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LoroTKO O. V.

INTEGRAL REPRESENTATION OF HYPERBOLICALLY CONVEX
FUNCTIONS

An article consists of two parts.

In the first part the sufficient and necessary conditions for an integral representation of
hyperbolically convex (h.c.) functions k(z) (z € R® =R! x R! x ...) are proved. For this
purpose in R* we introduce measures wy (z), w%(a:). The positive definiteness of a function
will be understood on the integral sense with respect to the measure w;(x). Then we proved

that the measure p(\) in the integral representation is concentrated on IJ = ¢\ € R =

R xRL x ... > A2 < oo}. The equality for k(x) (z € R®) is regarded as an equality for
n=1

almost all € R> with respect to measure wy ().

In the second part we proved the sufficient and necessary conditions for integral repre-
sentation of h.c. functions k(z) (z € R§® is a nuclear space). The positive definiteness of a
function k(z) will be understood on the pointwise sense. For this purpose we shall construct a
rigging (chain) R5° C Iy C R*™°. Then, given that the projection and inductive topologies are
coinciding, we shall obtaine the integral representation for k(z) (x € Rg°)

Key words and phrases: representation, positive definite, measure, hyperbolically convex
functions.
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1 INTRODUCTION

During a last decade an infinite-dimensional analysis has been developing rapidly. With
the help of methods of a spectral theory of operators Yu. M. Berezansky obtained the integral
representation for the positively definite functions [2]|. These methods of obtaining of the
integral representation for another positively definite kernels had been used at (3, 5, 7, 8, 9,
11].
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This article presents the integral representation for a class of evenly positive definite
(e.p.d) functions, and namely hyperbolically convex (h.c) functions.

The study of these integral representation for h.c. functions is useful from different point
of view: on the one hand we can prove the theorem of type Stoune’s. For this, the method [4]
can be used and obtain the integral representation for a family (4;) (¢ € R!) of self-adjoint
unbounded operators, in the nuclear space, satisfy following conditions:

1) % [Aprs + Ars] = AlAg; Ay = Ay Ag = 1.

2) A(%) = % [A; + Al

On the other hand, such functions appear in applications, for example, in the description
of various models of physical systems with infinitely many degrees of freedom [6].

2 HYPERBOLICALLY CONVEX FUNCTIONS OF INFINITE NUMBER OF VARIABLES

Let R® = R! x R! x ... be a space with a sequences x = (7)72), 5 € R!. We
introduce a Gaussian measures in this space dw;(z) = (p(z1)dz;) ® (p(xg)de) ® ..., where

p(t) = ﬂ_%e*tht t € R! and dw%(x) = (po(x1)dz1) @ (po(xe)drs) @ ..., where po(t) =

? dt t € R, Then, if f(x) is measurable and sumable with respect to dw%(x), then

2 [f(z +y) + f(z — y)] is measurable and sumable with respect to dw; () @w: (y), moreover

// flx+y)+ flz —y)] dor(z) dwr(y /f

R R>®

(2.1)

I\J\H

A real-valued function k(x) (x € R*>), which is even for the each variable, is measurable and

nx2

> Nuc?
which satisfies an estimate k(z) < cen=t ¢, Ny, > 0; Z N, < oo) almost everywhere

with respect to dwy (x) is called h.c., if it is convex and for the any cylindrical function
u(z) = uct(z1, ..., Tm) (uct € CF* (R™)) the inequality

/ / Bz + ) + k(x — y)] w@)uly) dw () dws (3) > 0 (2.2)

R Ro
holds. That is, k(x) is even-positive defined (e.p.d.).

Theorem 1. In order for the function k(x) (z € R>) to admit the integral representation

M@:/ﬁmwwwm, (2.3)

-
i 7

where do () is the non-negative finite measure with the Borel o-algebra of cylindrical sets
from I , it is necessary and sufficient for the function k(x) to be h.c. and e.p.d.. The equality
in (2.3) is regarded as equality for almost all x € R* with respect to the measure dw% ().
The measure do(\) is uniquely determined for the given k. The integral of vector functions

I 29X = [[ Ch)\z; € Ly <]R°°, dw%(x)) converges strongly.
j=1
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Proof. Sufficiency. It is well-known that, for e.p.d. functions on R!, the following integral
representation (see. [1], p. 697)

k(xy) = /Cos Vazdy(\) = / Cos v/ Arzy dy(Ar) +/Cos Vazdy(\) =

R! —00

:/Ch>\1$j dUl()\l)+/COS)\1$1 Clljl()\l),

R RY
is true. Then if k(zq) is the convex too, we obtain the following representation
k‘(.’lﬁl) = /Ch)\liﬁl d01<>\1).
l

Now we prove that for the h.c. and e.p.d. function k(zq,...,z,), which is given on R", the
following integral representation is true

k(zy,. .., o, /HChA:cjdan Ao An) (2.4)

anl

In the proof a method of mathematical induction on n is used.

Let k(x1,...,2p1) = [ H Ch\jzjdo,_1(M,. .., A1), and

Rnl]

k(xy,...,z,) = /HCOS VAT dXn (A, ).

Rn Jj=1
But since [ dxn(A1,...,A,) is the measure, concentrated on Ri‘l, then
RY
n—1
k(zy,... @) = / HCh)\jxj/Ch Ann don (A1, ..o M)+
Rn—l ]:1 Rl
/ H Ch\jz; /Cos AT AV (A1, ..oy An)-
Ri 1 ] 1 Rl
Putting 1 = --- = z,,_1 = 0 in every formula, we obtain

k(O,...,$n):/Ch)\n:vn/ dan()\l,...,/\n)+/Cos)\n5En/ dvp, (A1, ..o\, (2.5)

1 -1 1 -1
R} R R} R

But since k(z1,...,x,) is h.c., the second term in (2.5) must be equal to zero. In the result
we have obtained the representation (2.4).
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Now we show that the measures {0, (-)} are consistent. To do this, we shall consider
these representations:

n—1
k(azl,...,xn,l) = / HCh/\JSUJ dO'nfl()\l,...,An,1> (26)
R'r_‘z_fl .7:1
and .
k(... Tn, Tn) = /HCh AN don(M, . Anet, An)- (2.7)
gy =1
Putting x,, = 0 in (2.7) we obtain
n—1
k(zy,...,2n_1,0) = / []Ch Nz doa(n, ... M) (2.8)
rr J=1
From this follows the uniqueness of measures do,,_1(A1, ..., Ap—1) and do, (A1, ... s Adn—1, An) i}

2
Njx

2 N;
since k(z1,...,2,) < ce/=' . Then from (2.6) and (2.8) we shall obtain the condition of
consistency of measures {do,(-)}:

/ dan()\la"'7)\n—l7/\n>:/do_n—l()\la"'v/\n—1>7

AxRY A

where A C R"', A is Borel. But if a system of measures {o,(-)} is consistent, then we
can construct the single measure o(-) on R such that o(B x RL x RL x ...) for every
B e R}, B is Borel. Let X be a set of indices = arbitrary cardinality, and let (R,), .y
family of abstract spaces with o-algebra R, of subsets defined in each space. Assume that

be a

the measures on the spaces R, are given. Now we want to construct a measure on the direct
product Rx = X,ex R, of these spaces which, according to definition consists of all possible
mappings of the form X 3 x — A(x) € R,. For arbitrary different points z,...,z, € X,
let us denote R,, ., = Ry, X -+ X Ry, (n € N). In Ry, .., we consider the o-algebra
Ry dotszn = Ray X Ry X -+ X Ry, of its subsets. The set C € R, is called cylindrical if it

is determined by these points x1,...,x, and base § € R,, ., according to the relation

n

C:C(q:l,...,:cn;é):{A(~)€Rz

A1), Mz € 5} . (2.9)

Assume that for any z € X some probability measure p, is given on the o-algebra R,,
i. e. pz (R;) = 1. There exists the standard Kolmogorov procedure, which enables us to
rexs the
measure px is called a product of measures u, and is denoted by puxy = Xzexp.. Let us
employ this procedure. Denote by iz, ., (n € N) the measure on B, ., obtained by
on = XP_itz, - On

construct a measure p, on the o-algebra C, (R,) from the family of measures (u,)

n

the usual procedure of multiplying out a finite number of measures ji,,

-----

cylindrical sets C € C (Rx), the measure p, is defined by

px(C) = ux (Czy, ..., 20);0) = fay. 2, (0). (2.10)
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The function of sets (2.10) satisfies the equalities px (@) = 0 and px(Ry) = 1 and is
finitely additive. According to the classical theory of extension of measures (e.g. see Halmos
[12], chapter 3) the finitely additive measure ux can be uniquely extended to the measure
on the o-algebra C (Rx). In the situation, which we are interested in the factor measures
are given on the space X, = RL with the Borel o-algebra B, = B(RL) (v € N). The
space RY = X ,311R1+ is equipped with the o-algebra Cs (Rf) generated by the cylindrical
sets (2.9), which now have the form

C=C(,...,n;0) = {AeR‘f’(Al,...,)\n) edeB(R‘f)}.
Note that if R is considered as a topological space with the Tikhonov topology, then

s (RY) = B (EY).

So, as a result, we shall have such integral representation

k(z) = /ﬁCh Njxjdo(N), (x€R™) (2.11)

Ry /=1
Let be prove now, that measure o(x) concentrated on the cylindrical sets
c={re z;‘ (M) € B (1)}

ie. that o (I7) = 1.
To do this, we shall put

(@) = uer (@, - 32) = (%)gexp (—%in) € O3 (RY),

and
s ZS: ﬁ
U(AL, .5 Ag) = /H Ch \,zpu(z) do = ei=1
RS n=1
Then, if we denote v(z1, ..., xs) = u(zy, ... ,xs)ﬁex% ----- /e we shall get, on the basis
of (2.11)

[ 34w+ bz = )] o@o(w) der(o)dan(y) = Jim (H [onrn ) +

Roe Ro®

+Ch A, (x, — Yn) } ,o(x)v(y) do()) =

) Lo (R xR X ,duw1 () @dw1 ()

_ / exp (g Ag> do(\).

R
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On the other hand, we have

[ [ 54+ b = ) 0@0ty) dor(a)dn(y) <

ioz An(-’En“" n)2 %O: )\n(ﬂfn— n)2 -
en=1 ! + en=1 y ] lv(y)v(z)| dw (x)dw (y) <

c
< Z
_2//
R R

S 2N, 22 +2N,y2
<c [ [eh @) e ... daudys ... dy.)deor (3):

R R

2

;!1 /BQNTLJ»‘% \/ge—x% dl‘n - CTH (‘R/ €2an%\/;6_12% dxn
- 1 s = N

11 1_2ancgm£ﬂ 1:[

N
n=s+1
as ﬁ ! < 0
1N, '

2

| /\

Thus, we have the estimate

/exp (Z /\i> do(AN) <c; (s=1,2,...). (2.12)

R‘f n=1

Since for any A € R, h(A) =1 < lim exp <Z A2) < oo, then by passing to a limit
5—00 n=1

in (2.12) and taking into account the Fatou’s lemma, we conclude that h()) is sumable and
therefore do(\) is almost everywhere A € RS, h()) < o0, i.e. we show that

o {X € RY|A(N) = +o0} = 0.

But h()\) exists if and only if when A € I,
That is why the representation (2.11) will look like this

/HCh)\ z;do()), (z€R™®). (2.13)

i =

H Ch )\jxj

j=1

< 00, if A € I, then the integral (2.13) converges strongly.
Lo (Roo;dw% (x))
Sufficiency is proved.

Necessity follows from the fact that ||[] ChA;z;Ch\;y; < oo if
i=1 L3 (R xR dion (2) @cdws (3))
A € I5. Therefore from (2.13) we obtain the representation
1
5 k(@ +y) = k(z - /H Ch\;jz;Ch \jy; do(N), (z € R®). (2.14)

i =
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With the help of (2.14) we check the inequality (2.2). Let us prove now the two last
statements of the theorem. Let u(x) = uci (21, ..., 2Tm), uct € C5° (R™), then with the help
of (2.13), (2.14), (2.1) we obtain

/ HChijj do() | u(@) dw (x) = JLIEO / HChijj u(w) dwy (z)do(X) =
:gggo (// [Hcm o3 + yg)ula; + 55) + Chy (e ><xj—y‘j>] oy () x

iy ) = [ [ 5 T 4 ke )] den @) =

R R

Roo

The validity of the equality (2.3) for dw () for almost all z € R* follows from the
arbitrariness of u(z).

The uniqueness of measure do(A) follows from [1] (Theorem 3.9 Ch. VIII). The Theorem
1 is proved. O

The Theorem 1 can be proven using the Theorem 2.4.1 from [10].

Since a kernel  [k(z + y) + k(z — y)] is even by z,y, then we shall consider (2.2) on the
even functions w,(z). Then

/ / 2+ y) + k(x — )] wn(2)un (y) dor (2)don (y) =
o — (2.15)
- / /k(x + )t (7)1 () devy () deor () > 0.

R R

Therefore, applying the theorem 2.4.1 from [10], we obtain the representation

k(z) = / e dp(\) = / ﬁChAj,xj dp(N), (2.16)

l2

where dp(\) is the non-negative even finite measure which is defined on the o-algebra of
cylindrical sets of ly. The measure p(\) is even because the function class in (2.15) has
changed. We shall show that the measure o()\) in (2.11) has a support I;: o(l3) = 1. For this
purpose we shall go from the measure o(-) to the even measure p(-), so that the projections
pn of measure p(-) will be determined by the projections o, (-) of measure o(-). Then, since
p(lz) = 1 then o(I3) = 1 also, that is, we have the representation (2.3).



INTEGRAL REPRESENTATION OF HYPERBOLICALLY CONVEX FUNCTIONS 33

3  HYPERBOLICALLY CONVEX FUNCTIONS ON A NUCLEAR SPACE RSO

Let Hy = Iy = I (R!) be a \ space of square summable real sequences ly 3 © = (), with
a scalar product (z,y)y, = Z Y, Denote by T' a set of all possible weights 7 = (7).~ ,

T, > 1, and put in correspondence with each 7 € T a Hilbert space

o0
S ol < oo}

k=1

H.,- = 12(7') = {l’ € lg

)HT = ZzﬁyﬁTN; Hl = HO' (31)

Evidently, H, C Hj topologically and || - ||z, > || - ||#,- The family of Hilbert spaces (H) o
is directed by imbedding, i.e. if for given 7’ = (71,).", € T and 7" = (7//)]_, € T, we choose,
for example, 7" = (7" =7 +7/)2, € T, then H;» C H. and H,» C H, topologically.

Consider a space ® = prlim H,. This space is nuclear, since for every 7 € T one can take
TeT

= (2"7,),—, such that the imbedding O, ,: H, — H, is quasinuclear. Indeed, let (e,)>

be a natural basis in [,. Then the vectors (T,i en> from a basis in H, and therefore for the

Hilbert norm of the imbedding operator O, ., we have

1001 =3 [ e]| =D 2 < oo
k=1 k=1

Obviously, the set ® coincides with a collection of finite real sequence Ri°, i.e. R§° 3 ¢ =

(©1,--+,¢n,0,0,...), where n = n(p) depends on a given sequence. This follows from the
equality ® = [ l2(7) and the fact that for a given sequence ¢ = (p,).—, € ®, one can

reT
always take a weight 7 € T, such that 7, = |<,0,.;|72 + 1 provided that ¢, # 0, and 7, = 1
otherwise. Then the vector ¢ € H, only in the case, when it has a finite number of nonzero
coordinates.

For every 7 € T, the Hilbert space H_, = lo(77!) is dual to H, = ly(7) with respect
to H, = ly. Here, lo(771) is constructed just as (2.10) by using the weight 771 = (7,71)7 .

K

According to the above argument the space ®’ coincides with | J H_, of topology ind hm H..
TeT

Hence, @ = R* (R* is a set of all real sequence). In fact, for every vector £ = (&), € ROO
let us take 7 € T : 7, = (|&| + 1)*2% (k € N). Then

1€l =) &P A+ ¢ 227 < oo,
k=1

i.e. £ € H_.. The scalar product in Hjy = [y defines a natural pairing of the elements of R{®
and R*°, namely,

Hy = Zfi@m (£ eRY, ¢ € R™).
k=1
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Hence, we have constructed the nuclear rigging
R >l (r7") DL Dh(r) DRY.

Thus we have R3® = ({2 ({7+}) is a nuclear linear topological space of real-valued finite
sequences, which has a topology of the projective boundary of real Hilbert spaces Iy ({7,}) =

t = (t,{);“;1’||t||l22({m}) =S 1. <00,7. > 1,k=1,2,... } and R® =, ., Iy ({%}) is
k=1 - "
the space of all real-value sequences that have the topology of inductive limit of real Hilbert
spaces lo <{i}>
Now we consider one more topology, namely, the Mackey topology 7 (¢, ¢), which is

defined as strongest topology on ¢’ consistent with the given duality between ¢ and ¢

on the above-mentioned sense: One can show that for ¢ = pr linTlH the Mackey topology
TE

7 (¢, ¢) admits a constructive description which coincides with the topology of the inductive
limit ind llen% Hpg. Finally let us note that for a nuclear countable Hilbert space ® the Mackey
topology 7 (¢, ¢) coincides with the strong topology 5 (¢, ), which is given by the topology
of the ¢ = pr }_lerl% H,.

It follows that project and inductive topologies are coinciding.

The proof of the above statements on the consistency of topologies are given, e.g. in
Schaefer ([13], chapter 4).

By parity for each variable we mean the function k(-), that satisfies equality

E(ti,to, ot b, 00 ) =k (ty b, =t 10, 0..)

(teR"x(0,0,...) CR",n=1,2,...).

The function k(t), which is even for the each variable on a nuclear space R is called hy-
perbolically convexz, if it is even-positive defined and convex. That is for arbitrary t(), ..., ¢(™ €]
R and &, ..., &, € C! inequalities

n

1 . . , , _

> 5 [k (£ + D) + & (t9 — 9] & > 0, (3.2)

ij=1
+@ 4 +0) 1 . .
k <—; ) <5 [k( D) + & (t9)] (3.3)
are holding. Suppose that for k(t), if ¢ € R5° the estimate is true
2
k(1) < ce ey (0> 0,N > 0), (3.4)

then the following theorem is true:

Theorem 2. In order that the function k(t), which is given in the space R and satisfies
the estimate (3.4), would allow such an integral representation

k() = / ﬁ Chatedo(V), (AER® e = (\ et = (en) . (3.5)

k=1
R
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where p(-) is the non-negative, finite measure on the o-algebra of cylindrical sets in R with
Borel bases, it is necessary and sufficient that k(t) be the e.p.d., convex and continuous on
Rg°. The measures o(-) for given k(t) are defined uniquely.

Proof. Sufficiency. Let the function k(t) be the e.p.d., convex and continuous on R and it
satisfies the estimate (3.4). Let us prove that for k(¢) the integral representation (3.5) is true.
Indeed, we restricted the continuous, e.p.d. function k() on R™ to RS, which satisfies the
estimate (3.4) and it is convex. For the function k,(t) = k(t1,ts,...,1,,0,0,...) (t € R")
the following representation is true (2.4). The measures {o,(-)} are consistent. That is
why due to the Kolmogorov’s theorem it is possible to construct the single measure for
the function k(t) (t € RY). Hence, we have the integral representation (3.5). Sufficiency is
proved.

Let us prove Necessity. Let the function k(t) (¢t € RY®) satisfies the condition (3.4) and
has the representation (3.5). It’s not hard to make sure that k(t) is the e.p.d. and convex.
Let prove now the continuity of k(t), if (t € RY). It follows from

Lemma 1. If the really-valued, e.p.d., convex function k(c) (c € R') admits the represen-
tation

k() = /Ch Nedo(\),

where o()) Is the finite measure on R, then it is continuous.

Proof. Let ¢, — ¢y (c,,co € RY). Tt is necessary to prove that for an arbitrary € > 0 exists
such N that for n > N the following inequality is true

/Ch)\cn do(X\) — /Ch)\co do(N)| < g,

1 1
+ R

or that
lim / |Ch Ac,, — Ch Acy| do (M) = 0.

n— oo
R}
But according to the Lebesgue’s theorem about the limit transition under the sign of
integral we have
lim [ |ChAc, — ChA¢y| do(N) = / lim |Ch A¢, — Ch A¢y| do(X) = 0.
n—oo

n—oo
R R}
For the sequence of functions f,(A) = |Ch A¢, — Ch Acg| the major function will be the
function ¢(A) = 2Ch Ac. Therefore, |f,(A)] = ¢(A) and

/cp()\) do(\) = 2/Ch Acdo(N) = 2k(c) < oo, (3.6)

Rl

L R

1
+

]
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Now we prove the continuity of the e.p.d and convex function k(t), if ¢t € R™.

Lemma 2. If the function of n real variables k(ty,...,t,) € R™ allows the representation

k(ty, ... to /HChAt do(M, ..., \),
Rﬁ k=1

where o(-) is the finite measure in R™, then it is continuous.

Proof. . Let (tgj), ceey Sf)> — (t&o), ceey ,(10)) in R™. It is necessary to prove that for the any
€ > 0 exists such N, that for every j > N

/HChAﬁt@ do(A, .. A) — /HChAﬁtg)) do(M, .. 0| <e,
n k=1
n

Ri k=1
or that
. (j R
]linoz/EChAHt HCh)\t do(A, ..., M) = 0.
U
But
li ChAtY) — T ChA O | do(M,y. .., \) =
Jim H ; H O do(n )
Ry T =
/JILHOZHCh)\t HCh/\t do(Ar, ..., \) = 0.
Rn

The transition to the limit under the sign of integral is possible because according to the
Lebesgue’s theorem for the sequence of functions

ﬁ Ch A\t — ﬁ Ch At ‘
k=1 k=1

i, o ) =

n

there is the major function p(A) = [] ¢x(As), where

k=1
©x(Ax) = 2Ch \iey (cﬁ = sup ti)\ﬂ> )
J

Therefore
[fip(A, - Al S (A An)

and

H% Ydo(M, ..o ) = 2%k(cq, ..., ). (3.7)

k=1
i

For n =1, (3.6) follows from (3.7). The Lemma 2 is proved. O
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Then the continuity of k(t), if ¢ € RS, follows from the Lemma 2, as the continuity of

k(-) in R is the continuity for every n functions k,(t1,...,t,) = k(t) (t € R™), since the
projective and inductive topologies in R§° are coinciding. The necessity is proved.

(1]

[10]

[11]

[12]
[13]

The uniqueness of measures in (3.5) follows from the uniqueness of measures p,, (A1, . . .

;An)
O
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CrarTs CKJIQIa€ThC 3 JBOX IACTHH.

V nepuiiii yacTuH JOBOAUTHCH iHTErpajbHe 300paykeHHs [y TinepbosidaHo onyKaux (r.0.)
bynkuiit k(z) (z € R® =R x R! x ...). Jlaa uporo B R* sBommmo Mipu wi (z), wi(z). Ho-
JaTHa BU3HAYeHICTH (J1.B.) st r.o. (yHKIH po3yMieTbcsd B iHTEIPAJbHOMY CEHCI BiIHOCHO
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Mmipn wy (x). daui Mu goBoaumo, mo Mipa p(\) B iHTerpanbHOMy 306paskeHHi juist 1.0. dyHKIIii

io: A2 < oo}. Pisricrs mis k(z) (x € R*)

n=1

socepeszkena Ha ly = q A € R =RL xRL x ...

PO3yMi€ThCs MaiizKe BCIOJIM BiJTHOCHO Mipu w 1 (x).

YV apyriit yacTuHi CTATTI MU JOBOIMMO HEOOXIJHY 1 JOCTATHIO YMOBH JJIsi IHTEIPAJbHOIO
300pazkenHs r.o. dyukuiit k(z) (z € R§® € anepuuit npocrip). J.B. s r.o. dyHKiii posy-
MieTbca B TOUKOBOMY ceHci. Iy mporo MOTpiOHO CKOHCTPYIOBATH JIAHIIOXKOK RG® C Ip C R,
Tosmi, BpaxoByIoun, IO MPOEKITiHA Ta iHJIYKTHBHA TOMOJIOTIl CITiBIAAI0Th, MU OJIEPKUMO iH-
TerpaJibHe 300paykeHHs 1JIs .0. byHkuii k(x) (x € R5?)



