(t, z1) = πω(t) · L(t) · [1 + z1(t)], Y2(t, z2) = X(t) +
φ0(X(t))

φ′
0(X(t))

· z2(t).

Since the function Y1(t, z1) is properly a variable of order 1, the function θ1 satisfies the
condition S, then

lim
t↑ω

N(t, z1) = 1 рiвномiрно за z1 ∈
[
−1

2
,
1

2

]
. (22)

From the condition N it follows that

α0p(t)|πω(t)L(t)|σ1θ1(πω(t))φ0(Y2(t, z2))

L′(t)
=

φ0(Y2(t, z2))

φ0(X(t))
[1 + r(t)]. (23)

Expanding the right-hand side of (23) at a fixed t ∈ [t1;ω[ according to Maclauren’s
formula with a remainder in Lagrange form, we have

φ0(Y1(t, z1))

φ0(X(t))
· [1 + r(t)] = [1 + r(t)] · (1 + z2) +R(t, z2),

where

R(t, z2) = [1 + r(t)] ·
φ′′
0

(
X(t) +

φ0(X(t))
φ′
0(X(t))

· ξ
)
φ0(X(t))

φ′
0(X(t))

· z22 ,

|ξ| < |z2|.

As

Y (t, z1) = X(t)

1 + 1
X(t))φ0(X(t))

φ′
0(X(t))

ξ

 ,
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then from the conditions (2) and (6) it follows that

φ′′
0

(
X(t) +

φ0(X(t))

φ′
0(X(t))

· ξ
)

=

φ′2
0

(
X(t) +

φ0(X(t))
φ′
0(X(t))

· ξ
)

φ0

(
X(t) +

φ0(X(t))
φ′
0(X(t))

· ξ
) · [1 + d1(t, z2)],

where
lim
t↑ω

d1(t, z2)= 0 evenly for z2 ∈
[
−1

2
,
1

2

]
.

From the lema 1.2. in [3] and φ0,φ′
0 ∈ ΓY1(Z1) with the additional function

g = φ0

φ′
0
, then the equality is true

φ′′
0

(
X(t) +

φ0(X(t))

φ′
0(X(t))

· ξ
)

=
φ′2
0 (X(t))

φ0(X(t))
eξ[1 + d1(t, z2)],

where

lim
t↑ω

d1(t, z2)= 0 evenly for z2 ∈
[
−1

2
,
1

2

]
. (24)

Therefore, for any ε > 0 there exist such t1 ∈ [t0;ω[ та 0 < δ ≤ 1
2
, then

|R(t, z2)| ≤ (1 + ε)|z2|2 при t ∈ [t1;ω[, |z1| ≤ δ. (25)

We arbitrarily choose the number ε > 0 and consider the system (20)–(21) on the set

Ω = [t1;ω[×D, where D = {(z1; z2) ∈ R2, |z1| ≤ δ, |z2| ≤
1

2
}. (26)

The system (20)–(21) on Ω has the form

z′1 =
1

πω(t)
· [A11z1 + A12z2 + 1], (27)

z′2 = L′(t)e2(t) ·
φ′
0(X(t))

φ0(X(t))
· [A21(t)z1 + A22(t)z2 +R1(t, z1, z2) +R2(t, z1, z2)] , (28)

where
A11(t) = −e1(t), A12 = K(t)e1(t), A21(t) = σ1, A22(t) = 1,

R1(t, z1, z2) =

(
(1 + r1)N(t, z1)

e2(t)
− 1

)
(1 + σ1z1 + z2) + q1z2,

R2(t, z1, z2) =
(1 + r1)N(t, z1)

e2(t)
(σ1z1z2 + (1 + z2) ((1 + z1)

σ1 − 1− σ1z1))+

+R(t, z2) ·
(1 + z2)(1 + z1)

σ1N(t, z1)

e2(t)
.

Note that from (2), (14) and (22) we have

lim
t↑ω

A11 = −1, lim
t↑ω

A12 = 0.
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In addition, we have

lim
t→+∞

R1(t; z1; z2)= 0 рiвномiрно за z1, z2 : |zi| <
1

2
, i = 1, 2.

lim
t→+∞

R2(t; z1; z2)

|z1|+ |z2|
= 0 .

We apply an additional transformation to the system (27)–(28)

z1(t) = v1(t),

z2(t) = |H(t)|−
1
2v2(t).

As a result, we get

v′1 = h(t) · [c11(t)v1 + c12v2 + 1], (29)

v′2 = h(t)

[
1

2

H ′(t)signH(t)

|H(t)| 32
v2 +

e2(t)

e21(t)
A21v1+

+
e2(t)

e21(t)

A22

|H(t)| 12
v2 +

e2(t)

e21(t)
R1(t, v1, |H(t)|−

1
2v2(t)) +

e2(t)

e21(t)
R2(t, v1, |H(t)|−

1
2v2(t))

]
, (30)

where
h(t) =

L′(t)e1(t)

L(t)
|H(t)|

1
2 , c11 = α0µ0q1(t)|H(t)|

1
2 , c12 = α0µ0 (31)

From (5), (6),we have

t∫
t1

h(τ)dτ = ±∞.

From (12)–(15) we have

lim
t↑ω

c12(t) = α0µ0

lim
t↑ω

e2(t)

e21(t)

A22

|H(t)| 12
= 0

lim
t↑ω

1

2

H ′(t)signH(t)

|H(t)| 32
= 0

Because of

H ′(t) =

(
L2(t)

L′(t)

)′

· φ
′
0(πω(t)L(t))

φ0(πω(t)L(t))
+

L2(t)

L′(t)
· (L(t) + πω(t)L(t)) ·

(
φ′
0(y)

φ0(y)

)′
∣∣∣∣∣
y=πω(t)L(t)

,
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we have (
φ′
0(y)

φ0(y)

)′
∣∣∣∣∣
y=πω(t)L(t)

=
H ′(t)

L2(t)
L′(t)

· (L(t) + πω(t)L(t))
− φ′

0(πω(t)L(t))

φ0(πω(t)L(t))
×

×
L2(t)
L′(t)

L2(t)
L′(t)

· (L(t) + πω(t)L(t))
.

From the last and from the conditionals (6) and (8) we have

q1(t)|H(t)|
1
2 =

L(t)

L′(t)e1(t)
· H ′(t)

|H(t)| 32
− 1 + o(1)

πω(t)L′(t)
L(t)

· e1(t)|H(t)| 12 · signH ′(t)
as t ↑ ω. (32)

In (32), the first term on the right goes to zero due to (15), and the second also goes to zero
due to condition (16).

So,

lim
t↑ω

c11(t) = 0. (33)

From (31), (32), (33) the characteristic equation of the limiting matrix of coefficients as
v1 та v2 (

0 α0µ0

1 0

)
is

ρ2 − α0µ0 = 0.

It follows from the conditions of the theorem that this equation has exactly two real roots
of different signs.

We get that for the differential system of equations (29)–(30), all the conditions of The-
orem 2.2 with [5] are fulfilled. According to this theorem, the system (29)–(30) has a
one-parameter family of solutions {vi}2i=1 : [t∗,+∞[−→ R2 (t∗ ≥ t1), which go to zero at
t ↑ ω. These solutions correspond to the solutions y : [t∗,+∞[−→ R (t∗ ≥ t1) equation (1),
which allow for t ↑ ω asymptotic images (19).

By virtue of the appearance of these images, it is clear that they were obtained solutions
are Pω(Y0, Y1,±∞)-solutions of equation (1). The theorem is completely proved.
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Чепок О.О. Асимптотична поведiнка Pω(Y0, Y1,±∞)-розв’язкiв диференцiальних рiвнянь
другого порядку з добутком рiзних типiв нелiнiйностей вiд невiдомої функцiї та її
першої похiдної // Буковинський матем. журнал — 2023. — Т.11, №2. — C. 41–50.

Задача встановлення умов iснування, а також знаходженння асимптотичних зобра-
жень розв’язкiв диференцiальних рiвняння, якi мiстять у правiй частинi нелiнiйностi рi-
зних типiв є однiєю з найважливiших задач якiсної теорiї диференцiальних рiвнянь. У
данiй роботi розглянутi диференцiальнi рiвняння другого порядку, якi мiстять у правiй
частинi добуток правильно змiнної нелiнiйностi вiд невiдомої функцiї та швидко змiн-
ної нелiнiйностi вiд похiдної невiдомої функцiї при прямуваннi вiдповiдних аргументiв
до нуля або нескiнченностi. Отримано необхiднi та достатнi умови iснування повiльно
змiнних Pω(Y0, Y1,±∞)-розв’язкiв таких рiвнянь. Також отриманi асимптотичнi зображе-
ння таких розв’язкiв та їх похiдних першого порядку. При накладаннi додаткових умов
на коефiцiєнти характеристичного рiвняння вiдповiдної еквiвалентної системи квазiлiнiй-
них диференцiальних рiвнянь встановлено, що таких Pω(Y0, Y1,±∞)-розв’язкiв у рiвняння
iснує однопараметрична сiм’я. Подiбнi результати були отриманi ранiше при розглядi рiв-
нянь другого порядку, якi мiстять у правiй частинi добуток швидко змiнної функцiї вiд
невiдомої функцiї та правильно змiнної функцiї вiд похiдної невiдомої функцiї при пря-
муваннi аргументiв до нуля або нескiнченностi. Для рiвнянь, якi розглядаються у данiй
роботi, подiбнi результати є новими.


