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MATHEMATICAL MODELING OF COMPETITIVE ADSORPTION AND
DESORPTION OF GASES IN NANOPOROUS MEDIA USING
LANGMUIR’S EQUILIBRIUMS

The theoretical bases of mathematical modeling of nonisothermal competitive adsorption
and desorption in nanoporous zeolite media for the extended Langmuir’s equilibrium are given.
They most fully determine the mechanism of adsorption equilibrium for nanoporous particles
media. The effective scheme of linearization of a nonlinear model is implemented. High-speed
analytical solutions of the system of linearized boundary problems of adsorption and desorption
in nanoporous media are justified and obtained using the Heaviside’s operational method.
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INTRODUCTION

The main anthropogenic sources of atmospheric pollutants are the processes by which
energy is generated for transport and industry. It has been demonstrated that the transport
sector is the emission source that contributes the most to global warming at present, and it
will probably remain so in the immediate future [1]. The quality of mathematical models
of processes of adsorption and desorption of hydrocarbons in nanoporous catalytic media
determines the effectiveness of technological solutions for neutralizing and reducing exhaust
emissions which is rapidly increasing, contributing to global warming [2].

At present, many experimental and theoretical studies of such processes are carried out,
especially studies on the improvement of their mathematical models, taking into account the
influence of various factors that limit the internal kinetics of adsorption and desorption in
nanopores of catalytic media [3, 4, 5, 6, 7, 8]. For the first time, it has been possible to specify

VIK 517.444
2010 Mathematics Subject Classification: 35B30, 44-XX.

(© Petryk M.R., Boyko LV., Petryk O.Ju., Fraissard J., 2023



60 PETRYK M.R., Boyko I.V., PETRYK O.JU., FRAISSARD J.

all the processes along the columns during non-isothermal adsorption and desorption. The
proposed work outlines the theoretical foundations for modeling nonisothermal competitive
adsorption and desorption in nanoporous catalysts for a nonlinear isotherm obtained by
the Nobel laureate I. Langmuir, which most fully determines the mechanism of adsorption
equilibrium for nanopores systems of the zeolite. For the modeling we have used the Heaviside
operational method and the Laplace transform, but the development of calculations is quite
original. This methodology allows you to get high-speed analytical solutions that improve
the quality of computational paralleling and the simulation of real process.

1  MATHEMATICAL MODEL OF NONISOTHERMAL ADSORPTION AND DESORPTION IN
A NANOPOROUS PARTICLES MEDIA

The general hypothesis adopted in the model development is that the competitive ad-
sorption interaction between adsorption molecules of two gazes and active adsorption centres
on the phase separation surface in crystallites nanopores is determined on the basis of the
nonlinear competitive adsorption Langmuir equilibrium’s with allowance of the following
physical assumptions [6, 7, 8, 9] . The refined kinetics of non-isothermal competitive ad-
sorption and desorption in nanoporous zeolites, taking into account the nonlinear function
of adsorption equilibrium and the given physical justifications, is described by the following
system of nonlinear partial differential equations [9, 10]:
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Initial conditions for adsorption are as follows:
it 2o = 0; T(t,2) im0 = T (4)
and for desorption:
ity 2)|io = & T(t, 2) 1o = To. (5)

Boundary conditions for adsorption are as follows:

0

n &T(t, Z)|z:oo =0 (6)

0
ci(t, 2)|=0 = cin; a—cz‘(t, 2|0 = 0; T(t, 2)]o=0 = T,
z

and for desorption:

0 0
Ci(tu Z)‘z:O = C'm<t>7 &Cz‘(tv Z>|z:oo = 07 T<t7 Z)‘zzo = En(t)7 &T(tv Z>|z:oo = 0. (7>

The meaning of the terms in conditions (1)-(7) is given in the Nomenclature section.
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2 THE SCHEME OF NONLINEAR MODEL LINEARIZATION AND CONSTRUCTION OF
SOLUTION FOR SYSTEM OF LINEARIZED PROBLEMS

Based on the development of the methodology [9, 12, 13] we perform some expansions in

the series of elements of the nonlinear component L 4/ ul of the differential
AH Y 1—aqy/asy—a2/a
exp(—ﬁ> 1/@fui—a2/a s

equation (3) in following form:

oa 1
8_t1 =0 (01(t7 z) — Kiay (t,2) +cay (t,2) ((al (t,2) + 502 (t,z) + 0T (t, Z))) ;
(8)
8a2 1
B = B\ calt, z) — Kaag (t, 2) + caz (¢, 2) S0 (t,2) +as (t,2)+ 0T (t,2) ) |,
where K; = II:,FA—H/R exp ( =4 ) ,i = 1,2 is the adsorption constants (according to Henry’s
012 full eq,i
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law), ¢ = k,lzr—)zexp( AH ) << 1 is a small parameter that takes into account the
01\@ full
nonlinear component of the competitive adsorption isotherm, § = -2t AH _1 G
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Problem (1)-(7), taking into account the approximated kinetic equations of Langmuir
adsorption equilibrium’s (8) containing a small parameter €, is boundary problem for a
nonlinear system of second-order partial differential equations. The solution of problem
(1)-(7) will be sought using of asymptotic expansions [12, 13]:

& (ta Z) = Cig (t>Z> +ec, ( 7Z) + 826i2 (ta Z) + .
T(t,2)=Ty(t,2) +eTy(t,2) +Th (¢, 2) + ..., 9)
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In the result of substituting the asymptotic sum (9) into (1)-(7), considering (8) , the initial
nonlinear boundary value problem (1)-(7) is parallelized into two types of linearized boundary
value problems:

Proposition 1. The problem A;,,i = 1,2 (zero approximation with initial and boundary
conditions of the initial problem): to find a solution in the domain

D={(t,z):t >0,z € (0,00)} of a system of partial differential equations:
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Initial conditions for adsorption:

Cio(t, 2)|i=0 = 0; To(t, 2)|i=o = T (13)
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and for desorption:
ot 2o = s To(t, )0 = Ty (14)

Boundary conditions for adsorption:

O Tt ) =0 (15)

0
cio(t, 2)|2=0 = Cin; EciO(tazﬂz:oo = 0; To(t, 2)|=0 = Tjp; 9

and for desorption:

0 0
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Proposition 2. The problem A,;;n = 1,00 (n-th approximation with zero initial and bound-
ary conditions): to construct in the domain D a bounded solution of a system of equations
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with zero initial boundary conditions. Developing the methodologies [12, 13| and supposing
that the sought and determined functions of the system (10)-(16), (17)-(20) are Laplace
originals, we obtained limited analytical solutions of boundary value problems using Heavi-
side operational method [14, 15]. The analytic solution of the zero approximation problem
, which describes the dependence of the absorptive concentration in the gas phase (inter-
particle space), of the temperature and of adsorbate concentration in nanoporous particles
along the coordinate of the catalytic bed and in time for the adsorption (¢ (¢, 2)|i=0 =
0; ¢iy(t, 2)|sm0 = iy, 5 Ty(t, 2)|2=0 = T},,) and desorption cycles
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t
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0
The analytic solution of the problem A; ,n = 1,00 describing the temporal spatial dis-
tributions n-th approximations of adsorption condensations in the gas phase ¢; (t,z), of

temperature T, (¢, z) and of adsorption (the adsorbate concentration in particle nanopores)
a; (t,z) for desorption adsorption stages:
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3 NUMERICAL MODELLING AND DISCUSSION

The objective of this computer modelling is to study the capabilities of the proposed
model to its use in gas separation technologies, in catalysis, for the purification of air,
in particular for the elimination of carbon emissions into the atmosphere from industry
and transport (propane, C'O, and other combustion products). Propane was chosen as
the adsorbate because it corresponds to approximately 30% by volume of the total gas flow
emitted by car engines [2|. Using the developed mathematical theory and technology oriented
to parallel multicore computer calculations, the modeling and calculation of concentration
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dependencies of non-isothermal adsorption and desorption curves in a zeolite ZSM-5 bed are
carried out.

Computational calculations were performed with such experimental papers [6, 7, 11]:
Geometric dimensions of the column: length: [ = 1.2-1072 m and radius Reoumn = 2, 3-1073
m. Thermal and mass transfer characteristics: Quqs = 2800kJ/kg; A = 0.5kJ/(m? - s);
hy = 1.2kJ/m? - s (for propane at 3 bar); p, = 650kg/m?® (bulk density of zeolite material);
H =0.96kJ/kg-K; Dipser = 5.0.107°m?/c; 3 = 0.95571 [6, 10]. Initial gas flow temperature:
for adsorption 7" = 20°C, for desorption 7" = 300 — 350°C. In order to analyze the effect of
changes in flow velocity, a range of 0.2 -2m /s was considered (adsorption, desorption). To
ensure the process of the propane desorption from the nanopores of the zeolite, the column
with zeolite simple was heated to a temperature of 300-350°C.
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Figure 1: Calculated adsorbate concentrations for breakthrough curves, which are calculated
as a function of time ¢ for different temperature values 273K (a), 333K (b), 353K (c), 373K

().

Using the equations (24) and (26) , the adsorbate concentrations in inter- and intra-
crystallites spaces were calculated. In Fig. 1la, b, ¢, d of the concentration, c¢(¢, z), in such
column and at the temperatures 30 °C, 60 °C, 100°C, 350°C of the bed are shown as function
on time t. Direct calculations were performed for various geometric configurations of the
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adsorption column, characterized by its relative height € = z/[ relative to its true size [. The
presented simulation results clearly demonstrate the effect of temperature and magnitude
of on the change in the concentration of propane in the inter-crystalline space. As can be
seen from Fig. 1la, b, ¢, d for all values and for all calculated values of temperature, the
behavior of the dependence of the relative value c¢(t,2)/co is qualitatively the same: in a
certain time interval differently for the values of temperature and ¢ there is a rapid increase
in the value of concentration with its subsequent reaching saturation. However, it should
be noted that for different values of temperature, the value of the interval in which the
time evolution of concentration occurs rapidly decreases with increasing of temperature. In
particular, the calculated time intervals for the concentration to saturate at temperatures
of 273K and 373K. In addition, an important observed effect is that, with an increase in ¢,
the saturation of ¢(t, z)/co value is reached each time later. This, firstly, indicates that in
different geometrical positions of the adsorption column, the saturation concentration does
not occur simultaneously, and, secondly, this makes it possible to establish the characteristic
value of the value of the time required to achieve a uniform propane concentration in the
space of the zeolite sample in the adsorption column.
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Figure 2: The adsorbate concentration in the intraparticle space as a function of time ¢,
calculated for temperature values 273K (a), 333K (b), 353K (c), 373K (d)
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In Fig. 2a, b, ¢, d are shown the time dependencies for the adsorbate concentration a(t, z)
in the intraparticle space ((25)), the calculations of which within the developed mathematical
model were performed with similar calculations for ¢(t, z) values of temperature ((??7)) and
relative height € of the adsorption column. As can be seen from Fig. 2, the time dependencies
a(t, z) grow, reaching their maximum values corresponding to the saturation of the propane
concentration in the pores of the zeolite. In this case, in contrast to the dependencies c(t, z),
the achievement of the maximum concentration value occurs in the order of decreasing . In
addition, all concentration values a(t, z) calculated for a fixed temperature value reach the
same maximum values regardless of the value of ¢.
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Figure 3: The adsorbate concentration in the intraparticle space as a function of time during
the desorption process, calculated for temperature values 273K (a), 333K (b), 353K (c), 373K

()

In Fig. 3a, b, ¢, d are shown the time dependencies calculated in the developed model for
the propane concentrations in the intraparticle space, which correspond to the desorption
process. The beginning of the desorption process, which is shown in Fig. 3 corresponds to
the moment of completion of the process shown in Fig. 2, in particular, the initial values
of the concentrations a(t, z) correspond to their saturation values during adsorption in the
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intraparticle space. It can be seen from the given dependencies that the process of propane
desorption from zeolite micropores occurs more intensively with increasing temperature.
Each of the curves a(t, z) successively, with decreasing e, reaches the values a(t,z) — 0.
Also, in this case, there is a clear tendency for the a(t,z) dependencies to converge for
different values of ¢ with increasing temperature. This effect is can be explained by the
equalization of the intensity of the desorption kinetics for different € at high temperatures
and low propane concentrations. In particular, for the dependencies shown in Fig. 3c, first
the merging of the a(t, z) curves for different € is observed, and then the curve formed by
their merging goes to zero.

4 CONCLUSIONS

Proposed mathematical modeling research has confirmed the effectiveness of the proposed
model and software for adsorption-desorption technology to absorb gases, in particular car-
bon oxides that cause global warming. he spatial distribution of the adsorbate concentrations
in inter-particle space and in micropores of solid are obtained with the achievement of equi-
librium conditions, as well as the distributions of the gas flow temperature over time and
the coordinates of the column length. It also allows evaluating the behavior of concentration
dependencies, achieving their equilibrium from temperature and gas flow rate for different
coordinate positions along the column length and other factors. But this was not only the
main goal of this study. Analytical solutions of the proposed mathematical model of the gas
adsorption on microporous bed is based on the original mathematical apparatus and an ef-
ficient high-performance algorithm using the Heaviside operational method and the Laplace
transform using the generalized Langmuir equilibrium equation, which most fully describes
the processes of phase transformations. The development of calculations is quite original.
The result allows instantly getting the dynamics of the kinetics of the process in columns
during non-isothermal adsorption and desorption - the current adsorbate concentrations in
interparticle space and in micropores of the bed and the temperature of gas flow. This
original mathematical treatment can serve as a model for many applications related to this
type of process, mainly to clean atmospheres, which will help reduce the impact of global
warming.

The theoretical foundations of mathematical modeling of nonisothermal competitive ad-
sorption and desorption in nanoporous catalysts for the nonlinear Langmuir isotherm that
best describes the mechanism of adsorption equilibrium for micro- and nanoporous systems
of the ZSM-5 zeolite class are outlined. An effective linearization scheme for the nonlinear
model is realized. High-speed analytical solutions of the system of linearized boundary-value
problems of competitive adsorption and desorption in nanoporous media are substantiated
and obtained using the Heaviside operational method.

5 NOMENCLATURE

¢i,1 = 1,2 - concentrations of absorptive i in the gas phase in the column, (mol/m=3);
a; - concentration of moisture absorptive 7 in the solid phase;
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T - temperature of gas phase flow, (K);

u - velocity of gas phase flow, (m/s);

Pads density of adsorbent, (kg/km?);

M,4s - molar mass of adsorbent, kg/mol;

Dipter - effective longitudinal diffusion coefficients, (m?/s);

A - coefficient of thermal diffusion along the columns,(kJ/kg - m?/s);

h,— gas heat capacity, (kJ/kg - K);

h - total heat capacity of the adsorbent and gas, (kJ/kg - K);

AH - energy of activity, (kJ/mol);

Q) = AH/M,4s - specific heat of adsorption (adsorption heat capacity),(k.J/kg);
R - universal gas constant;

ay, - heat transfer coefficient, (kJ/(kg- K -m - s));

K, K5 - Henry constants;

[ - mass transfer coefficient, (m/s);

z - distance from the top of the bed for mathematical simulation, (m;

in - index of parameter names (concentration, temperature) in the inlet of the column.
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ITomani TeopeTnyHi OCHOBM MATEMATHYHOIO MOJIE/IIOBAHHS MPOIECIB KOMIIETUTUBHUX aJl-
copbuii i mecopbuii (7BOX rasiB) B HAHOIOPHCTUX KATAJITHIHUX CEPEOBUINAX, IO I'PYHTYIO-
ThCd HA MeXaHi3MaxX piBHOBAaru, OMHCAHUX HEJIHIHOIO HEI30TEPMITHOIO 3aJeKHICTIO JIeHT MIo-
pa. Orpumasni pe3yabTaTi HAROLIBII TOBHO BU3HAYAIOTH MEXaHI3M aICOPOITiiiHOT piBHOBATH J1JTst
CEPEIOBUIN HAHOMOPUCTUX YACTHHOK THUITY IEOJIT, M0 CKJIAJAIOTH JIBA IPOCTOPU: MiKIaCTUH-
KoBuii i BHyTpivacTuaKoBuil. I1L1s1x0M po3KIa Iy HEMIHITHIX 3a/I€2KHOCTEH ONUCy aJICOPOITitHOT
piBHOBaru B TouKax (GazoBoro nepexomay (Temieparypu aacopbiil/mecopbril) Ta o6rpyHTYBaH-
Hsl MAJIOT'O TIapaMeTpy peaji3oBaHa e(DeKTUBHA CXeMa, JeKOMIIO3UIIT BUXITHOT HeIHITHOT MoterTi
Ha €KBIBAJIEHTHY CHCTEMY JIiHEapU30BAHUX MOJeseil. 3 BUKOPUCTAHHSM OIEPAIIIHOIO METOLY
Tesicaiina, inTerpanbaoro mepersopenus Jlamraca ta merony dyukiiit Briusy Ko obrpynTo-
BaHi Ta MOOYI0BaHI BUCOKOIPOAYKTUBHI TOUHI AHAJITHYIHI PO3B’I3KM CUCTEMHU JIIHEAPUIOBAHUX
KpaloBUX 33184 KOMIIETUTUBHUX a,1cOPOIIiT i iecopbirii B HaHOMOpUCcTOMY cepeiopuii. [le qamto
MOXKJIUBICTh OTPUMATH B3a€MO3aJIeKHI 9aCOBO-IIPOCTOPOBI PO3IOMIIN KOHIIEHTpAIliil 1udyH-
JIOBaHUX KOMIIOHEHTIB a/1cOpOaTy y Mi2KYaCTUHKOBOMY Ta BHYTPIYaCTHHKOBOMY IIPOCTOPAX, &
TAKOXK TEMIIEPATyPU I'a30BOI0 IIOTOKY 3 ypaxyBaHHs eHepril akrupamil (Terioru ajcopbiil) Ta
IHmMUX JIMITYIOYrX 9MHHUKIB KiHeTHKH mporecy. Ha ocHOBI mux oTpruMaHuX aHAJITUIHUX (Di3n-
YHUX 3aJIe?KHOCTeNl BUKOHAHHI IX aJI'OPUTMIYHA peaJii3allid, 0 JO3BOJISE PO3IapaJIe IOBAHH S
00YNCIIeHb Ta KOMIT'IOTEDHE MOJIETIOBAHHST PEXKUMHUX ITapAMeTPiB IUX IIPOIECIB, JTOCTIIKe-
Hi yMOBHU aJCOPOIiitHOT PIBHOBArW KOMIIOHEHTIB a/copbaTy i MiXKIYaCTHHKOBOTO Ta BHYTpi-
9aCTUHKOBOI'O TIPOCTOPIB I IUKJIB aIcopoIiil Ta mgecopOIlii B IMIMPOKOMY TEMIIEPATypPHOMY
Jianas3oHi.



