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Introduction

When we work on problem of classes of unity and classes of correctness of the Cauchy
problem for equations with partial derivatives with constant or time-dependent coefficients,
we often use the spaces of S type, which where introduced by I.M. Gelfand and G.Ye.
Shilov in [1]. Spaces of S type (spaces Sβ

α ≡ Snnβ

kkα
) are constructed by two sequences {kkα},

{nnβ}, {k, n} ⊂ Z+ (00 := 1), where α, β > 0 are fixed parameters; elements of such spaces
are infinitely differentiable on R functions φ, which satisfy the condition

|xkφ(n)(x)| ≤ cAkBnkkαnnβ, x ∈ R, {k, n} ⊂ Z+,

with some constants c, A,B > 0, dependent on the function φ. Functions from such
spaces on the real axis together with all their derivatives at |x| → +∞ fall faster than
exp{−a|x|1/α}, a > 0, x ∈ R. Spaces of S and S ′ types, topologically conjugate with spaces
of S type, are natural sets of initial data of the Cauchy problem for the large classes of
equations with partial derivatives of finite and infinite orders, in which the solutions are
integer functions in terms of spatial variables (see [2, 3, 4, 5, 6]). For example, for the
thermal conductivity equation ∂u/∂t = ∂2u/∂x2 the fundamental solution is the function
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G(t, x) = (2
√
πt)−1exp {−x2/(4t)} for each t > 0, as function x, is an element of the S1/2

1/2

space [5, p. 46], which belongs to spaces of S type.
It is of scientific interest to study Sbn

ak
spaces, which are generalizations of S type spaces

and are constructed in certain sequences of {ak} and {bn} of positive numbers (study of
topological structure, properties of functions, main operators in the specified spaces). This
paper provides answers to these questions. The question of quasi-analyticity (non-quasi-
analyticity) of generalized spaces of S type is also studied. Some classes of pseudodifferential
operators in such spaces, properties of Fourier transform of generalized functions from spaces
of S ′ type, convolutions, convoluters and multipliers are investigated. The obtained results
were used in the study of the Cauchy problem for the evolution equation with the fractional
differentiation operator A =

√
I − ∂2/∂x2 and the initial function, which is an element of

the space of generalized functions such as ultradistributions.

1 Preliminaries. Topological structure of generalized spaces of S

type

Consider the sequence {mn, n ∈ Z+} of positive numbers, which has the properties:
1) ∀n ∈ Z+ : mn ≤ mn+1, m0 = 1;

2) ∃M > 0 ∃h > 0 ∀n ∈ Z+ : mn+1 ≤Mhnmn;

3) ∃c1 ≥ 1 ∃L ≥ 1 : mk ·mn−k ≤ c1L
nmn, k ∈ {0, 1, ..., n}.

Examples of such sequences are the Gevrey sequences of the form mn = nnβ, mn = (n!)β,
n ∈ Z+, where β > 0 is fixed parameter.

Let
γ(x) := inf

n∈Z+

mn

|x|n
, x ̸= 0.

It is obvious that γ is a non-negative, even function on R \ {0}. If x ∈ [−1, 1] \ {0}, then,
taking into account property 1) of the sequence {mn, n ∈ Z+} we have, inf

n∈Z+

mn

|x|n = 1, ie

γ(x) = 1 for x ∈ [−1, 1] \ {0}.
If 1 ≤ x1 < x2, then γ(x2) < γ(x1) ≤ γ(1) = 1, ie γ monotonically falls on the interval

[1,+∞). Hence, taking into account the parity property of the function γ on R \ {0} we get
that γ grows monotonically on the interval (−∞,−1], 0 < γ(x) ≤ 1, ∀x ∈ R \ {0}.

For example, if mn = nnα, n ∈ Z+, α > 0, then in [1, p. 205] established the following
assessment:

γα(ξ) := inf
n∈Z+

nnα

|ξ|n
≤ eαe/2 · e−

α
e
ξ1/α , ξ ≥ 1.

If 0 < ξ < 1, then

inf
n∈Z+

nnα

ξn
= 1 ≤ e

α
e · e−

α
e
ξ1/α .

So,
∀ξ : 0 < ξ < +∞ : γα(ξ) ≤ ce−

α
e
ξ1/α , c = eαe/2.

In addition, on R \ {0} the function γα satisfies the inequalities [1, pp. 204]:

e−
α
e
|ξ|1/α ≤ inf

n∈Z+

nnα

|ξ|n
≤ ce−

α
e
|ξ|1/α , c = eαe/2, ξ ∈ R \ {0}. (1)
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Lemma 1. The inequality

ln γ(x1) + ln γ(x2) ≥ ln γ(x1 + x2), ∀{x1, x2} ⊂ (0,+∞), (2)

is correct.

Proof. First of all, note that {γ(x1), γ(x2), γ(x1+x2)} ⊂ (0, 1] for arbitrary fixed {x1, x2} ⊂
(0,+∞). Since γ(x) = 1 for x ∈ (0, 1], so it is enough to prove the inequality (2) on the
interval (1,+∞). Indeed, if {x1, x2} ⊂ (0, 1] and (x1 + x2) ∈ (0, 1], then the inequality
(2) becomes equality. If {x1, x2} ⊂ (0, 1] and x1 + x2 > 1, then the inequality (2) also
holds, because 0 < γ(x1 + x2) < 1, ln γ(x1 + x2) < 0, and γ(x1) = γ(x2) = 1 and
ln γ(x1) = ln γ(x2) = 0. If x1 ∈ (0, 1], and x2 > 1, then x1 + x2 > 1, ln γ(x1) = 0,

ln γ(x1) + ln γ(x2) = ln γ(x2) ≥ ln γ(x1 + x2), since γ(x1 + x2) ≤ γ(x2) (here it is taken
into account that γ monotonically falls on the interval (1,+∞)). Similarly consider the case
when x2 ∈ [0, 1], x1 > 1.

So let {x1, x2} ⊂ (1,+∞). The inequality (2) is equivalent to an inequality

γ(x1) · γ(x2) ≥ γ(x1 + x2), {x1, x2} ⊂ (1,+∞). (3)

To prove (3) it is enough to establish that

γ(x1) · γ(x2)
γ(x1 + x2)

≥ 1, {x1, x2} ⊂ (1,+∞).

Let 1 < x1 ≤ x2. Since γ monotonically decreases to (1,+∞), then γ(x1) ≥ γ(x2). So,

γ(x1) · γ(x2)
γ(x1 + x2)

≥ γ2(x2)

γ(x1 + x2)
.

By definition, γ(x2) = inf
n∈Z+

mn

xn
2
, x2 ∈ (1,+∞). Consider the sequence {εk = βkγ(x2), k ∈ N},

where the sequence {βk, k ∈ N} of positive numbers monotonically tends to zero for k →
+∞. Then for εk > 0 there is a number nk = nk(εk) such that

mnk

xnk
2

< γ(x2) + εk = (1 + βk)γ(x2),

that is
γ(x2) >

1

1 + βk

mnk

xnk
2

, k ∈ N.

In accordance,
γ(x1 + x2) ≤

mnk

(x1 + x2)nk
, k ∈ N.

Given these inequalities, we conclude that for the numbers {nk, k ∈ N} the inequalities hold

γ(x1)γ(x2)

γ(x1 + x2)
≥ γ2(x2)

γ(x1 + x2)
≥

m2
nk

(1 + βk)2
(x1 + x2)

nk

x2nk
2 mnk

≥ mnk

(1 + β1)2x
nk
2

, k ∈ N

(it is taken into account that x1 + x2 ≥ x2, βk < β1, ∀k ≥ 2). In addition,

γ(α) ≤ mn

αn
, n ∈ Z+,
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for any α > 1, or
∀α > 1 ∀k ∈ N : mnk

≥ αnkγ(α).

Put α = x2δ, where δ > 1 is a fixed number and choose the number nk so that the inequality
δnkγ(x2δ) ≥ (1 + β1)

2 is true. Directly find that

nk ≥
[
ln

(
(1 + β1)

2

γ(x2δ)

)
(ln δ)−1 + 1

]
.

For such a number, the inequality holds

γ(x1)γ(x2)

γ(x1 + x2)
≥ xnk

2 δ
nkγ(x2δ)

(1 + β1)2x
nk
2

=
δnkγ(x2δ)

(1 + β1)2
≥ 1,

which had to be proved.

Let {ak, k ∈ Z+} and {bn, n ∈ Z+} are the sequences that have properties 1) - 3). The
symbol Sbn

ak
denote the set of functions φ ∈ C∞(R) that satisfy the condition

∃ c, A,B > 0 ∀{k, n} ⊂ Z+ ∀x ∈ R : |xkφ(n)(x)| ≤ cAkBnakbn (4)

(constants c, A,B > 0 depend on the function φ).
Sbn
ak

coincides with the union of spaces Sbn, B
ak, A

for all A,B > 0, where the symbol Sbn, B
ak, A

denotes the set of functions φ ∈ Sbn
ak

, which for arbitrary δ, ρ > 0 satisfy the inequalities

|xkφ(n)(x)| ≤ cδρ(A+ δ)k(B + ρ)nakbn, {k, n} ⊂ Z+, x ∈ R,

with the same constants A,B > 0. Sbn, B
ak, A

is transformed into a complete countable-normali-
zed space, if the system of norms in this space is given by formulas

∥φ∥δ,ρ = sup
x,k,n

|xkφ(n)(x)|
(A+ δ)k(B + ρ)nakbn

, φ ∈ Sbn, B
ak, A

, {δ, ρ} ⊂ {1, 1
2
,
1

3
, . . .}.

The sequence {φν , ν ∈ N} ⊂ Sbn
ak

goes to zero in the space Sbn
ak

for ν → +∞, if
{φν , ν ∈ N} ⊂ Sbn, B

ak, A
for some A,B > 0 and goes to zero in this space, so ∥φν∥δρ → 0

for ν → ∞ for all {δ, ρ} ⊂ {1, 1
2
, . . .}. This definition is equivalent to this: the sequence

{φν , ν ∈ N} ⊂ Sbn
ak

goes to zero in this space, if the functions φν and their derivatives of
arbitrary order go to zero uniformly on each [a, b] ⊂ R and at the same time inequalities
come true

|xkφ(n)
ν (x)| ≤ cAkBnakbn, {k, n} ⊂ Z+, x ∈ R,

where constants c, A,B > 0 do not depend on ν (the proof of this statement is similar to
the proof of a similar statement in the case of the Sβ

α spaces (see [1, p. 219])).
The set F ⊂ Sbn

ak
is called bounded, if F is contained in the Sbn, B

ak, A
space with the some

values A,B > 0 and is bounded in this space, so that for all functions φ ∈ F the evaluation
(4) is true with the same constants c, A,B > 0.
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Lemma 2. The function φ ∈ C∞(R) is an element of the space Sbn
ak

if and only if it satisfies
the condition

∃a,B, c > 0 ∀n ∈ Z+ ∀x ∈ R : |φ(n)(x)| ≤ cBnbnγ̃(ax), (5)

where

γ̃(x) =

1, |x| ≤ 1,

inf
k∈Z+

ak
|x|k , |x| > 1.

Proof. Let φ ∈ Sbn
ak

, ie the condition (4) holds. Then, dividing both parts of the inequality
(4) by |x|k, x ̸= 0, and in the right part going to the lower limit of k, we obtain

|φ(n)(x)| ≤ cBnbn inf
k∈Z+

Akak
|x|k

= cBnbn inf
k∈Z+

ak
|A−1x|k

= cBnbnγ(ax), x ̸= 0,

where a = A−1 > 0. Since |φ(n)(0)| ≤ cBnbn, n ∈ N (see (4)) and γ(x) = 1 for x ∈
[−1, 1] \ {0}, then the function γ in the last inequality can be replaced by γ̃.

Conversely, let the function φ ∈ C∞(R) satisfy the condition (5). Then

|φ(n)(x)| ≤ cBnbn inf
k∈Z+

ak
|ax|k

, n ∈ Z+, x ̸= 0,

hence it follows that the inequality

∀x ∈ R \ {0} : |ax|k|φ(n)(x)| ≤ cBnbnak, {k, n} ⊂ Z+

holds. Given the estimate |φ(n)(0)| ≤ cBnbn, n ∈ Z+, we have

|xkφ(n)(x)| ≤ cAkBnakbn, A = a−1, ∀{k, n} ⊂ Z+, x ∈ R,

which was to be proved.

If ak = kkα, bn = nnβ, {k, n} ⊂ Z+, where α, β > 0 are fixed parameters, then in this
case the space Snnβ

kkα
is denoted by the symbol Sβ

α. Sβ
α spaces are called S type spaces; there

is a lot of detail in the monograph [1], which can be characterized as follows [1, p. 210].
The spaces Sβ

α are nontrivial if α + β ≥ 1, α, β > 0 and form dense sets in L2(R).
Sβ
α, α > 0, β > 0, α + β ≥ 1, consists of those and only those infinitely differentiable on

R functions that satisfy the inequalities

|φ(n)(x)| ≤ cBnnnβ exp {−a|x|1/α}, n ∈ Z+, x ∈ R,

with some constants c, A, B > 0, dependent only on the function φ.
If 0 < β < 1 and α ≥ 1− β, then Sβ

α consists of those and only those functions φ ∈
C∞(R), which analytically extend into the whole complex plane and satisfy the condition

∃c = c(φ) > 0 ∃a = a(φ) > 0 ∃b = b(φ) > 0 :

|φ(x+ iy)| ≤ c exp{−a|x|1/α + b|y|1/(1−β)}, ∀{x, y} ⊂ R.
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The space S1
α (α > 0 is arbitrary) consists of functions φ ∈ C∞(R), which analytically extend

to the function φ(x+ iy) in some band |y| < δ (dependent on φ) of the complex plane, while

|φ(x+ iy)| ≤ c exp{−a|x|1/α}, c, a > 0, {x, y} ⊂ R, |y| < δ.

The spaces Sbn
ak

, constructed by the sequences {ak}, {bn}, which satisfy conditions 1) -
3), will be called generalized spaces of S type.

In the spaces Sbn
ak

are defined, are linear and continuous operators of argument shift,
multiplication by an independent variable and differentiation.

We prove, for example, that in the space Sbn
ak

is defined and is a continuous operator of
the shift of the argument T−h: φ(x) → φ(x−h), ∀φ ∈ Sbn

ak
, which reflects this space in itself.

Let φ run over a bounded set F ⊂ Sbn
ak
. This means that for each function φ ∈ F

inequalities
|xkφ(n)(x)| ≤ cAkBnakbn, x ∈ R, {k, n} ⊂ Z+,

hold with the same constants c, A, B > 0. Then

sup
x∈R

|xkφ(n)(x− h)| = sup
x∈R

|(x+ h)kφ(n)x| = sup
x∈R

|
k∑

j=0

Cj
kx

jhk−jφ(n)(x)| ≤

≤
k∑

j=0

Cj
k|h|

k−j sup
x∈R

|xjφ(n)(x)| ≤ c
k∑

j=0

Cj
k|h|

k−jAjBnajbn ≤ cBnbnak

k∑
j=0

Cj
kA

j|h|k−j =

= c(A+ |h|)kBnakbn = cAk
1B

nakbn.

where A1 = A + |h|. It follows that the function φ1(x) = φ(x − h) is an element of the
space Sbn,B

ak,A+|h|, ie φ1 ∈ Sbn
ak

=
∪

A,B>0

Sbn,B
ak,A

. Therefore, the image of the bounded set F at the

specified mapping is a bounded set in the space Sbn
ak

. This means that the argument shift
operator is a linear bounded operator in the space Sbn

ak
, and hence a linear continuous operator

in this space, because in the space Sbn
ak

is executed the first axiom of countability. Then,
as follows from the general theory of linear continuous operators in countable-normalized
spaces (see [1, pp. 81-82]), in spaces with the first axiom of countability the class of linear
bounded operators coincides with the class of linear continuous operators.

Note also that the spaces Sbn
ak

are perfect (that is, spaces whose bounded sets are compact).
It follows from this and from the general theory of perfect spaces (see [1, p. 171]) that the
operation of shifting an argument is differential (even infinitely differentiable) in the sense
that the boundary relations of the form (φ(x+ h)− φ(x))h−1 → φ′(x), h→ 0, are valid for
each function φ ∈ Sbn

ak
in the sense of topology convergence space Sbn

ak
.

We prove that in the space Sbn
ak

is defined, there is a linear and continuous multiplication
operator for an independent variable that reflects this space in itself.

Let φ run over a bounded set F ⊂ Sbn
ak

, that is, every function φ ∈ F satisfies the
inequalities

|xkφ(n)(x)| ≤ cAkBnakbn, {k, n} ⊂ Z+, x ∈ R,
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with some constants c, A,B > 0. Put ψ(x) := xφ(x). Then

|xkψ(n)(x)| = |xk(xφ(x))(n)| ≤ |xk+1φ(n)(x)|+ n|xkφ(n−1)(x)| ≤

≤ cAk+1Bnak+1bn + ncAkBn−1akbn−1.

Using property 2) of the sequence {ak} and property 1) of the sequence {bn}, we arrive at
the inequalities

|xkψ(n)(x)| ≤ cAAkBnMhkakbn + c2nAkBnB−1akbn = c̃Ak
1B

n
1 akbn,

where c̃ = cAM + cB−1, A1 = max{Ah,A}, B1 = 2max{1, 2B}. Thus, the image of the
bounded set F when multiplied by the independent variable x is again a bounded set in the
space Sbn

ak
, which was to be proved.

Note also that φψ ∈ Sbn
ak

for arbitrary {φ, ψ} ⊂ Sbn
ak

.
The function g ∈ C∞(R) is called the multiplier in the space Sbn

ak
, if gφ ∈ C∞(R) for an

arbitrary function φ ∈ Sbn
ak

and the mapping φ→ gφ is linear and continuous.

Lemma 3. The multiplier in the space Sbn
ak

is the function f ∈ C∞(R), which satisfies the
condition

∃B0 ∀ε > 0 ∃cε > 0 ∀n ∈ Z+ ∀x ∈ R : |f (n)(x)| ≤ cεB
n
0 bn(γ̃(εx))

−1. (6)

Proof. Let φ ∈ Sbn
ak

. Then, according to Lemma 2, the inequalities are correct

|f (n)(x)| ≤ cBnbnγ̃(ax), x ∈ R, n ∈ Z+,

with some constants c, a, B > 0. Take ε ∈ (0, a) and use the estimates (6). Then

|(f(x)φ(x))(n)| ≤
n∑

j=0

Cj
n|f (i)(x)| · |φ(n−j)(x)| ≤ ccε

n∑
j=0

Cj
nB

j
0B

(n−j)bjbn−j
γ̃(ax)

γ̃(εx)
.

Since bjbn−j ≤ ωLnbn (see property 3) of the sequence {bn}), then

|(f(x)φ(x))(n)| ≤ c̃Bn
1 bn

γ̃(ax)

γ̃(εx)
= c̃Bn

1 bne
ln γ̃(ax)−ln γ̃(εx),

where c̃ = ccεω, B1 = 2max{B0, B}L. From (2) follows the inequality

ln γ̃(ax)− ln γ̃(εx) ≤ ln γ̃((a− ε)x), 0 < ε < a.

Then
|(f(x)φ(x))(n)| ≤ c̃Bn

1 bne
ln γ̃((a−ε)x) = c̃Bn

1 bnγ̃(a1x), a1 = a− ε.

Therefore, fφ ∈ Sbn
ak

. It also follows from the above considerations that if φ flows through a
bounded set F ⊂ Sbn

ak
, then each function fφ, φ ∈ F, belongs to a limited set F1 ⊂ Sbn

ak
, ie

the operator Sbn
ak

∋ φ→ fφ ∈ Sbn
ak

is continuous. The Lemma is proved.
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If the sequences {ak}, {bn} satisfy the conditions

ak
ak−1

≥ cak
1−µ,

bk
bk−1

≥ cbk
1−λ, µ, λ ≥ 0, µ+ λ ≤ 1, {k, n} ⊂ N,

ak+2

ak
≤ c0A

k, (7)

then, as noted in [1, p. 290], the formula F [Sbn
ak
] = San

bk
is correct, where F [Sbn

ak
] :={

ψ : ψ(σ) =
∫
R
φ(σ)eiσxdx, ∀φ ∈ Sbn

ak

}
, in particular,

F [Snnβ

kkα ] ≡ F [Sβ
α] = Sα

β ≡ Snnα

kkβ , α, β > 0.

Note that since the sequence {ak, k ∈ Z+} has property 2), the inequality ak+2

ak
≤ c0A

k
0

holds with constants c0 = hM2, A0 = h2.

2 On the quasi-analyticity of generalized spaces of S type

If the sequence {bn, n ∈ Z+}, which is used to construct the space Sbn
ak

, ”grows slowly”,
then such space can consist of infinite differentiable on R functions, which allow analytical
continuation in the whole complex plane and satisfy a certain condition.

Theorem 1. Suppose there exists L ∈ [0,+∞) such that

lim
n→∞

n
√
bn
n

= L.

The following statements are correct:
1. If L ∈ (0,+∞), then each function φ(x) from the space Sbn

ak
allows an analytical

extension in some band |Imz| = |Im(x+ iy)| = |y| < c, c = c(φ) > 0, of the complex plane.
2. If L = 0, then each function φ(x) from the space Sbn

ak
analytically extends into the

whole complex plane to the whole function φ(x+ iy), which satisfies the inequality

|φ(x+ iy)| ≤ cγ̃(ax)ρ̃(by), ∀{x, y} ⊂ R,

where c, a, b > 0 are some constants (dependent on φ),

γ̃(x) =

1, |x| ≤ 1,

inf
k∈Z+

ak
|x|k , |x| > 1,

ρ̃(y) =

1, |y| < 1,

sup
n∈Z+

|y|n

b̂n
, |y| > 1, b̂n = n!

bn
.

3. In the case where there is ω ∈ (1,+∞) such that lim
n→∞

n√bn
nω = +∞, among the elements

of the space Sbn
ak

there are finite infinitely differentiable functions.

Proof. Let fixed an arbitrary function φ from the space Sbn
ak

and estimate its residual term
in the form of Taylor

|h
n

n!
φ(n)(x+ θh)| ≤ c

|h|n

n!
Bnbn, n ∈ Z+, {x, h} ⊂ R, 0 < θ < 1.
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If the condition lim
n→∞

n√bn
n

= L, 0 < L <∞, is true then

∀ε > 0 ∃n0 = n0(ε) ∈ N ∀n ≥ n0 : bn < (ε+ L)nnn.

From Stirling’s formula n! =
√
2πnnne−neθn/(1−n), 0 < θn < 1, the inequality n! ≥ nne−n

follows. From here we get the going to zero of the residual term at n→ ∞ for all h : |h| <
(BLe)−1. Thus, in the corresponding neighborhood of the point x the function φ develops
in a Taylor series converging to it

φ(x+ h) =
∞∑
n=0

hn

n!
φ(n)(x).

Since this series are also convergent for complex values of h such that |h| < (BLe)−1, we
conclude that the function φ admits an analytic extension to the band |h| < (BLe)−1 of the
complex plane.

If L = 0, then

∀ε > 0 ∃n0 = n0(ε) ∈ N ∀n ≥ n0 : bn < (εe)nnn.

Let fix arbitrary |h| ̸= 0 and put ε = 1
2
(Be|h|)−1. Then∣∣∣∣hnn!φ(n)(x+ θh)

∣∣∣∣ ≤ c

2n
→ 0, n→ ∞.

Therefore, the Taylor series of the function φ converging for an arbitrary complex h. Putting
h = iy, y ∈ R\{0}, we get that the function φ(x) analytically extends in the whole complex
plane to the function

φ(x+ iy) =
∞∑
n=0

(iy)n

n!
φ(n)(x), y ̸= 0.

From here and from the inequality (5) we get

|φ(x+ iy)| ≤ c

∞∑
n=0

|y|n

n!
Bnbnγ̃(ax) ≤ c sup

n∈Z+

(
2nBn|y|n

n!
bn

) ∞∑
n=0

1

2n
γ̃(ax) =

= c1γ̃(ax)ρ̃1(by), c1 = 2c, b = 2B, y ̸= 0,

where ρ̃1(y) = sup
n∈Z+

|y|n

b̂n
, b̂n = n!

bn
, y ̸= 0. If y = 0, then |φ(x)| ≤ cγ̃(ax). Note when L = 0,

then the sequence bn
n!

monotonically tends to zero for n → ∞. Thus, the sequence b̂n = n!
bn

monotonically tends to infinity for n→ ∞. Since, b̂0 = 1 and ρ̃1(y) = 1 for y ∈ [−1, 1] \ {0},
ρ̃1(0) = 0, then instead of the function ρ̃1 we can consider the function

ρ̃(y) =

1, |y| < 1,

sup
n∈Z+

|y|n

b̂n
, |y| > 1.
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3. The condition lim
n→∞

n√bn
nω = +∞ (for some ω > 1) implies the existence of a constant

A > 1 such that the inequality bn ≥ Annnω for all n ∈ N is true. Next we use the inequality

inf
n∈Z+

Annnα

|x|n
≥ exp

{
−α
e

∣∣∣ x
A

∣∣∣1/α} , x ̸= 0,

where α,A > 0 are fixed numbers, which follows from the estimates (1). Given the relation

sup
n∈Z+

|x|n

Annnα
=

1

inf
n∈Z+

Annnα

|x|n
, x ̸= 0,

come to the assessment

sup
n∈Z+

|x|n

Annnα
≤ exp

{
α

e

∣∣∣ x
A

∣∣∣1/α} , x ∈ R. (8)

If we put in (8) α = ω > 1 and taking into account the inequality bn ≥ Annnω, n ∈ N, we
obtain

T (λ) := sup
n∈Z+

λn

bn
≤ sup

n∈Z+

λn

Annnω
≤ exp{ãλ1/ω}, ã = ωe/A1/ω, λ ≥ 1.

Then
+∞∫
1

lnT (λ)

λ2
dλ ≤ ã

+∞∫
1

λ1/ω−2dλ =
ω − 1

eA1/ω
< +∞.

Hence and from the Carleman-Ostrovsky theorem [7], which describes the classes of quasi-
analytic (non-quasi-analytic) functions, it follows that among the elements of the space Sbn

ak

there are finite infinitely differentiable functions.
Theorem proved.

As an example of the application of Theorem 1, consider the space Sβ
α = Snnβ

kkα
, where

α > 0, β > 0, α ≥ 1 − β (condition of non-triviality of space Sβ
α). In this case bn = nnβ,

n ∈ Z+.
If β ∈ (0, 1), then

ρ̃1(y) = sup
n∈Z+

|y|n

b̂n
≤ sup

n∈Z+

|ey|n

nn(1−β)
=

1

inf
n∈Z+

nn(1−β)

|ey|n
, y ̸= 0.

From the estimates (1) we obtain inequalities

ρ̃(y) ≤ exp{b|y|1/(1−β)}, b > 0, γ̃(x) ≤ c exp{−a|x|1/α}, c > 1.

Therefore, it follows from this and from Proposition 2 of Theorem 1 that each function
φ ∈ Sβ

α, α > 0, β ∈ (0, 1), α ≥ 1− β, analytically extends into the whole complex plane and
satisfies the inequality

|φ(x+ iy)| ≤ c exp{−a|x|1/α + b|y|1/(1−β)},
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where c, a, b > 0 are some constants depending on the function φ (obtained a known result
established in [1, p. 209]).

If β = 1, then bn = nn, lim
n→∞

n√bn
n

= 1. In this case, each function φ ∈ S1
α, α > 0,

analytically extends into some band of the complex plane, the width of which depends on
the function φ.

If β > 1, then for an arbitrary fixed ω ∈ (1, β) we have
n√bn
nω = nβ−ω, lim

n→∞

n√bn
nω = +∞.

Thus, the space Sβ
α, α > 0, β > 1, contains finite infinitely differentiable functions on R

(the same result in the case of the space Sβ
α for β > 1, follows directly from the Carleman-

Ostrovsky theorem).

3 Pseudodifferential operators in generalized spaces of S type

The symbol Θbn
ak

denotes the set of functions φ ∈ C∞(R), which are multipliers in the
space Sbn

ak
. From the properties of the Fourier transform (direct and inverse) in generalized

spaces of type S it follows that in the space San
bk

is defined, is a linear and continuous
operator A := F−1

σ→x[φ(σ)Fx→σ], which is called a pseudodifferential operator built on the
function φ ∈ Θbn

ak
(operator symbol A), A : San

bk
→ San

bk
,

(Aψ)(x) = F−1[φ(σ)F [ψ](σ)](x), ∀ψ ∈ San
bk
.

Now consider the operator φ(i d
dx
), where φ ∈ Θbn

ak
. Since i d

dx
is a self-adjoint operator in

Hilbert space L2(R) with domain D(i d
dx
) = {ψ ∈ L2(R) : ∃ψ′ ∈ L2(R)}, and φ is a real

function, then φ(i d
dx
) is also self-adjoint operator in L2(R) with a dense domain in L2(R).

If Eλ, λ ∈ R is the spectral function of the operator i d
dx

, then, due to the basic spectral
theorem for self-adjoint operators we have

φ(i
d

dx
)ψ =

+∞∫
−∞

φ(λ)dEλψ, ∀ψ ∈ D(φ(i
d

dx
)).

It is known (see, for example, [8]) that

Eλψ =
1

2π

λ∫
−∞


+∞∫

−∞

ψ(τ)eiστdτ

 e−itσdσ.

Hence we get dEλψ = 1
2π
F [ψ](λ)e−itλdλ. So

φ(i
d

dx
)ψ =

1

2π

+∞∫
−∞

φ(λ)F [ψ](λ)e−itλdλ = F−1[φ(λ)F [ψ](λ)], ∀ψ ∈ San
bk
.

Thus, in the space San
bk

the pseudodifferential operator A = F−1[φF ] coincides with the
operator φ(i d

dx
) , ie the pseudodifferential operator A can be understood as a constructive

implementation of the operator φ(i d
dx
).
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As an example, consider the function φ(σ) = (1 + σ2)ω/2, σ ∈ R, ω ∈ [1, 2) is fixed
parameter. We are directly convinced that the function φ ∈ C∞(R) and has the properties:

φ(σ) = cε exp{ε|σ|ω}, σ ∈ R, cε = 2ω/2max{1, 1/ε}

(ε > 0 is arbitrary fixed parameter),

|Dn
σφ(σ)| ≤ c0B

n
0n!, n ∈ N, σ ∈ R,

where c0 = c0(ω) > 0, B0 = B0(ω) > 0. It follows that φ is a multiplier in the space S1
1/ω (

ie φ ∈ Θ1
1/ω). Then, due to the basic spectral theorem for self-adjoint operators

φ(i
d

dx
)ψ = (I + (i

d

dx
)2)ω/2ψ = (I − d2

dx2
)ω/2ψ =

+∞∫
−∞

(1 + σ2)ω/2dEλψ =

= F−1[(1 + σ2)ω/2F [ψ]], ∀ψ ∈ S
1/ω
1 .

The operator (I− d2

dx2 )
ω/2 is called a fractional order differentiation operator, the constructive

implementation of which in the space S1/ω
1 is a pseudodifferential operator constructed by

function (symbol) (1 + σ2)ω/2, σ ∈ R, - multiplier in space S1
1/ω. In particular, if ω = 1,

then in the space S1
1 the operator

√
1−∆, ∆ = d2/dx2, coincides with the pseudodifferential

operator F−1(1 + σ2)1/2F ].

4 The spaces of generalized function of S ′ type

The symbol (Sbn
ak
)′ will denote the space of all linear continuous functionals given on the

main space Sbn
ak

with weak convergence, and its elements will be called generalized functions.
Regular generalized functions or regular functionals will be called linear continuous func-

tionals, the action of which on the main function φ ∈ Sbn
ak

is given by the formula

⟨f, φ⟩ =
∫
R

f(x)φ(x)dx.

Each locally integrable on R function f that satisfies the condition

∀ε > 0 ∃cε > 0 ∀x ∈ R : |f(x)| ≤ cε(γ̃(εx))
−1 (9)

generates a regular generalized function Ff ∈ (Sbn
ak
)′ :

⟨Ff , φ⟩ =
∫
R

f(x)φ(x)dx, ∀φ ∈ Sbn
ak
.

It is correct the statement: if the locally integrable on R functions f and g, which satisfy
the condition (9), do not coincide on the set of Lebesgue positive measure, then there exists
a function φ0 ∈ Sbn

ak
such that ⟨f, φ0⟩ ≠ ⟨g, φ0⟩, ie Ff ̸= Fg. Conversely, if Ff ̸= Fg, then the
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functions f and g do not coincide on the set of Lebesgue positive measure. The proof of this
statement is similar to the proof of the corresponding statement from [9].

The formulated statement allows us to identify locally integrable functions on R that
satisfy the condition (9), with the generalized functions generated by them from the space
(Sbn

ak
)′. It follows from the properties of the Lebesgue integral that the embedding Sbn

ak
∋

f → Ff ∈ (Sbn
ak
)′ is continuous.

Since in the main space Sbn
ak

the operation of shift of the argument Tx is defined, the
convolution of the generalized function f ∈ (Sbn

ak
)′ with the main function is given by the

formula
(f ∗ φ)(x) = ⟨fξ, T−xφ̌(ξ)⟩ = ⟨fξ, φ(x− ξ)⟩, φ̌(ξ) = φ(−ξ)

(here ⟨fξ, T−xφ̌(ξ)⟩ denotes the action of the functional f on the main function T−xφ̌(ξ) as
a function of the variable ξ). From the property of infinite differentiability of the argument
shift operation in the space Sbn

ak
it follows that the convolution f ∗φ is an ordinary infinitely

differentiable function on R.
Let f ∈ (Sbn

ak
)′. If f ∗φ ∈ Sbn

ak
, ∀φ ∈ Sbn

ak
and from the relation φν → 0 at ν → ∞ by space

topology Sbn
ak

it follows that the convolution f ∗ φν → 0 at ν → ∞ by space topology Sbn
ak

,
then the functional f is called a convolutor in the space Sbn

ak
. For example, δ is the Dirac

function is a convolutor in each space Sbn
ak

:

∀φ ∈ Sbn
ak

: (δ ∗ φ)(x) = ⟨δξ, φ(x− ξ)⟩ = φ(x).

The Fourier transform of the generalized function f ∈ (Sbn
ak
)′ is denoted by the relation

⟨F [f ], φ⟩ = ⟨f, F [φ]⟩, ∀φ ∈ San
bk

. Hence we get that F [f ] ∈ (San
bk
)′, if f ∈ (Sbn

ak
)′. In this case,

the operator F : (Sbn
ak
)′ → (San

bk
)′ is continuous.

Theorem 2. If the generalized function f ∈ (Sbn
ak
)′ is a convolutor in the space Sbn

ak
, then for

an arbitrary function φ ∈ Sbn
ak

the formula

F [f ∗ φ] = F [f ] · F [φ]

is correct.

Proof. According to the condition of the theorem, f ∗ φ ∈ Sbn
ak

, ∀φ ∈ Sbn
ak

. Then, using the
definition of the Fourier transform of generalized functions from the space (Sbn

ak
)′, as well as

the definition of the convolution of a generalized function with the main one, we write the
following relations:

∀ψ ∈ Sbn
ak

: ⟨F [f ∗ φ], ψ⟩ = ⟨f ∗ φ, F [ψ]⟩ =
+∞∫

−∞

(f ∗ φ)(x)F [ψ](x)dx =

=

+∞∫
−∞

⟨fξ, φ(x− ξ)⟩F [ψ](x)dx = ⟨fξ,
+∞∫

−∞

φ(x− ξ)F [ψ](x)dx⟩ (10)

(here f ∗ φ is understood as a regular generalized function).
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Let

I(ξ) :=

+∞∫
−∞

φ(x− ξ)F [ψ](x)dx.

Then, due to Fubini’s theorem

I(ξ) :=

+∞∫
−∞

φ(x− ξ)(

+∞∫
−∞

ψ(σ)eiσxdσ)dx =

+∞∫
−∞

+∞∫
−∞

φ(x− ξ)ψ(σ)eiσxdσdx =

=

+∞∫
−∞

+∞∫
−∞

φ(t)ψ(σ)eiσteiσξdσdt =

+∞∫
−∞

ψ(σ)F [φ](σ)eiσξdσ = F [F [φ] · ψ] ∈ Sbn
ak
.

So,

⟨F [f ∗ φ], ψ⟩ = ⟨f, F [F [φ] · φ]⟩ = ⟨F [f ], F [φ] · ψ⟩ = ⟨F [f ] · F [φ], ψ⟩, ∀ψ ∈ San
bk
.

Hence we get equality F [f ∗ φ] = F [f ] · F [φ].
It remains to justify the correctness of the relationship (10). Define the notation

Ir(ξ) :=

r∫
−r

ψ(σ)F [φ](σ)eiσξdσ, r > 0.

To prove (10) it suffices to establish that Ir(ξ) → I(ξ) for r → +∞ in the space Sbn
ak

,
ie αr(ξ) := I(ξ) − Ir(ξ) → 0 for r → +∞ by space topology Sbn

ak
. This means that: 1) the

family of functions {α(n)
r (ξ), r > 0}, n ∈ Z+, coincides to zero at r → +∞ evenly on each

segment [a, b] ⊂ R; 2) |α(n)
r (ξ)| ≤ cBnbnγ̃(aξ), ∀n ∈ Z+,

where constants c, B, a > 0 do not depend on r.
The integral

+∞∫
−∞

Dn
ξ (ψ(σ)F [φ](σ)e

iσξ)dσ =

+∞∫
−∞

(iσ)nψ(σ)F [φ](σ)eiσξdσ

coincides uniformly with respect to ξ, since

∀ξ ∈ R : |Dn
ξ (ψ(σ)F [φ](σ)e

iσξ)| ≤ |σnψ(σ)F [φ](σ)|, σ ∈ R,

+∞∫
−∞

|σnψ(σ)F [φ](σ)|dσ <∞

(since σnψ(σ)F [φ](σ) ∈ San
bk

for every n ∈ Z+). Then

|α(n)
r (ξ)| ≤

∫
|σ|≥r

|σnψ(σ)F [φ](σ)|dσ → 0, r → ∞,
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uniformly by ξ as the remainder of the convergent integral. Therefore, condition 1) is fulfilled.
Let’s check fulfillment of condition 2). Since

Dn
ξ αr(ξ) = Dn

ξ I(ξ)−Dn
ξ Ir(ξ),

then |Dn
ξ αr(ξ)| ≤ |Dn

ξ I(ξ)|+ |Dn
ξ Ir(ξ)|. Consider the functions

Dn
ξ Ir,+(ξ) = max(Dn

ξ Ir(ξ), 0), D
n
ξ Ir,−(ξ) = −min(Dn

ξ Ir(ξ), 0),

which are non-negative and consider that

|Dn
ξ Ir(ξ)| = Dn

ξ Ir,+(ξ) +Dn
ξ Ir,−(ξ) ≤ 2|Dn

ξ I(ξ)|.

Then
|Dn

ξ αr(ξ)| ≤ 3|Dn
ξ I(ξ)| = 3|Dn

ξF [F [φ] · ψ]|, ∀r > 0. (11)

Since F [F [φ] · ψ] ∈ Sbn
ak

, ∀φ ∈ Sbn
ak

, ψ ∈ San
bk

, then hence and from (11) follows the estimate

|Dn
ξ αr(ξ)| ≤ cBnbnγ̃(aξ), n ∈ Z+, ξ ∈ R,

where constants c, a, B > 0 do not depend on r. Thus, condition 2) is satisfied. Theorem
proved.

Corollary 1. If the generalized function f is a convolutor in the space Sbn
ak

, then its Fourier
transform is a multiplier in the space San

bk
.

Proof. The mapping (0, T ] ∋ t → ft(·) ∈ Sbn
ak

will be called an abstract function of the
parameter t with values in the space Sbn

ak
. Hereinafter, this mapping will be denoted by

the symbol ft(·), and let ft(·) be the differential function of the parameter t, ie, the limits
relation

ft+∆t(·)− ft(·)
∆t

→ ∂

∂t
ft(·), ∆t→ 0, (12)

is performed in the sense of convergence in the topology of Sbn
ak

space. Then the formula

∂

∂t
(f ∗ ft(·)) = f ∗ ∂

∂t
ft(·), ∀f ∈ (Sbn

ak
)′. (13)

is correct. In fact, according to the definition of convolution, we have a generalized function
with the main one

f ∗ ft(ξ) = ⟨fξ, T−xf̌t(ξ)⟩ = ⟨fξ, ft(x− ξ)⟩, f̌t(x) = ft(−x).

Then

∂

∂t
(f ∗ ft(·)) = lim

∆t→0

1

∆t
[f ∗ ft+∆t(·)− f ∗ ft(·)] = lim

∆t→0
⟨fξ,

1

∆t
[T−xf̌t+∆t(ξ)− T−xf̌t(ξ)]⟩.

Given (12) we have that the limits relationship

1

∆t
[T−xf̌t+∆t(·)− T−xf̌t(·)] −−−→

∆t→0

∂

∂t
T−xf̌t(·)
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is performed in the sense of convergence in the topology of space Sbn
ak

. From here, taking
into account the continuity of the functional f , we obtain

∂

∂t
(f ∗ ft(·)) = ⟨fξ, lim

∆t→0

1

∆t
[T−xf̌t+∆t(ξ)− T−xf̌t(ξ)]⟩ =

= ⟨fξ,
∂

∂t
T−xf̌t(ξ)⟩ = ⟨fξ, T−x

∂

∂t
f̌t(ξ)⟩ = f ∗ ∂

∂t
ft(ξ),

which had to be proved.

5 The Cauchy problem

Let us set a problem: find the solution of the differential-operator equation

∂u(t, x)

∂t
+
√
I −∆u(t, x) = 0, (t, x) ∈ (0, T ]× R ≡ Ω, (14)

which satisfy the condition
u(t, ·)|t=0 = f, f ∈ (S1

1 , ∗)
′. (15)

Here the symbol (S1
1 , ∗)

′ denotes the class of convolutors in the space S1
1 , ∆ = ∂2/∂x2,

operator
√
I −∆ is understood as a pseudodifferential operator in the space S1

1 , constructed
by the function (symbol) φ(σ) = (1 + σ2)1/2, σ ∈ R (see n.3), ie

√
I −∆ψ(x) = F−1[(1 +

σ2)1/2F [ψ]](x), ∀ψ ∈ S1
1 .

As the solution of the Cauchy problem (14), (15) we understand the function u which
is differentiable by t u(t, x) such that u(t, ·) ∈ S1

1 for each t ∈ (0, T ], u(t, x), (t, x) ∈ Ω,
satisfies the equation (14) (in the usual sense) and the initial condition (15) in the sense that
u(t, ·) → f for t→ +0 in the space (S1

1)
′, ie

⟨u(t, ·), ψ⟩ → ⟨f, ψ⟩, t→ +0,

for an arbitrary function ψ ∈ S1
1 (here u(t, ·) for each t ∈ [0, T ] is understood as a regular

generalized function from the (S1
1)

′ space).
This formulation of the problem allows us to extend the class of initial functions in which

the problem (14), (15) is correctly solvable, and the solution u(t, x) is infinitely differentiable
with respect to the variable x . For example, consider a function

f(x) =

{
exp{|x|−α}, x ∈ [−1, 1] \ {0},
0, |x| > 1,

where α > 0 is a fixed parameter. This function has a feature of ”exponential” type at
the point x = 0 and allows regularization in the space (Sβ

1 )
′, where 1 < β < 1 + 1/α (see

[10]) , ie f is a regular generalized function from the space (Sβ
1 )

′ ⊂ (S1
1)

′. The carrier of the
generalized function f (supp f) consistent with the segment [−1, 1], ie f is a finite functional.
Note also that each finite generalized function is a convolutor in the space S1

1 . This property
follows from the general result related to the theory of perfect spaces (see [1, p. 173]): if Φ is
a perfect space with a differential shift operation, then each finite functional is a convolutor
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in the space Φ. Finite generalized functions form a fairly broad class. In particular, each
bounded closed set F ⊂ R is a carrier of some generalized function (see, for example, [4, p.
118]).

If we now return to the Cauchy problem (14), (15), we find the solution of the equation
(14) by means of the Fourier transform. As a result, we find that the solution of the problem
(14), (15) is given by the formula

u(t, x) = f ∗G(t, x) ≡ ⟨fξ, G(t, x− ξ)⟩, f ∈ (S1
1 , ∗)

′.

where
G(t, x) = F−1[Q(t, σ)], Q(t, σ) = exp{−t(1 + σ2)1/2}, σ ∈ R.

We are directly make shure that Q(t, ·) ∈ S1
1 for each t ∈ [0, T ]. Then G(t, ·) = F−1[Q(t, ·)] is

also an element of the space S1
1 , since F−1[S1

1 ] = S1
1 . The function G(t, ·) as abstract function

of the parameter t with values in the space S1
1 , differentiable by t, then, according to the

formula (13) we have

∂u(t, x)

∂t
=

∂

∂t
(f ∗G(t, x)) = f ∗ ∂G(t, x)

∂t
.

In addition, since the generalized function f is a convolutor in the space S1
1 , then, by Theorem

2, √
I −∆u(t, x) = F−1[(1 + σ2)1/2F [u(t, x)]] = F−1[(1 + σ2)1/2F [f ∗G(t, x)]] =

= F−1[(1 + σ2)1/2F [f ]F [G]] = F−1[(1 + σ2)1/2F [f ]Q(t, σ)] = −F−1[
∂

∂t
Q(t, σ)F [f ]] =

= −F−1[F [
∂

∂t
G]F [f ]] = −F−1[F [f ∗ ∂G

∂t
]] = −f ∗ ∂G(t, x)

∂t
.

Hence we get that the function u(t, x), (t, x) ∈ Ω, satisfies the equation (14). In addition,
Q(t, ·) → 1 for t→ +0 in the space (S1

1)
′. Hence we get G(t, x) = F−1[Q(t, σ)] → F−1[1] = δ

for t→ +0 in space (S1
1)

′ (here δ is Dirac delta-function).
Since F [f ] is a multiplier in the space S1

1 , if f ∈ (S1
1 , ∗)

′ (see Corollary 1), then F [f ]ψ ∈ S1
1

for ∀ψ ∈ S1
1 . Then

⟨F [u(t, ·)], ψ⟩ = ⟨F [f ∗G(t, ·)], ψ⟩ = ⟨F [f ]F [G(t, ·)], ψ⟩ = ⟨F [f ]Q(t, ·), ψ⟩ =

= ⟨Q(t, ·), F [f ]ψ⟩ −−−→
t→+0

⟨1, F [f ]ψ⟩ = ⟨F [f ], ψ⟩, ∀ψ ∈ S1
1 ,

that is, F [u(t, ·)] → F [f ] for t→ +0 in the space (S1
1)

′. It follows that u(t, ·) → f for t→ +0

in the space (S1
1)

′, ie u(t, x) satisfies the condition (15) in the specified sense. We can also
prove that the problem (14), (15) has a single solution. Thus, the Cauchy problem (14), (15)
is correctly solvable, the solution is given by the formula u(t, x) = f ∗ G(t, x), (t, x) ∈ Ω,

with u(t, ·) ∈ S1
1 for each t ∈ [0, T ].

Similar results occur in the case of the equation

∂u(t, x)

∂t
+ (I − ∂2

∂x2
)ω/2u(t, x) = 0, (t, x) ∈ Ω, ω ∈ [1, 2). (16)
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The Cauchy problem for the equation (16) is correctly solvable if the initial function f

is a convolutor in the space S1/ω
1 , ie f ∈ (S

1/ω
1,∗ )′, and the solution is given by the formula

u(t, x) = f ∗G(t, x),

where G(t, x) = F−1[ exp{−t(1 + σ2)ω/2}].
The considered (schematically) Cauchy problem can be called a model. According to the

given scheme it is possible to investigate Cauchy problems and nonlocal in time problems
for equations of more general kind.

Conclusion

The topological structure of generalized spaces of type S, properties of operations impor-
tant for mathematical analysis (argument shift, multiplication by an independent variable,
differentiation), the class of multipliers in such spaces are described. The question of quasi-
analyticity (non-quasi-analyticity) of generalized spaces of S type is studied. We find a
condition under which in generalized spaces of type S are defined, are linear and continuous
pseudodifferential operators constructed on certain symbols, such operators are understood
as a constructive implementation of the operators φ(i d

dx
) y such spaces.

These results can be used in the study of the Cauchy problem and nonlocal time problems
for differential operator equations of the form ∂u(t, x)/∂t = φ(i∂/∂x)u(t, x), (t, x) ∈ Ω,

with an initial function that is an element of the space of generalized functions of type
ultradistributions (S ′ type).
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У роботi дослiджено топологiчну структуру узагальнених просторiв типу S, власти-
востi операцiй, важливих для математичного аналiзу (зсуву аргумента, множения на не-
залежну змiнну, диференцiювання), описано клас мультиплiкаторiв у таких просторах.
Вивчено питання про квазiаналiтичнiсть (неквазiаналiтичнiсть) узагальнених просторiв
типу S. Знайдено умову, при виконаннi якої в узагальнених просторах типу S визначенi,
є лiнiйними i неперервними псевдодиференцiальнi оператори, побудованi за певними сим-
волами, такi оператори розумiємо як конструктивну реалiзацiю операторiв φ(i d

dx ) у таких
просторах.

Наведенi результати можна використовувати при дослiдженнi задачi Кошi та нело-
кальних за часом задач для диференцiально-операторних рiвнянь вигляду ∂u(t,x)

∂t =

= φ( i∂
∂x )u(t, x), (t, x) ∈ Ω з початковою функцiєю, яка є елементом простору узагальнених

функцiй типу ультрарозподiлiв (типу S).


