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INTEGRAL REPRESENTATION OF HYPERBOLICALLY CONVEX

FUNCTIONS

An article consists of two parts.
In the first part the sufficient and necessary conditions for an integral representation of

hyperbolically convex (h.c.) functions k(x)
(
x ∈ R∞ = R1 × R1 × . . .

)
are proved. For this

purpose in R∞ we introduce measures ω1(x), ω 1
2
(x). The positive definiteness of a function

will be understood on the integral sense with respect to the measure ω1(x). Then we proved

that the measure ρ(λ) in the integral representation is concentrated on l+2 =

{
λ ∈ R∞

+ =

R1
+ × R1

+ × . . .
∣∣∣ ∞∑
n=1

λ2
n < ∞

}
. The equality for k(x) (x ∈ R∞) is regarded as an equality for

almost all x ∈ R∞ with respect to measure ω 1
2
(x).

In the second part we proved the sufficient and necessary conditions for integral repre-
sentation of h.c. functions k(x)

(
x ∈ R∞

0 is a nuclear space
)
. The positive definiteness of a

function k(x) will be understood on the pointwise sense. For this purpose we shall construct a
rigging (chain) R∞

0 ⊂ l2 ⊂ R∞. Then, given that the projection and inductive topologies are
coinciding, we shall obtaine the integral representation for k(x) (x ∈ R∞

0 )

Key words and phrases: representation, positive definite, measure, hyperbolically convex
functions.

National Forestry and Wood Technology University of Ukraine, Lviv, Ukraine
e-mail: lopotko30@gmail.com

INTEGRAL REPRESENTATION OF HYPERBOLICALLY CONVEX
FUNCTIONS

1 Introduction

During a last decade an infinite-dimensional analysis has been developing rapidly. With
the help of methods of a spectral theory of operators Yu. M. Berezansky obtained the integral
representation for the positively definite functions [2]. These methods of obtaining of the
integral representation for another positively definite kernels had been used at [3, 5, 7, 8, 9,
11].
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This article presents the integral representation for a class of evenly positive definite
(e.p.d) functions, and namely hyperbolically convex (h.c) functions.

The study of these integral representation for h.c. functions is useful from different point
of view: on the one hand we can prove the theorem of type Stoune’s. For this, the method [4]
can be used and obtain the integral representation for a family (At) (t ∈ R1) of self-adjoint
unbounded operators, in the nuclear space, satisfy following conditions:

1) 1
2
[At+s + At−s] = AtAs; At = A−t; A0 = I.

2) A( t+s
2 ) =

1
2
[At + As].

On the other hand, such functions appear in applications, for example, in the description
of various models of physical systems with infinitely many degrees of freedom [6].

2 Hyperbolically convex functions of infinite number of variables

Let R∞ = R1 × R1 × . . . be a space with a sequences x = (xj)
∞
j=1, xj ∈ R1. We

introduce a Gaussian measures in this space dω1(x) = (p(x1)dx1)⊗ (p(x2)dx2)⊗ . . . , where
p(t) = π− 1

2 e−t2dt, t ∈ R1 and dω 1
2
(x) = (p0(x1)dx1) ⊗ (p0(x2)dx2) ⊗ . . . , where p0(t) =

1√
2π
e−

t2

2 dt, t ∈ R1. Then, if f(x) is measurable and sumable with respect to dω 1
2
(x), then

1
2
[f(x+ y) + f(x− y)] is measurable and sumable with respect to dω1(x)⊗ω1(y), moreover∫

R∞

∫
R∞

1

2
[f(x+ y) + f(x− y)] dω1(x) dω1(y) =

∫
R∞

f(x) dω 1
2
(x). (2.1)

A real-valued function k(x) (x ∈ R∞), which is even for the each variable, is measurable and

which satisfies an estimate k(x) ≤ ce

∞∑
n=1

Nnx2
n

(
c,Nn > 0;

∞∑
n=1

Nn < ∞
)

almost everywhere

with respect to dω 1
2
(x) is called h.c., if it is convex and for the any cylindrical function

u(x) = uC†(x1, . . . , xm) (uC† ∈ Cm
0 (Rm)) the inequality∫

R∞

∫
R∞

1

2
[k(x+ y) + k(x− y)]u(x)u(y) dω1(x) dω1(y) ≥ 0 (2.2)

holds. That is, k(x) is even-positive defined (e.p.d.).

Theorem 1. In order for the function k(x) (x ∈ R∞) to admit the integral representation

k(x) =

∫
l+2

∞∏
j=1

Chλjxj dσ(λ), (2.3)

where dσ(λ) is the non-negative finite measure with the Borel σ-algebra of cylindrical sets
from l+2 , it is necessary and sufficient for the function k(x) to be h.c. and e.p.d.. The equality
in (2.3) is regarded as equality for almost all x ∈ R∞ with respect to the measure dω 1

2
(x).

The measure dσ(λ) is uniquely determined for the given k. The integral of vector functions

l+2 ∋ λ →
∞∏
j=1

Chλjxj ∈ L2

(
R∞, dω 1

2
(x)
)

converges strongly.
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Proof. Sufficiency. It is well-known that, for e.p.d. functions on R1, the following integral
representation (see. [1], p. 697)

k(x1) =

∫
R1

Cos
√

λ1x1 dχ(λ1) =

0∫
−∞

Cos
√
λ1x1 dχ(λ1) +

∞∫
0

Cos
√

λ1x1 dχ(λ1) =

=

∫
R1
+

Chλ1x1 dσ1(λ1) +

∫
R1
+

Cosλ1x1 dν1(λ1),

is true. Then if k(x1) is the convex too, we obtain the following representation

k(x1) =

∫
R1
+

Chλ1x1 dσ1(λ1).

Now we prove that for the h.c. and e.p.d. function k(x1, . . . , xn), which is given on Rn, the
following integral representation is true

k(x1, . . . , xn) =

∫
Rn
+

n∏
j=1

Chλjxj dσn(λ1, . . . , λn). (2.4)

In the proof a method of mathematical induction on n is used.

Let k(x1, . . . , xn−1) =
∫

Rn−1
+

n−1∏
j=1

Chλjxj dσn−1(λ1, . . . , λn−1), and

k(x1, . . . , xn) =

∫
Rn

n∏
j=1

Cos
√
λjxj dχn(λ1, . . . , λn).

But since
∫

Rn−1
+

dχn(λ1, . . . , λn) is the measure, concentrated on Rn−1
+ , then

k(x1, . . . , xn) =

∫
Rn−1
+

n−1∏
j=1

Chλjxj

∫
R1
+

Chλnxn dσn(λ1, . . . , λn)+

+

∫
Rn−1
+

n−1∏
j=1

Chλjxj

∫
R1
+

Cosλnxn dνn(λ1, . . . , λn).

Putting x1 = · · · = xn−1 = 0 in every formula, we obtain

k(0, . . . , xn) =

∫
R1
+

Chλnxn

∫
Rn−1
+

dσn(λ1, . . . , λn) +

∫
R1
+

Cosλnxn

∫
Rn−1
+

dνn(λ1, . . . , λn). (2.5)

But since k(x1, . . . , xn) is h.c., the second term in (2.5) must be equal to zero. In the result
we have obtained the representation (2.4).
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Now we show that the measures {σn(·)} are consistent. To do this, we shall consider
these representations:

k(x1, . . . , xn−1) =

∫
Rn−1
+

n−1∏
j=1

Chλjxj dσn−1(λ1, . . . , λn−1) (2.6)

and

k(x1, . . . , xn−1, xn) =

∫
Rn
+

n∏
j=1

Chλjxj dσn(λ1, . . . , λn−1, λn). (2.7)

Putting xn = 0 in (2.7) we obtain

k(x1, . . . , xn−1, 0) =

∫
Rn
+

n−1∏
j=1

Chλjxj dσn(λ1, . . . , λn). (2.8)

From this follows the uniqueness of measures dσn−1(λ1, . . . , λn−1) and dσn(λ1, . . . , λn−1, λn),

since k(x1, . . . , xn) < ce

n∑
j=1

Njx
2
j

. Then from (2.6) and (2.8) we shall obtain the condition of
consistency of measures {dσn(·)}:∫

A×R1
+

dσn(λ1, . . . , λn−1, λn) =

∫
A

dσn−1(λ1, . . . , λn−1),

where A ⊂ Rn−1
+ , A is Borel. But if a system of measures {σn(·)} is consistent, then we

can construct the single measure σ(·) on R∞
+ such that σ(B × R1

+ × R1
+ × . . . ) for every

B ∈ Rn
+, B is Borel. Let X be a set of indices x arbitrary cardinality, and let (Rx)x∈X be a

family of abstract spaces with σ-algebra Rx of subsets defined in each space. Assume that
the measures on the spaces Rx are given. Now we want to construct a measure on the direct
product RX = Xx∈XRx of these spaces which, according to definition consists of all possible
mappings of the form X ∋ x → λ(x) ∈ Rx. For arbitrary different points x1, . . . , xn ∈ X,
let us denote Rx1,...,xn = Rx1 × · · · × Rxn (n ∈ N). In Rx1,...,xn , we consider the σ-algebra
Rx1,dots,xn = Rx1 ×Rx2 × · · · × Rxn of its subsets. The set C ∈ Rx is called cylindrical if it
is determined by these points x1, . . . , xn and base δ ∈ Rx1,...,xn according to the relation

C = C (x1, . . . , xn; δ) =
{
λ(·) ∈ Rx

∣∣∣λ(x1), . . . , λ(xn) ∈ δ
}
. (2.9)

Assume that for any x ∈ X some probability measure µx is given on the σ-algebra Rx,
i. e. µx (Rx) = 1. There exists the standard Kolmogorov procedure, which enables us to
construct a measure µx on the σ-algebra Cσ (Rx) from the family of measures (µx)x∈X ; the
measure µX is called a product of measures µx and is denoted by µX = ×x∈Xµx. Let us
employ this procedure. Denote by µx1,...,xn (n ∈ N) the measure on Bx1,...,xn obtained by
the usual procedure of multiplying out a finite number of measures µx1,...,xn = ×n

k=1µxk
. On

cylindrical sets C ∈ C (RX), the measure µx is defined by

µX(C) = µX (C(x1, . . . , xn); δ) = µx1,...,xn(δ). (2.10)
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The function of sets (2.10) satisfies the equalities µX(∅) = 0 and µX(RX) = 1 and is
finitely additive. According to the classical theory of extension of measures (e.g. see Halmos
[12], chapter 3) the finitely additive measure µX can be uniquely extended to the measure
on the σ-algebra C (RX). In the situation, which we are interested in the factor measures
are given on the space Xκ = R1

+ with the Borel σ-algebra Bκ = B(R1
+) (κ ∈ N). The

space R∞
+ = X∞

κ=1R1
+ is equipped with the σ-algebra Cδ

(
R∞

+

)
generated by the cylindrical

sets (2.9), which now have the form

C = C (1, . . . , n; δ) =
{
λ ∈ R∞

+

∣∣∣ (λ1, . . . , λn) ∈ δ ∈ B
(
R∞

+

)}
.

Note that if R∞
+ is considered as a topological space with the Tikhonov topology, then

Cδ
(
R∞

+

)
= B

(
R∞

+

)
.

So, as a result, we shall have such integral representation

k(x) =

∫
R∞
+

∞∏
j=1

Chλjxj dσ(λ), (x ∈ R∞) (2.11)

Let be prove now, that measure σ(×) concentrated on the cylindrical sets

C =
{
λ ∈ l+2

∣∣∣ (λ1, . . . , λn) ∈ B
(
l+,n
2

)}
i.e. that σ

(
l+2
)
= 1.

To do this, we shall put

u(x) = uC†(x1, . . . , xs) =

(
1

2s

) s
2

exp

(
−1

2

s∑
n=1

x2
n

)
∈ C∞

C† (Rs) ,

and

û(λ1, . . . , λs) =

∫
Rs

s∏
n=1

Chλnxnu(x) dx = e

s∑
n=1

λ2n
2
.

Then, if we denote v(x1, . . . , xs) = u(x1, . . . , xs)
√
πex

2
1 · · · · ·

√
πex

2
s , we shall get, on the basis

of (2.11)

∫
R∞

∫
R∞

1

2
[k(x+ y) + k(x− y)] v(x)v(y) dω1(x)dω1(y) = lim

d→∞

∫
R∞
+

(
d∏

n=1

1

2

[
Chλn (xn + yn)+

+Chλn (xn − yn)
]
, v(x)v(y)

)
L2(R∞×R∞×,dω1(x)⊗dω1(y))

dσ(λ) =

=

∫
R∞
+

exp

(
s∑

n=1

λ2
n

)
dσ(λ).
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On the other hand, we have∫
R∞

∫
R∞

1

2
[k(x+ y) + k(x− y)] v(x)v(y) dω1(x)dω1(y) ≤

≤ c

2

∫
R∞

∫
R∞

[
e

∞∑
n=1

λn(xn+yn)2

+ e

∞∑
n=1

λn(xn−yn)2
]
|v(y)v(x)| dω1(x)dω1(y) ≤

≤ c

∫
R∞

∫
R∞

e

∞∑
n=1

2Nnx2
n+2Nny2n |v(x)v(y)| dx1 . . . dxsdy1 . . . dys)dω1(y)·

·
∞∏
n=1

∫
R∞

e2Nnx2
n

√
1

π
e−x2

n dxn

2

= c
s∏

n=1

∫
R1

e2Nnx2
n

√
1

2π
e−

x2n
2 dxn

2

·

·
∞∏

n=s+1

1

1− 2Nn

= c
s∏

n=1

1

1− 4Nn

∞∏
n=s+1

1

1− 2Nn

≤ c
∞∏
n=1

1

1− 4Nn

= c1(
as

∞∏
n=1

1

1− 4Nn

< ∞

)
.

Thus, we have the estimate∫
R∞
+

exp

(
s∑

n=1

λ2
n

)
dσ(λ) < c1 (s = 1, 2, . . . ). (2.12)

Since for any λ ∈ R∞
+ , h(λ) = 1 ≤ lim

s→∞
exp

(
s∑

n=1

λ2
n

)
≤ ∞, then by passing to a limit

in (2.12) and taking into account the Fatou’s lemma, we conclude that h(λ) is sumable and
therefore dσ(λ) is almost everywhere λ ∈ R∞

+ , h(λ) < ∞, i.e. we show that

σ
{
λ ∈ R∞

+

∣∣h(λ) = +∞
}
= 0.

But h(λ) exists if and only if when λ ∈ l+2 .
That is why the representation (2.11) will look like this

k(x) =

∫
l+2

∞∏
j=1

Chλjxj dσ(λ), (x ∈ R∞) . (2.13)

As

∥∥∥∥∥ ∞∏
j=1

Chλjxj

∥∥∥∥∥
L2

(
R∞;dω 1

2
(x)

) < ∞, if λ ∈ l+2 , then the integral (2.13) converges strongly.

Sufficiency is proved.

Necessity follows from the fact that

∥∥∥∥∥ ∞∏
j=1

ChλjxjChλjyj

∥∥∥∥∥
L2(R∞×R∞;dω1(x)⊗dω1(y))

< ∞ if

λ ∈ l+2 . Therefore from (2.13) we obtain the representation

1

2
[k(x+ y)− k(x− y)] =

∫
l+2

∞∏
j=1

ChλjxjChλjyj dσ(λ), (x ∈ R∞) . (2.14)
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With the help of (2.14) we check the inequality (2.2). Let us prove now the two last
statements of the theorem. Let u(x) = uC†(x1, . . . , xm), uC† ∈ C∞

0 (Rm), then with the help
of (2.13), (2.14), (2.1) we obtain

∫
R∞

∫
l+2

∞∏
j=1

Chλjxj dσ(λ)

u(x) dω 1
2
(x) = lim

n→∞

∫
l+2

∫
R∞

n∏
j=1

Chλjxj

 u(x) dω 1
2
(x)dσ(λ) =

= lim
n→∞

∫
l+2

( ∫
R∞

∫
R∞

1

2

[
n∏

j=1

Chλj(xj + yj)u(xj + yj) + Chλj(xj − yj)u(xj − yj)

]
dω1(x)×

×dω1(y)

)
dσ(λ) =

∫
R∞

∫
R∞

1

2

[
k(x+ y)u(x+ y) + k(x− y)u(x− y)

]
dω1(x)dω1(y) =

=

∫
R∞

k(x)u(x) dω 1
2
(x).

The validity of the equality (2.3) for dω 1
2
(x) for almost all x ∈ R∞ follows from the

arbitrariness of u(x).
The uniqueness of measure dσ(λ) follows from [1] (Theorem 3.9 Ch. VIII). The Theorem

1 is proved.

The Theorem 1 can be proven using the Theorem 2.4.1 from [10].
Since a kernel 1

2
[k(x+ y) + k(x− y)] is even by x, y, then we shall consider (2.2) on the

even functions un(x). Then∫
R∞

∫
R∞

1

2
[k(x+ y) + k(x− y)]un(x)un(y) dω1(x)dω1(y) =

=

∫
R∞

∫
R∞

k(x+ y)un(x)un(y) dω1(x)dω1(y) ≥ 0.

(2.15)

Therefore, applying the theorem 2.4.1 from [10], we obtain the representation

k(x) =

∫
l2

e(λ,x) dρ(λ) =

∫
l2

∞∏
j=1

Chλj, xj dρ(λ), (2.16)

where dρ(λ) is the non-negative even finite measure which is defined on the σ-algebra of
cylindrical sets of l2. The measure ρ(λ) is even because the function class in (2.15) has
changed. We shall show that the measure σ(λ) in (2.11) has a support l+2 : σ(l+2 ) = 1. For this
purpose we shall go from the measure σ(·) to the even measure ρ(·), so that the projections
ρn of measure ρ(·) will be determined by the projections σn(·) of measure σ(·). Then, since
ρ(l2) = 1 then σ(l+2 ) = 1 also, that is, we have the representation (2.3).
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3 Hyperbolically convex functions on a nuclear space R∞
0

Let H0 = l2 = l2 (R1) be a space of square summable real sequences l2 ∋ x = (xκ)
∞
κ=1 with

a scalar product (x, y)H0 =
∞∑
κ=1

xκyκ. Denote by T a set of all possible weights τ = (τκ)
∞
κ=1,

τκ ≥ 1, and put in correspondence with each τ ∈ T a Hilbert space

Hτ = l2(τ) =

{
x ∈ l2

∣∣∣∣∣
∞∑
κ=1

x2
κτκ = ∥x∥2Hτ

< ∞

}

(x, y)Hτ =
∞∑
κ=1

xκyκτκ; H1 = H0. (3.1)

Evidently, Hτ ⊂ H0 topologically and ∥ · ∥Hτ ≥ ∥ ·∥H0 . The family of Hilbert spaces (Hτ )τ∈T
is directed by imbedding, i.e. if for given τ ′ = (τ ′κ)

∞
κ=1 ∈ T and τ ′′ = (τ ′′κ )

∞
κ=1 ∈ T , we choose,

for example, τ ′′′ = (τ ′′′ = τ ′ + τ ′′κ )
∞
κ=1 ∈ T , then Hτ ′′′ ⊂ Hτ ′ and Hτ ′′′ ⊂ Hτ ′ topologically.

Consider a space Φ = pr lim
τ∈T

Hτ . This space is nuclear, since for every τ ∈ T one can take

τ ′ = (2κτκ)
∞
κ=1 such that the imbedding Oτ ′,τ : Hτ ′ → Hτ is quasinuclear. Indeed, let (eκ)∞κ=1

be a natural basis in l2. Then the vectors
(
τ
− 1

2
κ eκ

)
from a basis in Hτ and therefore for the

Hilbert norm of the imbedding operator Oτ ′,τ , we have

∥Oτ ′,τ∥ =
∞∑
κ=1

∥∥∥(τ ′)− 1
2 eκ

∥∥∥2
Hτ

=
∞∑
κ=1

2−κ < ∞.

Obviously, the set Φ coincides with a collection of finite real sequence R∞
0 , i.e. R∞

0 ∋ φ =

(φ1, . . . , φn, 0, 0, . . . ), where n = n(φ) depends on a given sequence. This follows from the
equality Φ =

∩
τ∈T

l2(τ) and the fact that for a given sequence φ = (φκ)
∞
κ=1 ∈ Φ, one can

always take a weight τ ∈ T , such that τκ = |φκ|−2 + 1 provided that φκ ̸= 0, and τκ = 1

otherwise. Then the vector φ ∈ Hτ only in the case, when it has a finite number of nonzero
coordinates.

For every τ ∈ T , the Hilbert space H−τ = l2(τ
−1) is dual to Hτ = l2(τ) with respect

to Hτ = l2. Here, l2(τ−1) is constructed just as (2.10) by using the weight τ−1 = (τ−1
κ )

∞
κ=1.

According to the above argument the space Φ′ coincides with
∪
τ∈T

H−τ of topology ind lim
τ∈T

Hτ .

Hence, Φ′ = R∞ (R∞ is a set of all real sequence). In fact, for every vector ξ = (ξκ)
∞
κ=1 ∈ R∞,

let us take τ ∈ T : τκ = (|ξκ|+ 1)2 2κ (κ ∈ N). Then

∥ξ∥H−τ
=

∞∑
κ=1

|ξκ|2 (1 + |ξ|)−2 2−κ < ∞,

i.e. ξ ∈ H−τ . The scalar product in H0 = l2 defines a natural pairing of the elements of R∞
0

and R∞, namely,

(ξ, φ)H0 =
∞∑
κ=1

ξiφκ, (ξ ∈ R∞
0 , φ ∈ R∞) .
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Hence, we have constructed the nuclear rigging

R∞ ⊃ l2
(
τ−1
)
⊃ l2 ⊃ l2 (τ) ⊃ R∞

0 .

Thus we have R∞
0 =

∩
l2 ({τκ}) is a nuclear linear topological space of real-valued finite

sequences, which has a topology of the projective boundary of real Hilbert spaces l2 ({τκ}) ={
t = (tκ)

∞
κ=1

∣∣∣∥t∥2l2({τκ}) = ∞∑
κ=1

t2κτκ < ∞, τκ ≥ 1, κ = 1, 2, . . .

}
and R∞ =

∪
τκ≥1 l2

(
{ 1
τκ
}
)

is

the space of all real-value sequences that have the topology of inductive limit of real Hilbert
spaces l2

(
{ 1
τκ
}
)
.

Now we consider one more topology, namely, the Mackey topology τ (φ′, φ), which is
defined as strongest topology on φ′ consistent with the given duality between φ and φ′

on the above-mentioned sense: One can show that for φ = pr lim
τ∈T

H the Mackey topology

τ (φ′, φ) admits a constructive description which coincides with the topology of the inductive
limit ind lim

τ∈T
HE. Finally let us note that for a nuclear countable Hilbert space Φ the Mackey

topology τ (φ′, φ) coincides with the strong topology β (φ′, φ), which is given by the topology
of the φ = pr lim

τ∈T
Hτ .

It follows that project and inductive topologies are coinciding.
The proof of the above statements on the consistency of topologies are given, e.g. in

Schaefer ([13], chapter 4).
By parity for each variable we mean the function k(·), that satisfies equality

k (t1, t2, . . . , tκ, . . . , tn, 0 . . . ) = k (t1, t2, . . . ,−tκ, . . . , tn, 0 . . . )

(t ∈ Rn × (0, 0, . . . ) ⊂ R∞
0 , n = 1, 2, . . . ) .

The function k(t), which is even for the each variable on a nuclear space R∞
0 is called hy-

perbolically convex, if it is even-positive defined and convex. That is for arbitrary t(1), . . . , t(m) ∈
R∞

0 and ξ1, . . . , ξm ∈ C1 inequalities
n∑

i,j=1

1

2

[
k
(
t(i) + t(j)

)
+ k

(
t(i) − t(j)

)]
ξiξj ≥ 0, (3.2)

k

(
t(i) + t(j)

2

)
≤ 1

2

[
k
(
t(i)
)
+ k

(
t(j)
)]

(3.3)

are holding. Suppose that for k(t), if t ∈ R∞
0 the estimate is true

|k(t)| ≤ Ce
N∥t∥2

l2({τk}) , (C > 0, N > 0), (3.4)

then the following theorem is true:

Theorem 2. In order that the function k(t), which is given in the space R∞
0 and satisfies

the estimate (3.4), would allow such an integral representation

k(t) =

∫
R∞
+

∞∏
κ=1

Chλκtκ dσ(λ), (λ ∈ R∞, λκ = (λ, eκ)l2 , tκ = (t, eκ)l2) , (3.5)
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where ρ(·) is the non-negative, finite measure on the σ-algebra of cylindrical sets in R∞
+ with

Borel bases, it is necessary and sufficient that k(t) be the e.p.d., convex and continuous on
R∞

0 . The measures σ(·) for given k(t) are defined uniquely.

Proof. Sufficiency. Let the function k(t) be the e.p.d., convex and continuous on R∞
0 and it

satisfies the estimate (3.4). Let us prove that for k(t) the integral representation (3.5) is true.
Indeed, we restricted the continuous, e.p.d. function k(t) on Rn to R∞

0 , which satisfies the
estimate (3.4) and it is convex. For the function kn(t) = k(t1, t2, . . . , tn, 0, 0, . . . ) (t ∈ Rn)

the following representation is true (2.4). The measures {σn(·)} are consistent. That is
why due to the Kolmogorov’s theorem it is possible to construct the single measure for
the function k(t) (t ∈ R∞

0 ). Hence, we have the integral representation (3.5). Sufficiency is
proved.

Let us prove Necessity. Let the function k(t) (t ∈ R∞
0 ) satisfies the condition (3.4) and

has the representation (3.5). It’s not hard to make sure that k(t) is the e.p.d. and convex.
Let prove now the continuity of k(t), if (t ∈ R∞

0 ). It follows from

Lemma 1. If the really-valued, e.p.d., convex function k(c) (c ∈ R1) admits the represen-
tation

k(c) =

∫
R1
+

Chλc dσ(λ),

where σ(λ) is the finite measure on R1
+, then it is continuous.

.

Proof. Let cn → c0 (cn, c0 ∈ R1). It is necessary to prove that for an arbitrary ε > 0 exists
such N that for n ≥ N the following inequality is true∣∣∣∣∣∣∣

∫
R1
+

Chλcn dσ(λ)−
∫
R1
+

Chλc0 dσ(λ)

∣∣∣∣∣∣∣ < ε,

or that
lim
n→∞

∫
R1
+

|Chλcn − Chλc0| dσ(λ) = 0.

But according to the Lebesgue’s theorem about the limit transition under the sign of
integral we have

lim
n→∞

∫
R1
+

|Chλcn − Chλc0| dσ(λ) =
∫
R1
+

lim
n→∞

|Chλcn − Chλc0| dσ(λ) = 0.

For the sequence of functions fn(λ) = |Chλcn − Chλc0| the major function will be the
function φ(λ) = 2Chλc. Therefore, |fn(λ)| = φ(λ) and∫

R1
+

φ(λ) dσ(λ) = 2

∫
R1
+

Chλc dσ(λ) = 2k(c) < ∞. (3.6)
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Now we prove the continuity of the e.p.d and convex function k(t), if t ∈ Rn.

Lemma 2. If the function of n real variables k(t1, . . . , tn) ∈ Rn allows the representation

k(t1, . . . , tn) =

∫
Rn
+

n∏
κ=1

Chλκtκ dσ(λ1, . . . , λn),

where σ(·) is the finite measure in Rn, then it is continuous.

Proof. . Let
(
t
(j)
1 , . . . , t

(j)
n

)
→
(
t
(0)
1 , . . . , t

(0)
n

)
in Rn. It is necessary to prove that for the any

ε > 0 exists such N , that for every j ≥ N∣∣∣∣∣∣∣
∫
Rn
+

n∏
κ=1

Chλκt
(j)
κ dσ(λ1, . . . , λn)−

∫
Rn
+

n∏
κ=1

Chλκt
(0)
κ dσ(λ1, . . . , λn)

∣∣∣∣∣∣∣ ≤ ε,

or that

lim
j→∞

∫
Rn
+

∣∣∣∣∣
n∏

κ=1

Chλκt
(j)
κ −

n∏
κ=1

Chλκt
(0)
κ

∣∣∣∣∣ dσ(λ1, . . . , λn) = 0.

But

lim
j→∞

∫
Rn
+

∣∣∣∣∣
n∏

κ=1

Chλκt
(j)
κ −

n∏
κ=1

Chλκt
(0)
κ

∣∣∣∣∣ dσ(λ1, . . . , λn) =

=

∫
Rn
+

lim
j→∞

∣∣∣∣∣
n∏

κ=1

Chλκt
(j)
κ −

n∏
κ=1

Chλκt
(0)
κ

∣∣∣∣∣ dσ(λ1, . . . , λn) = 0.

The transition to the limit under the sign of integral is possible because according to the
Lebesgue’s theorem for the sequence of functions

fj(λ1, . . . , λn) =

∣∣∣∣∣
n∏

κ=1

Chλκt
(j)
κ −

n∏
κ=1

Chλκt
(0)
κ

∣∣∣∣∣
there is the major function φ(λ) =

n∏
κ=1

φκ(λκ), where

φκ(λκ) = 2Chλκcκ

(
cκ = sup

j
t2κλκ

)
.

Therefore
|fjφ(λ1, . . . , λn)| ≤ φ(λ1, . . . , λn)

and ∫
Rn
+

n∏
κ=1

φκ(λκ) dσ(λ1, . . . , λn) = 2nk(c1, . . . , cn). (3.7)

For n = 1, (3.6) follows from (3.7). The Lemma 2 is proved.
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Then the continuity of k(t), if t ∈ R∞
0 , follows from the Lemma 2, as the continuity of

k(·) in R∞
0 is the continuity for every n functions kn(t1, . . . , tn) = k(t) (t ∈ Rn), since the

projective and inductive topologies in R∞
0 are coinciding. The necessity is proved.

The uniqueness of measures in (3.5) follows from the uniqueness of measures ρn(λ1, . . . , λn).
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Стаття складається з двох частин.
У першiй частинi доводиться iнтегральне зображення для гiперболiчно опуклих (г.о.)

функцiй k(x)
(
x ∈ R∞ = R1 × R1 × . . .

)
. Для цього в R∞ вводимо мiри ω1(x), ω 1

2
(x). До-

датна визначенiсть (д.в.) для г.о. функцiй розумiється в iнтегральному сенсi вiдносно
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мiри ω1(x). Далi ми доводимо, що мiра ρ(λ) в iнтегральному зображеннi для г.о. функцiй

зосереджена на l+2 =

{
λ ∈ R∞

+ = R1
+ ×R1

+ × . . .
∣∣∣ ∞∑
n=1

λ2
n < ∞

}
. Рiвнiсть для k(x) (x ∈ R∞)

розумiється майже всюди вiдносно мiри ω 1
2
(x).

У другiй частинi статтi ми доводимо необхiдну i достатню умови для iнтегрального
зображення г.о. функцiй k(x)

(
x ∈ R∞

0 є ядерний простiр
)
. Д.в. для г.о. функцiй розу-

мiється в точковому сенсi. Для цього потрiбно сконструювати ланцюжок R∞
0 ⊂ l2 ⊂ R∞.

Тодi, враховуючи, що проекцiйна та iндуктивна топологiї спiвпадають, ми одержимо iн-
тегральне зображення для г.о. функцiй k(x) (x ∈ R∞

0 )


