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ON THE BOUNDED CONTROL SYNTHESIS FOR
THREE-DIMENSIONAL HIGH-ORDER NONLINEAR SYSTEMS

The paper deals with three-dimensional high-order nonlinear systems. A class of bounded
finite-time stabilizing controls is presented. Korobov’s controllability function is constructed
to ensure global finite-time convergence. A simulation example is given to demonstrate the
effectiveness of the proposed approach.
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INTRODUCTION

High-order nonlinear systems sparked a great deal of interest in recent decades. These
systems have uncontrollable first approximation and can not be mapped to linear systems.
That is why the stabilization and finite-time stabilization of high-order nonlinear systems is
considered to be one of the most challenging issues in nonlinear control theory.

The objective of finite-time stabilization is to find a controller so that the trajectories
of the corresponding closed-loop system converge to the origin in finite time while ensuring
stability. The controllability function method for finite-time stabilization was proposed by
V.I. Korobov in [5]. The controllability function method was developed in many works,
including [1, 6, 7, 8, 9].

Many stabilization and finite-time stabilization results for higher-order nonlinear systems
were obtained using adding a power integrator technique, see, for example, [3, 4, 11, 12, 13,
14]. This recursive procedure produces feedback controllers of rather complicated structure
and is often difficult to implement for systems of high dimension.

Simple classes of stabilizing controls for high-order nonlinear systems were proposed
in [2, 10]. We develop the results presented in these works to achieve global finite-time
convergence of the trajectories to the origin. To this end, we use the controllability function
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method. This allows us to construct bounded controls that satisfy preassigned constraint on
their absolute values and can be easily implemented numerically.

The remainder of this paper is organized as follows. In Section 1, we give the problem for-
mulation, introduce the control construction method, and prove the finite-time convergence.
In Section 2, the boundedness of control is proved and the main result is stated. Addition-
ally, within Section 2, we provide a simulation example demonstrating the effectiveness of
the proposed method.

1 PROBLEM FORMULATION AND CONTROL CONSTRUCTION

We address the bounded control synthesis problem for the following nonlinear system

i‘l = U,

s 2k1+1

To = xl ) (1)
s 2ko+1

l’g — ZL’2 3

where k; = % > 1 (p; > 0 is an integer number, ¢; > 0 is an odd numbers), i = 1,2, d > 0 is
a given number, and k; < ks.

Our objective is to construct a class of bounded controls u = u(x) (Ju(x)| < d) such that
for any initial point zo € U(0) \ {0} C R™, the solution x(t, xq) of the corresponding closed-
loop system is well-defined and reaches zero in a finite time 7'(zg) < +oo. In other words,
limy_,p(z0) (¢, 29) = 0. If the zero equilibrium point of the closed-loop system is stable, this
problem is also known as the finite-time stabilization problem.

We use the controllability function method [5] to construct a class of finite-time stabilizing

controls u(z). The main idea of the controllability function method is to construct a positive
definite function O(z) (0(0) = 0, O(z) > 0 for = # 0) so that

O(z) < —BO' = (2)

for some 3 > 0, a > 1, where ©(z) denotes the derivative along the trajectories of system (1)
with u = w(z). This inequality ensures finite-time convergence of the trajectories of the
closed-loop system (1).

We introduce the following notation:

my = 1, meo = (2k1+1)m1+1, mgz = (2k2+1)m2+15m

Assume that F' = { fij}?jzl is a symmetric positive definite matrix such that the matrix
F'=2mF — FH — HF is positive definite, where the matrix H has the form

m—m 0 0
H = 0 m—my 0
0 0 0

Suppose ag > 0 is a given number. Define the controllability function ©(x), for x # 0,
as a positive definite solution of the equation

2000*" = (FD(©)z, D(0)z), (3)
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where
em—m 0 0
D(©) = 0 em~—m2 ()
0 0 1

We put ©(0) = 0.

Note that the equation (3) has a unique positive solution for every fixed = # 0 if the
matrix F! is positive definite, which can be proved similarly to [5]. Moreover, ©(z) is
continuously differentiable at every point x # 0.

We introduce the following feedback law u(x):

( ) T 4 i) i T3
u\xr = a1 a a
O(x) " Oy T T e(a)m
2k1+1 2ko+1
Foa g T (4)

Oz)m=t T Ol

where a; < 0 are some real numbers, ¢ = 1,...,5. Additional conditions on a;, i = 1,...,5,
and F’ will be obtained later.

Apply the feedback u = u(x) given by (4) to system (1). To find the derivative of the
function ©(x) along the trajectories of the system (1) with v = u(z), we take the derivative
of both sides of equation (3):

dagmd(x)*""10(x) = (Fy(w), y(2)) + (Fy(z),y(x)), ()

where y(x) = D(O(z))r = (210" (x), 220™ ™2(x), x3).
Computing y, we get

y=D(O)x + D(O)i.
It is clear, that

D(©) = HD(©)

o @

We proceed with ¢ by rewriting system (1) in the form
&= A(O(x))x + hy (O(x))z7" ! + hy(O(x))a3*,

where the matrix A(©) is given by

ﬂ [25) as
© Om @ms
AO)=10 o0 E
0 0 0

and the vectors hy(0) and hy(©) are defined by

ay Qs
@mgfml (_.)mfml
hi(©) = 1 . ha(©) = 0

0 1
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It is straightforward to check that

D(©)A(©) = AD(©)0~!, D(©)hi(0) = h®™ ™2, D(O)hs(O) = ho,

where
a; as as Qg as
A=10 0 0, hi=|1], ho=10]. (6)
0 0 O 0 1
Thus,
. @ 1 m—ma . 2k1+1 2ka+1
Y= HD(@)xg + AD(@)xg + h,© ] + hoxs -
S 1
= Hyé + Ayé + hl@m_m%f’“l“ + h2x§k2+1.

Substituting (7) into (5), we obtain

4agm®*"~H(2)O(z) =(F Ay(z), y(«))O(x) " + (Fy(x), Ay(x))O(x) !
+ (Fhy,y(a)ai™ " 10(2)" ™ + (y(x), Fhy)a i Hemm

+ (Fha, y(2)zd™ ™ + (Fy(z), ho)zd® ™ + (FHy(z),y(x))

O(x)
O(z)

+ (Fy(x), Hy(x))

Multiplying both sides by ©(x) and substituting 2a0©*™ = (Fy, y), we deduce that

(A*F + FA)y,y) + 2(Fhy, y)at T em—metl 4 2(Fhy, y)23="'0

6= (2mF — FH — HF)y,y) ®)

Denote the matrix 2mF — FH — HF by F*.

Note that since the matrix A is singular, it is impossible to choose a positive definite
matrix F'in such a way that the matrix A*F + F'A is negative definite. Therefore, we choose
a positive definite matrix F' so that the matrix A*F + F'A is positive semi-definite. To do
this, we consider the following matrix Lyapunov equation

AF 4 FA= W, (9)
where W = {wi7j}?].:1 is a positive semi-definite matrix.
Singular Lyapunov matrix equation (9) is studied in [2]. In [2], it is proved that for

a positive semi-definite matrix W, the matrix equation (9) is solvable within the class of
positive definite matrices F' if and only if the matrix W has the form

a2 as
w11 Wity Wiy,
2
az as aza3
W= [wng wWng wn-gz (10)
2
as a2a3 as
Wity Wii—g2 Wige
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It is clear that the matrix W of the form (10) is positive semi-definite if and only if
wi1 > 0. We chose wy; > 0.

The following theorem describes the class of positive definite solutions of the matrix
equation (9).

Theorem 1 ([2]|). Suppose that the matrices A and W are defined by (6) and (10) respec-
tively. Assume that wy; > 0, a; < 0. Then the Lyapunov matrix equation (9) is solvable
and its solutions have the form

fu 2fu Bfn
F= Z_ffn fa2 fa3 ) (11)
Z_‘i’fn fa3 [3

w11

where f1; = 5 and the elements { f;; } are some real numbers. Moreover, matrix (10)
a

2
) ij=1
is positive definite for sufficiently large foy > 0 and f33 > 0.

Let us chose fa3, a4, as as follows:

as aq f22 aq f33
Jos=—fe, a=—-——7", a=-——". (12)
a2 as fui as fii

Then (8) takes the form

(A*F + FA)y,y) + Qb%:v%kl“@%"*m? + Qb%xgkﬁlxl@m

0=
(F'y,y)

(13)

2b3x§k2 +2 @m—m2+1

(Fly,y) ’

where
B (), == (e ). B2 (fa- %),
1= gz ) = s u | = e s )
Note that since fo3 = 2 fop by (12), the matrix F', given by (11), takes the form

fu 2 Ea

F=\|2M fo 2f]. (15)
a; a
S Sfe [

It is straightforward to show that the matrix F' of the form (15) is positive definite if and
only if the following inequalities hold:

2

2

a a

fit >0, fo> fu—=, fi3> fo—s (16)
aj a3

Inequalities (16) guaranty that b} < 0, b2 < 0, b3 < 0 for a; < 0, i = 1,...,3. Then
by = —[bil, b = — b3, b3 = —|b3].
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Let us recall that according to Young’s inequality, it is true that

< LalJrc 4 prr%

1+ec 1+c¢
for every a > 0, b > 0, ¢ > 0.

Assume that the matrix F' is a positive definite solution of the Lyapunov matrix equa-
tion (9) with the matrix W of the form (10) (w11 > 0). So fi1 = —§% > 0, and F has the
form (15). In this case

2
. a a
(A"F + FA)y,y) = —wn (yl + =y + —393> :
ay ai
First we establish conditions under which ©(z) < 0 along the trajectories of system (1)

with « = u(x), given by (4). To estimate the numerator of ©(x), given by (13), we will
derive some useful inequalities. Using Young’s inequality, we obtain

Qbfxlxgkﬁl@m = Qbf <8_%x1®—1> (62]6212902@_7,12)%%1 o
L - 1\ 2kat2 | 2ke + 1 I

<912 [ o~ (2kat1) 1)k a2 oo

= 2o (2k2 T 2° (2107 4 g e (2207™) (17)

1 _ 1y 2(ka—F1) _ 2ky + 1 _
-9 b2 (2k2+1) e} 1 2—K1 2k1+2@2m mo 2k2+2@m mo—+1
%] (2k;2+28 (:167) n P

for every € > 0.
Let us chose € by the condition

2ky + 2 |b2
0< 2 |—§|
2ky + 1|67
Thus,
2ky + 1
= |b3| — =——=——¢|b?| > 0.
92 = 3] = S5l >

From (3) it follows that
2000 (2)*™ > Appin (F) (22020 (1) 4 2202m=m2) (1) 4 22),

where A (F) > 0 is the smallest eigenvalue of the matrix F'. Therefore

x? 2ag T3 2ag 3 2ag (18)
O2m1(x) T Apin(F)7 ©2m2(x) T A\pin(F) ©2(x) = Auin(F)
Suppose that aq satisfy the condition
1 - b
0<ag < éAmzn(F> w2 k\/(2k’2 + 2)82k2+1:b—;:. (19>
1
Then
5_(2k2+1)

_1\ 2(ka—k
|bt| — |02 (120> > g >0,

2ky + 2
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where

~(2k2+1) [ o kel
£ o
EIRTRY > 0.
g1 = |by| — |1 2ko + 2 ()\mm(F))

We now estimate the denominator of ©(x), given by (13). Calculating FH, we get
(m—mi)fuin (m— m2)fn§—f 0

FH = (m—ml)fng—f (m—mz)fgg 0

(m—mi)fug (m—m)@fon 0

We find that
2my fu (. +m2)z—ff11 (m+m1)g—i’f11
F'=2mF — FH — HF = | (m1+m2)32 fuu 2ma fa (m +ma) 52 for
(m+m1)3—ff11 (m+m2)z_zf22 2m fs3

We need to choose fi1, fa2, and fs3 in such a way that the matrix F! is positive definite.
To achieve this we employ the Sylvester criterion, according to which all determinants of the
principal minors of F'! must be positive. This leads to the following conditions:

mi1+m 2 a2
Ji1>0,  fo> (lemﬁ;)—;fna
20
iy > (m+m2)z—gfng2 — (m+m1)z—i’f11A3 (20)
33 QmAl )

where A1, As, Az are given by

92 az
A, = det m1f11a (m1 + m2)a1 Ji >0,
(m1 4+ m2) 2 fin 2mg for

A, = det 2mlfli (my +m2)(;_ff11 7
(m+m)Efin (m+ma)@fo

Aw — det (m1 +m2) 22 fu 2m fao
3 (m + ml)Z—?fu (m + mg)g—gfgg '

It is obvious that (16) and (20) hold simultaneously for sufficiently large fos > 0 and
f33 > 0. So assume that the positive definite matrix F' of the form (15) is such that (16)
and (20) hold. Then the matrix F' = 2mF — FH — HF is positive definite. Therefore

(F'9,9) < Mnaa(F)Y1? = A (F1) (27027 () + 25077 (2) + a3),

where Az (F') > 0 is the largest eigenvalue of the matrix F.
Combining the last inequality with the inequality (17), we derive the estimation

wi (Y1 + 2y + ys)® + 201277 O 4 2gppy Ot
Amaz (F1)[|y]12
for ||x|| # 0, since wy; > 0, g1 > 0, g2 > 0.

o< <0, (21)
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From (21), using Lyapunov function method, we deduce the asymptotic stability of the
origin for system (1) with u = u(z) of the form (4). To prove the finite-time convergence of
the trajectories of system (1) with u = u(x), given by (4), we show that the inequality (2)
holds for a = 1.

Consider a family of curves defined by

T = x‘f|x§|_%sign($g)|x3|%sign(x3),
g = affa§| = sign(af)|ws| W sign(zs), (22)
Tr3 = I3.

Note that, for every fixed point z° = (29, 23, 23) € R™\ {0} such that 2 # 0, the system (22)

defines a continuous curve passing through z.
Assume that x € R™ lies on the curve defined by (22) for some fixed z° € R™ \ {0} with

x3 # 0. It is straightforward to verify that

O(x) = O(xo)[2§| 7 || 7. (23)
Then
x(l) m—mq ZL’g m—ms
Yy = (—OG(ZE()) s —0@(1'0) s 1)1’3
T3 T3
Denote 0 0
T T
z = (21, 29,23) = (—é@(l’g)m_ml, —g@(mo)m_m, 1).
T3 T3

For every point x € R? that lies on the curve (22) with some fixed z° € R? (29 # 0),
using (22) and (23), we rewrite (21) as follows:

kl kf2
’UJH(Zl + Z_?ZQ + %)2 + 2912%k1+2 ((F220z)> + 292222k2+2 ((;zl)) ( ) ( )
i : = G(2), 24
Amaz (F1)[2]1?

Let us estimate the right-hand side of (24) to show that it is bounded from zero. Note
that the function G(z) is continuous, and G(z) < 0 at each (z1,29) € R? 2z = (21, 29, 1).
Choose R € R so that

0< -

1 1
0<R< -2~ (25)

/ a2
First we estimate G(z) for every point (21, 29) satisfying 27 + 23 < R?  Using (25),
from (24) we obtain

2
a 2 a a aza
wii(21 + 222)° + Wi gd + 2wtz + 2w 75

Amaz (F1) | 2]1?

k1 k‘2
2 ()" +ameg (i)

322

G(z)=—

(Fz,z2) (Fz,2)
Amaz (F1)[|2]1?

2 2
a a / a ) )
wllé—lela—i’ 1+ﬁ\/21 +Z2

)‘ch(Fl)HZH2

(26)

IN

w113—§ — 211)112—3 1 -+ %R
<4 ! 4= _M/(R)<0.
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We now estimate the function G(z) for (21, 25) € R? such that 27 + 22 > R?. Using (25),
from (24) we derive

a a k
win (21 + Rz + L) (Fz, z)MHh 20123 %2 (2a0)™ (Fz, 2)k2

G(z) = —
(2) Amaz (F) || 2|2 (Fz, 2)ki+k
295252 (2a0)™ (Fz, 2)* 291272 (2a0)™ Auin (F)" |2+
Amaa (F1)|| 2] (Fz, 2)MHR2 ™ Apag (1) Apag (F) 1 HE2 | 2|22 2k

292752 (QGO)k2 i (F) ]| 2| 2R
Amaz (F1) Amag (F ) F1+kz2|| 2| 2+2k1+2k2
2 min {gl (2a0)k1 /\min(F)k27 9o (2a0>k2 /\min(F)kl}
< _
B Mnaz (F1) Mpaz (F) k12

Ol et 7 (27)
||z||2k1+2k2+4

2min { g1 (20)"" Ain

F)kz7 g2 (2a0)k2 /\mm(F)kl} Z%k1+2k2+4 + Z§k1+2k2+4
Amaz (F)F152 (22 + 22 + 1)ki+has2
F)kQ’ g2 <2a0>k2 )\mzn(F)kl} 2_(k1+/€2+1) (Z% + Z%)k1+k2+2
(22 4 22 + 1)kthat2
F)k27 g2 <2a0>k2 /\mm(F)kl} 2—(k1+k2+1)R2k1+2k2+2
)\max(F>k1+k2 (R2 + 1)k1+k2+2

IN
I

IA
|
>
3
)
8
g
>~
3
S
8
—~
3
=
+
S

= —M,(R) < 0.

Thus, we have proved that

O(z) < —min{M;(R), My(R)} < 0, (28)

and the inequality (2) holds for o = 1, f = min{M;(R), Ms(R)} > 0. This proves the global
finite-time convergence of the trajectories of system (1) with u = u(z), given by (4).

2 BOUNDEDNESS OF CONTROL

Let us rewrite the control u(x), given by (4), in the form

1 x2k1+1 x2]€2+1
= (a,D(© - 2
u(z) = (a, D(O(x))x) on(z) + ay &m1(z) + as o 1(z)’
where a = (ay, as, as).
2kq +1 g2kt
Using (18), we estimate SaT ) and g2= o as follows:
2kq+1

it At n 20 )\ (29)
Omz=1(x) O (2)O(z) = \ Mmin(F) ’

x§k2+1 B x§k2+l < 2a0 2k22+1 30
Om=1(z)  OCktlmz(g) = \ )\ ;. (F) (30)
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From (3), using the estimate
200" = Apin (F)|| D(O)2|?,

we get

The inequalities (29), (30), and (31) give the following estimate of the feedback

ID@©)al| _ [~ 2ag

2k1+1 2ko+1

lu(z)| < Ha||||D(@)$H@ml(x) + <)\mfj?F)> e (#‘LE)F)) |

Note that the function @Q(ao) is continuous. Moreover, Q(0) = 0, and QQ — 400 as ag — +00.
This implies that the equation @(ag) = d has a positive solution ag for every d > 0.
Let af be the smallest root of the equation

Q(ao) = d

Then for every ay such that 0 < ap < af the feedback control u(x) satisfies the restriction
ju(z)] < d.

We summarize the procedure for designing the solution of the global bounded control
synthesis problem in the following theorem.

Theorem 2. Suppose that a; < 0, ay < 0, and a3 < 0 are arbitrary real numbers. Let
the matrix W be of the form (10) with wy; > 0. Define the matrix F' by (15). Suppose
the numbers fay > 0, fs3 > 0 are sufficiently large so that the matrixes F and F' =
2mF — HF — FH are both positive definite. Choose ay by (19) so that 0 < ay < a, where
ay is the smallest root of the equation Q(ag) = d, d > 0. Suppose that, for every x € R"\ {0},
the controllability function ©(z) is the positive solution of the equation (3). Let ay and as
be given by (12). Then the control defined by (4) solves the global bounded finite-time
stabilizing control synthesis problem for system (1). Moreover, the time of motion T(xg)
from x( to the origin satisfies the estimate

1
T(xg) < — O(xg),
(w0) < min{M;(R), My(R)} (o)
where M, (R) and Ms(R) are given by (26) and (27), respectively.

Example 1. Let us solve the global bounded control synthesis problem for the system (1)
in the case ky = 1,ky = 2. Thus, (1) takes the form

.@1 = u,
Ty = IL‘?, (32>

ftg = xg
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We take a; = —1, as = —%,0,3 = —%. Set wy; = —2. According to (10), the matrix W has
the form

2 2
W=-135 9§ 3
3 2 2

5 15 25

By Theorem 1, a positive definite solution of the following Lyapunov matrix equation
A'F+ FA=-W,

for foo = 0.2, f33 = 0.3, and fo3 = Z—gfgg, has the form

1 1
LT
=135 5 3
1303
5 25 10

Note that F' = 2mF — HF — FH is positive definite.
Define the controllability function ©(z) as the positive definite solution of the equation

2000*™ = (FD(0)z, D(O)z),

em*® 0 0
where m = (2k; + 2)(2ky + 1) + 1 =21, D(©) = 0 e o
0 0 1

Take ag = 0.6567802403. Theorem 2 gives the following finite-time stabilizing control:

om(t) LTao(t) 1 oag(t)  3a(t)® 3 ab
UT) =g T30 50ME 5017 200

which solves the global bounded control synthesis problem for system (32).

Apply this control to system (32). For example, we take the initial point xo = (1, -2, —1).
Numerical computation of the solution x(t) of the closed-loop system (32) with z(0) = xg
gives the following results: ||z(0)|| = 6, ||=(100)|| = 0.031..., ||z(150)|| = 0.00409...,
12(180)|] = 0.6932... x 104, ||z(184.5]| = 0.185 ... x 10~16.

3 CONCLUSION

In the paper, we solve the finite-time stabilization problem for the high-order nonlinear
three-dimensional system (1). These systems are difficult to control in view of the fact
that they have uncontrollable first approximation and cannot be mapped to linear systems.
We develop the method for stabilization proposed in [2| to present a class of finite-time
stabilizing controls. Employing the controllability function method [5], we achieve the finite-
time stabilization. We establish the conditions under which the control satisfies preassigned
constraint on its absolute value.

Our approach produces controls that can be easily implemented numerically. This ap-
proach seems to be suitable for systems of high dimension. The simulation example is
provided to demonstrate the effectiveness of the proposed approach.
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YV crarTi po3rISHYTO 3a7ady MOOYI0BH OOMEXKEHUX KePyBaHb, IO 3a0e31Me9y0Th MOTPAIl-
JISHHS TPAEKTOPIiil BiJIITOBIIHOT 3aMKHYTOI CUCTEMHU Y IMOYATOK KOOPJIMHAT 3a CKIHYEHHHI Jac.
HocmimkeHo Kac HEMIHIHHIX HEKEPOBAHUX 3a MEPITNM HAOJIMKEHHIM TPUBUMIPHUX CHCTEM,
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sIKi He MOXKHa BijoOpasuru Ha JiiHilHI. CKJIaJHICTE BUBYEHHS TAKMX CHCTEM IIOJISITaE y He-
MOXKJTMBOCTI 1X JIOCJII?KEHHSI 38 [TePITUM HAOJIMKEHHSIM, TOMY TaKi CHCTEMHU HA3UBAIOTH CyTTEBO
wesinitanvu. KpiMm Toro, ockigbku HeCKIHYeHHA KiTbKICTh TPAEKTOPIN 3aMKHYTOI CHCTEMU MA€
[IPOXOJIUTH Y€Pe3 MOYATOK KOOPAWHAT, TO 3 TEOPEMHU €INHOCT] PO3B’sI3Ky BUILINBAE, IO IIIyKAHE
KepyBaHHs He 33JI0BOJIbHSIE yMOBY Jlimmmuilg Ta He € TyIaJkuM B HYJi. Y BHUINAJKY CTilKOCTI
HYJIbOBOI TOYKH CIIOKOIO 3aMKHYTOI CHCTEMH, ITI0 33Jiady HA3WBaIOTh 3aJadero crablrizaril 3a
CKIHYEHHUH vac.

3ampornoHOBaHAN MeTO, OOYI0BU KEPYBAaHb I'PYHTYETHCHA HA MeTO/i (DYHKIII KePOBAHOCTI
B.I. Kopobosa. ®PyHKITI0 KepOBAHOCTI 33 aHO HEABHO K E€IMHWI TOMATHUI KOPIHL Bifmmo-
BizHoro piBugnnsa. KepyBamus BHOpaHO TaKUM YIHHOM, 1100 JOCATTA BUKOHAHHS CIEI[aIbHOT
HEPIBHOCTI 1115 TOXiTHOT (pyHKIIIT KepoBaHOCTI. 1[s1 HEPIBHICTD rapaHTye MOTPAIISTHHS TPAEKTO-
piif y MOYATOK KOOpDJAWHAT 3a CKiHdeHHuU dac. llpm mobymoBi KepyBaHb BUKOPUCTAHO CUHIY-
JIsipHE MAaTpUYHe PiBHAHHS JIAmyHOBA, 10 OYJI0 HOCTiIKEeHo y OLIbIn paHHiX poboTax aBTOPA.
Suaiijiene KepyBaHHsI 3abe3ledye NPIMYBAHHS PO3B’SI3KIiB CHCTEMHU JI0 HyJIs 3a CKiHIYCHHWI
Jac it Oy/Ib-gKOI II0YATKOBOI TOYKM, TAKWUH CHUHTE3 HA3UBalOTh riobajbHuUM. CHHTE3yHOue
MO3UIIIHE KePYBAHHS 33JI0BOJIbHSIE HAIEPET, 3aJJaHUM OOMEYKEHHSIM Ha aOCOTIOTHY BEJTUYHHY.
PezynbraTu pobotu Moxke OyTH 3aCTOCOBAHO [Tl HOCIIYKEHHS CUCTEM OlTbIIT BUCOKOI PO3Mip-
mocTi. EdexkTuBHiCTD 3ampPOIOHOBAHOTO MiIXOAY MPOLTIOCTPOBAHO 3 BUKOPUCTAHHIM MOJIEIb-
HOT'O IIPUKJIATY.
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