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GENERALIZED SPACES OF S AND S TYPES

In paper the topological structure of generalized spaces of S type and the basic operations
in such spaces was investigated. The question of quasi-analyticity (non-quasi-analyticity) of
generalized spaces of S type was studied. Some classes of pseudodifferential operators, prop-
erties of Fourier transformation of generalized functions from spaces of type S’, convolutions,
convoluters and multipliers was investigated.
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INTRODUCTION

When we work on problem of classes of unity and classes of correctness of the Cauchy
problem for equations with partial derivatives with constant or time-dependent coefficients,
we often use the spaces of S type, which where introduced by [.LM. Gelfand and G.Ye.
Shilov in [1]. Spaces of S type (spaces SZ = ,?,:f) are constructed by two sequences {k**},
{n"}, {k,n} C Z, (0° := 1), where a, 8 > 0 are fixed parameters; elements of such spaces

are infinitely differentiable on R functions ¢, which satisfy the condition
|2k o™ (2)| < cA*B K" x € R, {k,n} C Zy,

with some constants ¢, A, B > 0, dependent on the function ¢. Functions from such
spaces on the real axis together with all their derivatives at |x| — +oo fall faster than
exp{—alz|'/*}, a > 0, z € R. Spaces of S and S’ types, topologically conjugate with spaces
of S type, are natural sets of initial data of the Cauchy problem for the large classes of
equations with partial derivatives of finite and infinite orders, in which the solutions are
integer functions in terms of spatial variables (see |2, 3, 4, 5, 6]). For example, for the
thermal conductivity equation du/dt = 9*u/0x* the fundamental solution is the function
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1/2

G(t,r) = (2v/mt) texp {—22/(4t)} for each t > 0, as function =, is an element of the S/

space |5, p. 46|, which belongs to spaces of S type.

It is of scientific interest to study Sg; spaces, which are generalizations of S type spaces
and are constructed in certain sequences of {a;} and {b,} of positive numbers (study of
topological structure, properties of functions, main operators in the specified spaces). This
paper provides answers to these questions. The question of quasi-analyticity (non-quasi-
analyticity) of generalized spaces of S type is also studied. Some classes of pseudodifferential
operators in such spaces, properties of Fourier transform of generalized functions from spaces
of S’ type, convolutions, convoluters and multipliers are investigated. The obtained results
were used in the study of the Cauchy problem for the evolution equation with the fractional
differentiation operator A = /I — 0?/0z? and the initial function, which is an element of
the space of generalized functions such as ultradistributions.

1  PRELIMINARIES. TOPOLOGICAL STRUCTURE OF GENERALIZED SPACES OF S
TYPE

Consider the sequence {m,,,n € Z,} of positive numbers, which has the properties:
)Vn€Zy:my, <mpi1, mo=1;
2)IM >03h>0VYn € Zy : my1 < Mh"my,;
3) ey > 13L>1:my-my_y < c1L™my,, k€ {0,1,...,n}.
Examples of such sequences are the Gevrey sequences of the form m, = n"?, m, = (n!)?,
n € Z,, where > 0 is fixed parameter.

Let

. mp,
() = nlenzf+ Ea x # 0.

It is obvious that v is a non-negative, even function on R\ {0}. If z € [—1,1] \ {0}, then,

Mn
||

taking into account property 1) of the sequence {m,,n € Z,} we have, inf

nel4
v(z) =1 for z € [-1,1] \ {0}.
If 1 <2y <z, then y(zs) < (1) < v(1) = 1, ie v monotonically falls on the interval

=1, ie

[1,400). Hence, taking into account the parity property of the function  on R\ {0} we get
that 7 grows monotonically on the interval (—oo, —1], 0 < y(z) < 1, Vz € R\ {0}.
For example, if m, = n"* n € Z,, o > 0, then in [1, p. 205] established the following

assessment: -
Yol(§) = inf — < oe/2 e_,gl/a’ £>1
nez ‘6’1@ —
If 0 < & <1, then
nna N e
inf — =1<e°-e <
neZ4 gn

So,
VE:0<E&<400: 7,(8) < ce’%wa, c = /2,

In addition, on R\ {0} the function , satisfies the inequalities [1, pp. 204]:

S < pp TV < e ST o gae2
e e < inf < ce e , c=e* e R\ {0}. (1)

= ez, € =
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Lemma 1. The inequality
Iny(z1) + Iny(ze) > Iny(xy + 29), V{21, 72} C (0, +00), (2)
is correct.

Proof. First of all, note that {y(xy), v(z2), v(z14+x2)} C (0,1] for arbitrary fixed {z1, 22} C
(0, +00). Since y(z) = 1 for z € (0,1], so it is enough to prove the inequality (2) on the
interval (1,+400). Indeed, if {z1,22} C (0,1] and (21 + 23) € (0,1], then the inequality
(2) becomes equality. If {z1,22} C (0,1] and z; + x2 > 1, then the inequality (2) also
holds, because 0 < y(z1 + x3) < 1, Iny(x; + 22) < 0, and y(z;) = y(xe) = 1 and
Iny(z;) = Iny(xe) = 0. If zy € (0,1], and 25 > 1, then a3 + 29 > 1, Iny(z1) = 0,
Iny(z1) + Invy(xe) = Iny(za) > Invy(x; + 22), since y(x1 + z2) < y(x) (here it is taken
into account that v monotonically falls on the interval (1,400)). Similarly consider the case
when z, € [0,1], 21 > 1.
So let {z1, x5} C (1,400). The inequality (2) is equivalent to an inequality

Y(@1) - v(w2) = v(21 + 22), {21, 22} C (1, +00). (3)
To prove (3) it is enough to establish that

v(x1) - y(72)

> 1, {x1,22} C (1,+00).
’7(331—1-5172) = { 1 2} ( )

Let 1 < 27 < x9. Since vy monotonically decreases to (1,+00), then vy(z1) > v(z3). So,

Y(x1) - y(22) > 72(1’2)
V(@ +22) T (v + )

By definition, y(z5) Do 19 € (1,400). Consider the sequence {ex = fry(72), k € N},

= inf R

nely 2
where the sequence {f, k € N} of positive numbers monotonically tends to zero for k —
+o00. Then for g; > 0 there is a number ny = ny(e;) such that

my
xn: <v(x2) +er = (1 + Br)y(x2),
2

that is

1 m,
XT9) > ———= keN.
(@) 1+ By xy"
In accordance, -
T r) < —* ke N.
V(@ 2) < (1 + @)™

Given these inequalities, we conclude that for the numbers {ny, k& € N} the inequalities hold

V2 (x2) mp (z1 + z9)" M,

Y(z1 + x2) — (1 + Br)? x%nkmnk T (14 )2y’

v(z1)7y(22)

ke N
Y1 + 2)

>

(it is taken into account that z1 + x5 > x9, B < (1, Vk > 2). In addition,

m
S_”

’y(oz) an S Z+7
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for any a > 1, or
Va > 1Vke N: m,, > a™y(a).

Put a = x50, where § > 1 is a fixed number and choose the number n; so that the inequality
8™y (z90) > (1 + B1)? is true. Directly find that

ng > {m (%—2%;2) (Iné)~' + 1] :

For such a number, the inequality holds

(@) (22) > w56y (220) _ 3™y (20) > 1

y(x1 +22) — (14 51)%xs* (1+61)2 =7

which had to be proved. O

Let {ax, k € Z,} and {b,, n € Z,} are the sequences that have properties 1) - 3). The
symbol 53; denote the set of functions ¢ € C*°(R) that satisfy the condition

Je, A, B> 0V{k,n} CZ, Vo € R: |2 ()| < cA*B"azb, (4)

(constants ¢, A, B > 0 depend on the function go)
Sbe coincides with the union of spaces S ¥ "y for all A, B > 0, where the symbol SZ: A

denotes the set of functions ¢ € Sg:, which for arbitrary ¢, p > 0 satisfy the inequalities
256 (@)] < csp(A+ 0 (B+ p)abn, {kin} C Zs, x € R,

with the same constants A, B > 0. Sb”’ "4 is transformed into a complete countable-normali-
zed space, if the system of norms in thls space is given by formulas

l\DI»—
C«OlH
-

|fv’“<p " (x) o
_ n, B 5

The sequence {p,, v € N} C Sb" goes to zero in the space Sb" for v — 400, if
{¢,,veN}CS "’B for some A, B > 0 and goes to zero in this space, so |[p,|s5, — 0
for v — oo for all {(5 p} C {1,%,...}. This definition is equivalent to this: the sequence
{¢v, v € N} C Si goes to zero in this space, if the functions ¢, and their derivatives of
arbitrary order go to zero uniformly on each [a,b] C R and at the same time inequalities
come true

’95]6901(/”)(37” < cAFB"ayb,, {k,n} CZ,, v € R,

where constants ¢, A, B > 0 do not depend on v (the proof of this statement is similar to
the proof of a similar statement in the case of the S spaces (see [1, p. 219])).

The set F' C SSZ is called bounded, if F' is contained in the Sb”’B space with the some
values A, B > 0 and is bounded in this space, so that for all functions ¢ € F the evaluation
(4) is true with the same constants ¢, A, B > 0.
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Lemma 2. The function ¢ € C*°(R) is an element of the space Si» if and only if it satisfies
the condition

Ja,B,c>0Yn € Z, Vo € R : [¢™(z)| < ¢B",7(ax), (5)
where
N 1, |z[ <1,
V@) =9 it e o] > 1.
keZy z

Proof. Let ¢ € Sb ie the condition (4) holds. Then, dividing both parts of the inequality

ar’

(4) by |x|¥, x # 0, and in the right part going to the lower limit of k, we obtain

AFay, ag
l™ ()| < ¢B™, inf —= = ¢B", inf ———— = ¢B"b,y(ax), = # 0,

keZy |x|® keZy |A~ x|k
where a = A™' > 0. Since |p™(0)] < ¢B",, n € N (see (4)) and y(x) = 1 for v €
[—1,1] \ {0}, then the function ~ in the last inequality can be replaced by 7.
Conversely, let the function ¢ € C*°(R) satisfy the condition (5). Then

o™ ()| < ¢B"b, inf Ak

Z
kel |ax|k’ nesy,x 7é 07

hence it follows that the inequality
Ve € R\ {0} : |az|®|o™(2)] < B bpar, {k,n} C Z,
holds. Given the estimate |¢™(0)] < e¢B",, n € Z,, we have
|k ™ (1) < cA*B agb,, A =a"t, V{k,n} C Z,, z € R,
which was to be proved. ]

If ap, = k*, b, = n"°, {k,n} C Z,, where o, 3 > 0 are fixed parameters, then in this
case the space SZ:f is denoted by the symbol S?. S? spaces are called S type spaces; there
is a lot of detail in the monograph [1], which can be characterized as follows |1, p.  210].

The spaces S? are nontrivial if o + 8 > 1, a, 8 > 0 and form dense sets in Ly(R).

SP a>0,8>0,a+ B >1, consists of those and only those infinitely differentiable on

R functions that satisfy the inequalities
|80(n)($)’ < CBnnnﬁ exp{—a]x\l/“}, ne Z+, = R,

with some constants ¢, A, B > 0, dependent only on the function ¢.
If0< B <1and a > 1—7, then S? consists of those and only those functions ¢ €
C*(R), which analytically extend into the whole complex plane and satisfy the condition

de=c(p) >0da=al(p) >0Tb=>b(p) >0:

lp(z + iy)| < cexp{—alz|** + bly|/ D}, V{z,y} C R.
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The space S} (o > 0 is arbitrary) consists of functions ¢ € C*°(R), which analytically extend
to the function ¢(x +iy) in some band |y| < 0 (dependent on ¢) of the complex plane, while

lp(z +iy)| < cexp{—alz|"*}, c,a >0, {z,y} CR, |y| <.

The spaces Si», constructed by the sequences {ay}, {b,}, which satisfy conditions 1) -
3), will be called generalized spaces of S type.

In the spaces SSZ are defined, are linear and continuous operators of argument shift,
multiplication by an independent variable and differentiation.

We prove, for example, that in the space Sg; is defined and is a continuous operator of
the shift of the argument T'_1,: ¢(z) — ¢(z —h), Vo € S

o, which reflects this space in itself.

Let ¢ run over a bounded set F© C Si». This means that for each function ¢ € F
inequalities
lzFe™ (2)| < cA*B ab,, z € R, {k,n} C Z,

hold with the same constants ¢, A, B > 0. Then

k

sup [0 (z — h)] = sup |(z + )| = sup| 37 Clal b ()] <
Te

z€R zeR =0

k k k
< Z Cl|h|F ilelg 27 ™ (2)] < CZ CY|h[*~9 AT B"a;b, < cB"byay Z C A |hFI =
=0

j=0 Jj=0
= ¢(A+ |h|)*B"axb, = cA¥B"ayb,,.

where A; = A+ |h|. It follows that the function ¢1(x) = @(z — h) is an element of the

space Sﬁ::f HIAp ie 1 € SZZ = AU SZZ”E. Therefore, the image of the bounded set F' at the
,B>0

specified mapping is a bounded set in the space ng. This means that the argument shift
operator is a linear bounded operator in the space .S ab:, and hence a linear continuous operator
in this space, because in the space SZZ is executed the first axiom of countability. Then,
as follows from the general theory of linear continuous operators in countable-normalized
spaces (see |1, pp. 81-82]), in spaces with the first axiom of countability the class of linear
bounded operators coincides with the class of linear continuous operators.

Note also that the spaces Sg: are perfect (that is, spaces whose bounded sets are compact).
It follows from this and from the general theory of perfect spaces (see [1, p. 171]) that the
operation of shifting an argument is differential (even infinitely differentiable) in the sense
that the boundary relations of the form (o(z + h) — p(x))h™t — ¢'(z), h — 0, are valid for
each function ¢ € SZ: in the sense of topology convergence space 53’;.

We prove that in the space Sg: is defined, there is a linear and continuous multiplication
operator for an independent variable that reflects this space in itself.

Let ¢ run over a bounded set F C Sbr

agk

, that is, every function ¢ € F satisfies the
inequalities
|25 (2)] < cA* B ayby, {k.n} C Zy, z € R,
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with some constants ¢, A, B > 0. Put ¢(z) := x¢(x). Then

2" ()] = [a* (wp(2)) "] < a1 (@)] + nlat "V (2)| <

< cAM By b, + ncA* B tagb, .

Using property 2) of the sequence {ax} and property 1) of the sequence {b,}, we arrive at
the inequalities

|2k ™ (2)| < cAAFB"MhFab, + 2" A*B"B ab, = ¢A¥Blab,,

where ¢ = cAM + ¢B™!, A} = max{Ah, A}, B; = 2max{1,2B}. Thus, the image of the
bounded set F' when multiplied by the independent variable z is again a bounded set in the
space ng, which was to be proved.

Note also that i € Si» for arbitrary {¢, ¥} C Sir.

The function g € C*(R) is called the multiplier in the space S’

ag?

if gp € C=(R) for an
arbitrary function ¢ € Sg: and the mapping ¢ — gy is linear and continuous.

Lemma 3. The multiplier in the space Sg: is the function f € C*°(R), which satisfies the
condition

3By Ve >03c. >0Vn e Z Yz eR: |f™(z)] < c. B, (F(ex)) . (6)
Proof. Let ¢ € SZ:. Then, according to Lemma 2, the inequalities are correct
|f"(z)| < eB"b,7(az), x €R, n € Z,,
with some constants ¢, a, B > 0. Take € € (0,a) and use the estimates (6). Then

(f(2) ()™ < i CIfD ()] - | (2)] < ce. i CZBéB(nj)bjbnj—zEz.ii'
=0

=0
Since b;b,_; < wL™b,, (see property 3) of the sequence {b,}), then

|(f (2)p(2))™] < EB{’bnM = EBMb, eI (ar) " F(ew)

7(ex)

where ¢ = cc.w, By = 2max{By, B}L. From (2) follows the inequality
In7(az) —Inv(ex) <InJ((a —e)x), 0 < e < a.

Then
](f(ac)cp(x))(")| < EB{Lbnelﬂ((“*e)z) =¢Bb,y(a1x), ag = a —e.

Therefore, fp € Sg:. It also follows from the above considerations that if ¢ flows through a
bounded set F' C Sg:, then each function fo, ¢ € F, belongs to a limited set F} C Sg:, ie
the operator ng Sp— foe Sg; is continuous. The Lemma is proved. m
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If the sequences {ay}, {b,} satisfy the conditions

Qg

b
Z Cakl_u7 _k Z Cbkl_A7 M?A Z 07 /~L+ A S ]-7 {k7n} C NJ Gk S COAk7 (7)
ag—1 br—1
then, as noted in [1, p. 290], the formula F[S)'] = Sy is correct, where F[Spr] :=

{w c(o) = %@(U)ei”dx, Vo € Sg:} , in particular,

FISii] = FISY) = S5 = S, a, B > 0.

Note that since the sequence {ay, k € Z,} has property 2), the inequality ‘1’;—22 < oAk
holds with constants ¢y = hM?, Ay = h?.

2 ON THE QUASI-ANALYTICITY OF GENERALIZED SPACES OF S TYPE

2

If the sequence {b,,n € Z,}, which is used to construct the space Sg:, grows slowly”,
then such space can consist of infinite differentiable on R functions, which allow analytical

continuation in the whole complex plane and satisfy a certain condition.

Theorem 1. Suppose there exists L € [0,400) such that

. /by
lim
n—oo M

= L.

The following statements are correct:
1. If L € (0,4+00), then each function ¢(x) from the space St allows an analytical
extension in some band |Imz| = |Im(z +iy)| = |y| < ¢, ¢ = ¢(¢) > 0, of the complex plane.
2. If L = 0, then each function ¢(z) from the space Sg: analytically extends into the
whole complex plane to the whole function ¢(x + iy), which satisfies the inequality

lp(x +iy)| < cy(az)p(by), V{z,y} CR,

where ¢, a, b > 0 are some constants (dependent on ¢),

- 1 |z <1, _ 1, [yl <1,
’V(l‘) - inf a—kk, |IL’| > 1, P y) - sup Igja |y‘ > 17 bn = bl'
ket 17| nez; b "
3. In the case where there isw € (1, +00) such that lim 7‘;{—37 = 400, among the elements
n—oo

of the space Sg: there are finite infinitely differentiable functions.

Proof. Let fixed an arbitrary function ¢ from the space 53: and estimate its residual term
in the form of Taylor
" 1]

h h|
W@(")(Heh)! < B n €Ly, {w, B} CR,0<O<1.
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If the condition lim % =L,0< L < o0, is true then

n—0o0

Ve >03dng=ne(e) e NVn>ng: b, < (e + L)"n"

From Stirling’s formula n! = v2mnn"e "e/(1=") (0 < 6, < 1, the inequality n! > n"e ™"
follows. From here we get the going to zero of the residual term at n — oo for all h: |h| <
(BLe)™!. Thus, in the corresponding neighborhood of the point x the function ¢ develops
in a Taylor series converging to it

[ee] n

pla+h) = o™ (@)

n=0

Since this series are also convergent for complex values of h such that |h| < (BLe)™!, we

conclude that the function ¢ admits an analytic extension to the band |h| < (BLe)™! of the
complex plane.
If L =0, then

Ve > 03ng =ne(e) € NVn >ng: b, < (ee)"n".

Let fix arbitrary |h| # 0 and put e = £(Be|h|)~. Then

n

mgp(”)(ac+9h)‘ < 2% — 0, n — oo.

Therefore, the Taylor series of the function ¢ converging for an arbitrary complex h. Putting
h =iy, y € R\ {0}, we get that the function ¢(x) analytically extends in the whole complex
plane to the function

plr+iy) = n,)so ), y # 0.

n=0

From here and from the inequality (5) we get

lo(z + iy)| Z y B”bnv (ax) < ¢ sup ( |y| ) Z —7(a

2n
nely n—

= c1y(ax)p1(by), c1 =2¢, b=2B, y #0,
by = "—!, y # 0. If y =0, then |p(z)| < ¢y(ax). Note when L = 0,

‘ n

where p1(y) = sup %
neZy bn

then the sequence lj{; monotonically tends to zero for n — oo. Thus, the sequence b = ZL'

monotonically tends to infinity for n — oo. Since, by = 1 and py(y) = 1 for y € [—1,1]\ {0},
p1(0) = 0, then instead of the function p; we can consider the function

ly| <1,

PW) =19 qup Wyl > 1.

nEZ+
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3. The condition lim Z—? = +oo (for some w > 1) implies the existence of a constant
n—0o0

A > 1 such that the inequality b, > A"n™ for all n € N is true. Next we use the inequality
Annna

a | x|l
inf > —ﬂ— 0
nel, uw-—“p{ el }’x#’

where o, A > 0 are fixed numbers, which follows from the estimates (1). Given the relation

x|" 1
| | - Annna7 ‘T¢OJ

||

sup = —
nez, Arnne inf
TLEZ+

come to the assessment

|z[”

< o ‘ T
su expl — |—
nEZIi Anpne — P elA

M},xeR 8)

If we put in (8) @ = w > 1 and taking into account the inequality b, > A"n™ n € N, we

obtain N N
T(\) := sup — < sup < exp{aA/“}, @ =we/AVY A > 1.
n€Z+ bn n€Z+ Ann nt
Then
T o w1
n ~ w—23y _ W
/ 2 d)\ga/)\ d)\—eAl/w<+oo.

1 1

Hence and from the Carleman-Ostrovsky theorem |7], which describes the classes of quasi-
analytic (non-quasi-analytic) functions, it follows that among the elements of the space Sir
there are finite infinitely differentiable functions.

Theorem proved. O

As an example of the application of Theorem 1, consider the space S? = ngf , where
a>0,8>0,a>1-f (condition of non-triviality of space S?). In this case b, = n"”,
ne ;.

If 8 €(0,1), then

~ ly|" ley|™ 1
= = < —
() SUp T S SWP i = oy wi Y # 0.
" nel4 Iey‘n

From the estimates (1) we obtain inequalities
A(y) < exp{bly "0}, b> 0, F(x) < cexp{—ale]*}, ¢> 1

Therefore, it follows from this and from Proposition 2 of Theorem 1 that each function
eS8 a>0,p8€(0,1), a>1- 4, analytically extends into the whole complex plane and
satisfies the inequality

[p(z +iy)| < cexp{—alz|"/* + bly[" =73,
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where ¢, a, b > 0 are some constants depending on the function ¢ (obtained a known result
established in [1, p. 209]).

If 3 =1, then b, = n™, lim ‘/TE = 1. In this case, each function ¢ € S}, a > 0,
analytically extends into somenggond of the complex plane, the width of which depends on
the function .

If 5 > 1, then for an arbitrary fixed w € (1, ) we have 7‘;{—27” =nf, lim Z—f?" = +o00.

n—o0

Thus, the space S?, a > 0, 8 > 1, contains finite infinitely differentiable functions on R
(the same result in the case of the space S? for 3 > 1, follows directly from the Carleman-
Ostrovsky theorem).

3 PSEUDODIFFERENTIAL OPERATORS IN GENERALIZED SPACES OF S TYPE

The symbol @2’; denotes the set of functions ¢ € C*°(R), which are multipliers in the
space Sgv. From the properties of the Fourier transform (direct and inverse) in generalized
spaces of type S it follows that in the space Sy is defined, is a linear and continuous
operator A := F ! [p(c)F,_,], which is called a pseudodifferential operator built on the

function ¢ € ©% (operator symbol A), A : Sp» — S,

(AY)(z) = F (o) F[Y](0)](x), V¥ € Sy

Now consider the operator ¢(i-L), where ¢ € Ofr. Since i-L is a self-adjoint operator in
Hilbert space Ly(R) with domain D(i-) = {¢ € Ly(R) : ' € Ly(R)}, and ¢ is a real
function, then ¢(i-L) is also self-adjoint operator in Ly(IR) with a dense domain in Ly(R).
If £\, A\ € R is the spectral function of the operator z’%, then, due to the basic spectral

theorem for self-adjoint operators we have
“+oo
(1500 = [ ¢OVdBw, Vo € Dpli)

It is known (see, for example, [8]) that

1 A +o00
Exp = %/ /w(T)ewTdT e " do.

Hence we get dEyY = 5= F[Y](N)e " *dX. So

pli-y = - [ PFEINE = P PRI, o € S

Thus, in the space S;* the pseudodifferential operator A = F ~HeF] coincides with the
operator gp(i%) , ie the pseudodifferential operator A can be understood as a constructive
implementation of the operator ¢(i-L).
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As an example, consider the function (o) = (1 + 0?)¥/?, ¢ € R, w € [1,2) is fixed
parameter. We are directly convinced that the function ¢ € C*°(R) and has the properties:

p(0) = c.exp{e|o|}, o € R, c. = 2/ max{1,1/e}
(e > 0 is arbitrary fixed parameter),
|Dgp(0)] < coByn!, n €N, 0 €R,

where ¢g = ¢o(w) > 0, By = By(w) > 0. It follows that ¢ is a multiplier in the space Sll/w (
ie p € O] /w). Then, due to the basic spectral theorem for self-adjoint operators

+o0
2
Pl I0 = (I (i P20 = (1= %0 = [ (14 %) 2By =

dx dx?

= F (1 + o®)“2F[y]), Vv € S/,
a2

dx?

implementation of which in the space Sll/ “ is a pseudodifferential operator constructed by

The operator (I —-%;)“/? is called a fractional order differentiation operator, the constructive

function (symbol) (1 4+ ¢2)*/2, ¢ € R, - multiplier in space Sll/w. In particular, if w = 1,
then in the space S} the operator v/1 — A, A = d?/dx?, coincides with the pseudodifferential
operator F~1(1 + o2)Y/2F).

4  THE SPACES OF GENERALIZED FUNCTION OF S’ TYPE

The symbol (S%)" will denote the space of all linear continuous functionals given on the
main space Sg; with weak convergence, and its elements will be called generalized functions.

Regular generalized functions or regular functionals will be called linear continuous func-
tionals, the action of which on the main function ¢ € SSZ is given by the formula

(f, ) Z/f(x)go(a:)dm.

Each locally integrable on R function f that satisfies the condition
Ve>03c. >0Vz eR: |f(2)| < c.(F(ex)) ™! 9)

generates a regular generalized function Fy € (Sir)
(Fr.0)= [ @)z, v € sty
R

It is correct the statement: if the locally integrable on R functions f and g, which satisfy
the condition (9), do not coincide on the set of Lebesgue positive measure, then there exists
a function oo € St such that (f, o) # (g, ¢0), ie Fy # F,. Conversely, if Fy # Fy, then the
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functions f and g do not coincide on the set of Lebesgue positive measure. The proof of this
statement is similar to the proof of the corresponding statement from [9.

The formulated statement allows us to identify locally integrable functions on R that
satisfy the condition (9), with the generalized functions generated by them from the space
(Sg:)’ . It follows from the properties of the Lebesgue integral that the embedding SZZ >
f — Fy € (Sir) is continuous.

Since in the main space SSZ the operation of shift of the argument T, is defined, the

!/

convolution of the generalized function f € (5’2:) with the main function is given by the

formula
(fx o) (@) = (fe, T-p(§)) = ([fe, p(x = &), &(§) = v(=E)

(here (fe,T_,9(€)) denotes the action of the functional f on the main function T ,p(&) as
a function of the variable £). From the property of infinite differentiability of the argument
shift operation in the space Sg: it follows that the convolution f % is an ordinary infinitely
differentiable function on R.

Let f € (ng)’. If fxpe SZZ, Yo € Sg: and from the relation ¢, — 0 at v — oo by space
topology Sg: it follows that the convolution f * ¢, — 0 at v — oo by space topology ng,
then the functional f is called a convolutor in the space ng. For example, ¢ is the Dirac
function is a convolutor in each space ng:

Vo € Sar i (8% 9)(w) = (0, ¢z — €)) = ().
The Fourier transform of the generalized function f € (S¢*)’ is denoted by the relation
(Ff],¢) = (f, Flgl), Vo € Sp». Hence we get that F[f] € (S;*)', if f € (Sir)'. In this case,
the operator F': (Sg)" — (Sp)' is continuous.

Theorem 2. If the generalized function f € (Siv)’ is a convolutor in the space Sir, then for
an arbitrary function p € Sg: the formula

Flfx¢] = F[f]- Flg]

is correct.

Proof. According to the condition of the theorem, f * ¢ € Sb»

ag?

Yo € Sg:. Then, using the
definition of the Fourier transform of generalized functions from the space (i), as well as
the definition of the convolution of a generalized function with the main one, we write the
following relations:

—+00

Vo € S (FIf % ol 9) = (f %, FIgl) = / (f * ©) (@) Fly] (x)de =
- / (e plz — O)Fl9)(z)dz = (. / o(x — ) Fy) (x)dx) (10)

(here f * ¢ is understood as a regular generalized function).



20 GORODETSKIY V.V., KOLISNYK R.S., SHEVCHUK N.M.

Let
+o0
36) = [ el ~ OF W)
Then, due to Fubini’s theorem
+00 +00
J(¢) = / xr — /w e do)dr = / / xr — e’ dodr =
400 400 +oo
= [ [ etwioretetaoit = [ wio)Flelioreids = FIFl] v € St

So,

(ELf =@l 0) = {f, FIF|g] - o) = (FLf], Flo] - ) = (F[f] - Flgl, ), Vo € S

Hence we get equality F[f x ¢| = F[f] - Fle].
It remains to justify the correctness of the relationship (10). Define the notation

/@/} Vesda, v > 0.

To prove (10) it suffices to establish that J,(£) — J(€) for » — +oc in the space Sir,
ie (&) == TJ(&) — J,(§) — 0 for r — +oo by space topology Sir. This means that: 1) the
family of functions {a,(,n) (&), r > 0}, n € Z,, coincides to zero at r — +o0o evenly on each
segment [a,b] C R; 2) |al™(€)| < ¢B™b,7(af), Vn € Z.,
where constants ¢, B, a > 0 do not depend on r.

The integral

/ Dy (o) Flg)(0)e")do = / (i0)"(0) Flg] (o) do

coincides uniformly with respect to &, since

V¢ € R: |DE(W(0)Flpl(0)e’®)] < |o™¢ (o) Fl¢l(o)], o €R,
/ lo" (o (0)|do < o0

(since o™y (o) Fpl(o) € S, for every n € Zy). Then

o™ (¢ |</]U”@b (0)|do — 0, r — o0,

lo|>r
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uniformly by £ as the remainder of the convergent integral. Therefore, condition 1) is fulfilled.
Let’s check fulfillment of condition 2). Since

Déar(§) = DgI(§) — DgT,(8),
then | D¢ (§)] < |DgI(€)] + | DT, (§)]. Consider the functions

D?jr,+(£> = maX(D?jT(g)a 0)7 DEJT,—(g) == mlIl(ngT(f)7 0)7
which are non-negative and consider that
[ DET (&) = DT (€) + DETr—(€) < 2|D{TI(E)]-
Then
| D e (§)] < 3|DEI(E)| = 3D FIF[e] - 4], vr > 0. (11)
Since F[F[p] -] € Sb»

ap’

Yo € Sgr, b € Sy, then hence and from (11) follows the estimate
D20, (6)] < cB™,A(aE), n € Z,, € €R,

where constants ¢, a, B > 0 do not depend on r. Thus, condition 2) is satisfied. Theorem
proved. O

Corollary 1. If the generalized function f is a convolutor in the space SZ:, then its Fourier
transform is a multiplier in the space S;".

Proof. The mapping (0,7] 3 t — fi(-) € Sg: will be called an abstract function of the
parameter ¢ with values in the space ng. Hereinafter, this mapping will be denoted by
the symbol fi(-), and let fi(-) be the differential function of the parameter ¢, ie, the limits

relation F O = £i0) 5
t+atl) — Jel
AL — &f’f()’ At — 0, (12)

is performed in the sense of convergence in the topology of Sg: space. Then the formula

9 0 :
o (F Fi()) = F o o fi), VF € (55" (13)

is correct. In fact, according to the definition of convolution, we have a generalized function
with the main one

[* fi(§) = <f£, xft(f)>:<f£>ft(37_f)> ft() fi(=x).
Then

O (Fx FO) = Jim [F 5 fuvse) = T o flO0) = D (e (T feenel€) = T 6],

N At 0 At
Given (12) we have that the limits relationship

. . 0 .
S VOIS 8 16 B 8 16
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is performed in the sense of convergence in the topology of space Sg:. From here, taking
into account the continuity of the functional f, we obtain

9w F0) = (e Jim [T feeel€) — T u(8)]) =

0 y 0 0
= (fe, ET—zft(f» = <f£aT—xaft(f)> =[x aft(f)a
which had to be proved. O

5 THE CAUCHY PROBLEM

Let us set a problem: find the solution of the differential-operator equation

t
% +VT = Ault,z) =0, (t,z) € (0,T] x R = Q, (14)
which satisfy the condition
u(t, imo = f, f € (S1, )" (15)

Here the symbol (S}, .)" denotes the class of convolutors in the space S}, A = 9%/0x22,
operator /I — A is understood as a pseudodifferential operator in the space S}, constructed
by the function (symbol) p(c) = (1 + 0?)2, 0 € R (see n.3), ie /I — Ay(z) = FH[(1 +
o) 2 F[y])(x), Vo € S},

As the solution of the Cauchy problem (14), (15) we understand the function w which
is differentiable by ¢ u(t,z) such that u(t,-) € S} for each t € (0,7, u(t,z), (t,z) € €,
satisfies the equation (14) (in the usual sense) and the initial condition (15) in the sense that
u(t,-) — f for t — +0 in the space (S7), ie

<U(t, )7@ - <f> ZD)? t— +O7

for an arbitrary function ¢ € Si (here u(t,-) for each ¢t € [0,7] is understood as a regular
generalized function from the (S})’ space).

This formulation of the problem allows us to extend the class of initial functions in which
the problem (14), (15) is correctly solvable, and the solution u(¢, z) is infinitely differentiable
with respect to the variable z . For example, consider a function

) {exp{lxl‘“}, v e [-L1\ {0},

0, |z| > 1,

where o > 0 is a fixed parameter. This function has a feature of “exponential” type at
the point 2 = 0 and allows regularization in the space (S?), where 1 < 8 < 1+ 1/a (see
[10]) , ie f is a regular generalized function from the space (S7) € (S1). The carrier of the
generalized function f (supp f) consistent with the segment [—1, 1], ie f is a finite functional.
Note also that each finite generalized function is a convolutor in the space Si. This property
follows from the general result related to the theory of perfect spaces (see [1, p. 173]): if @ is
a perfect space with a differential shift operation, then each finite functional is a convolutor



GENERALIZED SPACES OF S AND S’ TYPES 23

in the space ®. Finite generalized functions form a fairly broad class. In particular, each
bounded closed set F' C R is a carrier of some generalized function (see, for example, [4, p.
118)).

If we now return to the Cauchy problem (14), (15), we find the solution of the equation
(14) by means of the Fourier transform. As a result, we find that the solution of the problem
(14), (15) is given by the formula

u(t,:c) = f* G(t,l’) = <f§,G(t,:U _5»7 f S (Sllv *)/'

where

G(t,z) = F7YQ(t,0)], Q(t,0) = exp{—t(1 + c)¥?}, 5 € R.
We are directly make shure that Q(¢t,-) € S for each ¢ € [0,T]. Then G(t,-) = F~HQ(t,-)] is

also an element of the space Sj, since F~![S]] = S]. The function G(t, -) as abstract function
of the parameter ¢ with values in the space S}, differentiable by ¢, then, according to the
formula (13) we have

ou(t,z) 0 0G(t, )

D = (Gl ) = £

In addition, since the generalized function f is a convolutor in the space S}, then, by Theorem
2,
VI = Au(t,x) = FY(1+ %) 2Fu(t,2)]] = F7H(1+ 0*)2F[f x G(t,2)]] =
0

= P01+ o) PEIFIG] = B0+ 0%) PFIfIQ(, 0)] = —F [0 (o) FI] =
- —Fl[F[%G]F[f]] — _FYF[f % aa_f]] — ot %.

Hence we get that the function wu(t,z), (¢,z) € €, satisfies the equation (14). In addition,
Q(t,-) — 1 for t — +0 in the space (S7)". Hence we get G(t,z) = F7Q(t,0)] — F~![1]=§
for t — +0 in space (S7)" (here ¢ is Dirac delta-function).

Since F/[f] is a multiplier in the space S}, if f € (S7, ) (see Corollary 1), then F[f]i) € S]
for Vi) € Si. Then

(Flu(t, )], ) = (FIf « G(t, )], ) = (FUIFIGE, )] ¢) = (FIfIQ(E, ), ) =
= (Q(t,), FIflv) —— (L F[fl¥) = (F[f],¥), ¥ € Sy,

t—+0

that is, Fu(t,-)] — F[f] for t = +0 in the space (S})". It follows that u(t,-) — f for t — +0
in the space (S}), ie u(t, r) satisfies the condition (15) in the specified sense. We can also
prove that the problem (14), (15) has a single solution. Thus, the Cauchy problem (14), (15)
is correctly solvable, the solution is given by the formula u(t,z) = f * G(t,z), (t,x) € €,
with u(t, ) € S} for each t € [0,T).

Similar results occur in the case of the equation

Ju(t, x) 0?
o T g

)Pt x) =0, (t,2) € Q, we [1,2). (16)
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The Cauchy problem for the equation (16) is correctly solvable if the initial function f

is a convolutor in the space S\, ie f € (S! 7/:’)’ , and the solution is given by the formula

u(t,z) = [+ G(t,x),

where G(t,z) = F~'[ exp{—t(1 + o2)*/?}].

The considered (schematically) Cauchy problem can be called a model. According to the
given scheme it is possible to investigate Cauchy problems and nonlocal in time problems
for equations of more general kind.

CONCLUSION

The topological structure of generalized spaces of type S, properties of operations impor-
tant for mathematical analysis (argument shift, multiplication by an independent variable,
differentiation), the class of multipliers in such spaces are described. The question of quasi-
analyticity (non-quasi-analyticity) of generalized spaces of S type is studied. We find a
condition under which in generalized spaces of type S are defined, are linear and continuous
pseudodifferential operators constructed on certain symbols, such operators are understood
as a constructive implementation of the operators gp(i%) y such spaces.

These results can be used in the study of the Cauchy problem and nonlocal time problems
for differential operator equations of the form Ou(t,z)/0t = ¢(id/0x)u(t,x), (t,x) € Q,
with an initial function that is an element of the space of generalized functions of type
ultradistributions (S’ type).
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Y poboti JOCTIIKEHO TOMOJIONIYHY CTPYKTYPY y3arajJbHEHUX MPOCTOPIB THity S, BIACTH-
BOCTI OIepaIiii, BayKJIUBUX JIJIS MATEMATUIHOTO aHAJI3Y (3CyBY apryMeHTa, MHOYKEHUsI Ha He-
3aJ1€KHy 3MiHHY, JuEPEHIIIOBAHHS), OIMUCAHO KJAC MYJbTHUILIKATOPIB y TAKAX IIPOCTOPAX.
BuByeno nuraHHg 1po KBazlaHayiTuuHiCTh (HEKBa3laHAJITUYHICTH) y3arajJbHEHUX HIPOCTOPIB
tumy S. 3HAIEHO yMOBY, DU BUKOHAHHI KOl B y3araJbHEHUX [IPOCTOpaX THUILy S BU3HAUEHI,
€ MHITHIME 1 HelepepBHUMH TICeBI0 UM EPEHITialIbHI OmepaToOpH, MOOY/IOBaH] 38 MEBHUMU CHUM-
BOJIAMH, TaKi OIlepaTopy PO3yMi€MO sIK KOHCTPYKTUBHY peaJii3alliio olepaTopis gp(i%) Yy TaKux
IIPOCTOpAX.

Hageneni pe3ysbratn MOXKHA BUKOPUCTOBYBATHU IpH JOCTIMKeHH] 33adi Ko ta meso-
ou(t,x) _
ot -
_ (30 .
= (g3 )u(t,z), (t,z) € 2 3 mouaTKOBOW DYHKITEI, KA € EIEMEHTOM IPOCTOPY Y3aralbHEeHIX

KAJIBHUX 3a 9aCOM 3aJad /i AudepPeHIiaIbHO-0IIEPATOPHIX PIBHIAHD BUIJISIILY

dynkii Tuy yabrpaposnoainis (tumy S).



