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SHEREMETA M.M.

HADAMARD COMPOSITION OF SERIES IN SYSTEMS OF FUNCTIONS

o0

For regularly converging in C series A;(z) = > anjf(Az), 1 < j < p, where f is an
n=1

entire transcendental function, the asymptotic behavior of a Hadamard composition A(z) =

o0
= (A1x..xAp)m(2) = > > cklmkpaﬁll Ce aﬁ’jp f(Anz) of genus m is investigated.
n=1 \ki+-+k,=m ’

The function A, is called dominant, if |¢mmo.. 0llan1|™ # 0 and |a, ;| = o(Jan1]|) as n — oo

for 2 < j < p. The generalized order of a function A; is called the quantity g g[4;] =

E— In M(r, A; o
= THI-‘yI-lDO W, where M(r, A;) = nz=:1 |an, | Mp(rAy), My(r) = max{|f(2)| : |z| =r}

and the functions « and § are positive, continuous and increasing to +oo.

Under certain conditions on «, 8, My(r) and ()\,), it is proved that if among the functions
A; there exists a dominant one, then g, g[A] = max{pag[4;] : 1 < j < p}. In terms of
generalized orders, a connection is established between the growth of the maximal terms of
power expansions of the functions (Agk) kL. ok Al(,k))m and ((Ap * ... x A,)m)*®). Unresolved
problems are formulated .

Key words and phrases: entire function, regularly converging series, Hadamard composi-
tion, generalized order.
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INTRODUCTION

Let

1) =3 gt (1)

be an entire transcendental function, M;(r) = max{|f(z)| : |z| = r} and (\,) be a sequence
of positive numbers increasing to +o0o. Suppose that the series

A=) =Y anf () 2)
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in the system f(\,z) regularly converges in C, i. e. for all r € [0, +00)

M(r, A) =Y |an| My (rA,) < +oo. (3)
n=1
Many authors have studied the representation of analytic functions by series in the system
f(Anz). We will specify here only on the monographs of A.F. Leont’ev [5] and B.V. Vynnyt-
skyi [12], where references to other works can be find.

Since series (2) regularly converges in C, the function A is entire. Generalized orders are
used to study its growth. For this purpose, as in [7] by L we denote a class of continuous non-
negative on (—oo, +00) functions « such that a(z) = a(zg) > 0 for x < 2 and a(x) T 400
as rg < ¥ — +o0o0. We say that a € L% if « € L and a((1 + o(1))z) = (1 + o(1))a(z) as
x — 4oo. Finally, o € Ly, if a € L and a(cx) = (1 + o(1))a(x) as * — +oo for each

c € (0, +0), i. e. «a is a slowly increasing function. Clearly, L,; C L°. For o € L and

— a(ln M
B € L quantity g, g[f] = lim a(ln M,(r)) is called |7] generalized (o, B)-order of the entire
’ r—+o00 B(ln 7“)

function f.

In the papers [11, 10] the relationship between the growth of functions M¢(r), M(r, A)
and M, Y(OM(r, A)) was studied. When studying the logarithmic convexity of the function
In My(r) was used, from which it follows that

_dIn My(r)

Ff(?") = W /‘ +00, T — 400,

dIn Mf(?")
dln r

tive). For example, in [10] the following theorem was proved.

dp~(ca(x))
dln x

(in points where the derivative does not exist, under we mean right-hand deriva-

Theorem. Let o € Lsi, 3 € L°,

and

= 0O(1) as + — +oo for each ¢ € (0, +00)

o o a(ln M(r, A))
Oa plA] = 0ap[M] = lim T Bmr)

If a,, > 0 for all n > 1, series (2) regularly converges in C, In n = O(I'f()\,)) and In \,, =
1 1
=0 <5_1(ca (1 3 In —>) asn — oo each ¢ € (0, +00) then 0, 5[A] = 0aslf]-
n\, a,

Let G(2) = > gn,;2", 1 < j < p, be an entire transcendental functions. As in [6], we say
n=0

that the function G(2) = > ¢,2" is similar to the Hadamard composition of the functions g;
n=0
if g, = w(gn1, ..., gnyp) for all n, where w : C? — C is a continuous function. Clearly, if p = 2

and w(gn1, gn2) = gnignz2 then g = (g1 * g2) is [4] the Hadamard composition (product) of
the functions ¢g; and gy. Properties of this composition obtained by J.Hadamard find the
applications [3, 1] in the theory of the analytic continuation of the functions represented by
power series.

The article |9] considers the case when w is a homogeneous polynomial. Recall that
a polynomial is named homogeneous if all monomials with nonzero coefficients have the
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identical degree. A polynomial P(xy,...,x,) is homogeneous of the degree m if and only
if P(txy,...,tx,) = t"P(z1,...,x,) for all ¢ from the field above that a polynomial is de-
fined. Function (1) is called a Hadamard composition of genus m > 1 of functions (2) if
a, = P(ana, ..., anyp), where

P(ry,mp) = Y Cha e alr, k€2, (4)
ki Akp=m

is a homogeneous polynomial of degree m > 1 with constant coefficients c, .. ,. We remark
that the usual Hadamard composition is a special case of the Hadamard composition of
the genus m = 2. Hadamard composition of genus m > 1 of functions f; is denoted by

(Gr# %Gy 1. €. (G Gp)m(2) = Zognz” => ( S i gﬁ’,’p) Z".

n=0 \ k1+-+kp=m
Here we study the properties of Hadamard compositions of genus m > 1 for entire
functions represented by series in a system of functions.

1 DEFINITION AND CONVERGENCE

Function (2) is called a Hadamard composition of genus m of the functions

if a,, = P(an1, ..., anyp), where P is defined by (4). Then as above

o0 o0

A(z) = (A1 % o x Ay (2) = Z anf(Apz) = Z Z Ckl...kpa:ﬁ Ca aﬁfp fn2).

n=1 n=1 ki+--+kp=m
(6)
At first we prove the following lemma.

Lemma 1. Let In n = o(I'¢(\,)) as n — oo. Then series (2) regularly converges in C if and
only if

mgiMﬁ(1)=+m. (7)

Proof. If series (2) regularly converges in C then |a,|M(r),) — 0 as n — oo, i. e.

1 1
lan|Mp(rX,) < 1 for all r € [0, +00) and n > ny(r), whence )\—Mjfl (ﬁ) > r for all
n an

n > no(r). In view of the arbitrariness of r we get (7).

On the other hand, if r € [1, 400) is an arbitrary number and (7) holds then for every

1 1
K > r and all n > ng = ny(K) we have )\—Mf_l (ﬁ) > K, i e |a,|Mp(KN,) < 1.
n a”ﬂ
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Therefore,
- - Mf m — M;(r,)
D lanlMp(rdn) = > lan| My (K, YR oN Z My ()
n=ng n=ng
- KAndl M Kn
n f
- Bt AT . 1
Z exp / Tt d t Z exp / f(t)dln t
n=no rAn n=no TAn
< Z exp{—T¢(rA\,) In(K/r)} < Z exp{-Tt(\) In(K/r)} < +oo,
n=ngo n=ng
because In n = o(I'¢(\,)) as n — co. Lemma 1 is proved. O

We say that the function A; is dominant, if |¢,0. 0]lan1|™ # 0 and |a, ;| = o(|a,|) as
n — oo for 2 < j < p. Using Lemma 1 we prove the following theorem.

Theorem 1. Let In n = o(I'f()\,)) as n — oo. If all series (5) regularly converge in C then
their Hadamard composition of genus m > 1 regularly converges in C.

If the function A is dominant and Hadamard composition of genus m = 1 of the functions
A; regularly converges in C then each series (5) regularly converges in C.

dln M
Proof. At first we remark that the condition r;l—f(r) 400 as 7 — +oo implies the
nr
dln M (x) .
condition ——————— "\, +00 as r — +00, 1. e. the function M; " is slowly increasing.

ng
Since series (2) is Hadamard composition of genus m > 1 of regularly convergent in C
series (5) then

anl <Y Jerapllandl™ - langl™ (8)

e+ kep=m
and by Lemma 1 |a,, ;| < 1/M;(K\,) for every K > 0, all 1 < j < pandalln > ng = no(K).
Therefore,

SR —
where C' = > |Chy..k, |, and thus,
k1ot kp=m
1 1 1 M7 (KA,) 14 o(1)
— M=) > =ML = MY (MK,
AT (|an|>_)‘n < ¢ > An 7 (M )
1 1
> + ol )M_l(Mf(K/\n)) =(14+0o(1)K, n— oo,

= X, f
whence in view of the arbitrariness of K (7) follows, i. e. series (2) regularly converges in C
Now we suppose the function A; is dominant and m > 1. We put

¥, = Z Choooy (An 1) - o ()"

kit +hp=m

- Z Chy.cy (@n,1)™ - oo (@) = Cno..o(@n,)"™

kit hp=m
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Since for each monomial of the polynomial >/ the sum of the exponents is equal to m, we

have
ana | |an | _ [ L T S0, e oo
|1 ™ | @1 [ R ’
and, thus X = o(|a,1|™) as n — oo. Therefore,
c
ud 2 leno_ollana ™ ~ 1] = lemo.ollonal™ — oflay) = 22 a 1. > g

i. e. |an1| < clay,| for n > ng provided m = 1, where ¢ = const > 0. Thus, we have

1 1 1 1 1 1
lim — M ? > lim — M ;! > lim —M;!
oo A (Ian,ﬂ) =D W (Iam\) RV (cianl>

1 1
:m—Mf‘l( >=+00,

n—o0 \n |an|

i. e. all series (6) regularly converge in C. Theorem 1 is proved. [

2  MAXIMAL TERM AND CENTRAL INDEX

Let series (2) regularly converges in C, p(r, A) = max{|a,|Ms(rA,) : n > 1} be the
maximal term and v(r, A) = max{n > 1 : |a,|Ms(r\,) = p(r,A)} be the central index of
series (3). The following lemma is true.

Lemma 2. The functions In u(r, A), Ay(r.a) and v(r, A) are non-decreasing and

T

In p(r, A) —In p(rg, A) = /

T0

Up(tAt,4))

; dt, 0<ry<r<+oo. 9)

Proof. For h > 0 we have

p(r+h, A) = |aV(r+h,A) |Mf((T + h))‘r/(r-i-h,A))
My((r + h)Auir1h,4))
My (rAvgn,a))
< p(r, A) exp{In My((r + h)Aviin,a)) = In My(rAvin,a))}t
(r+h)Ay(rsh,4)

= p(r, A) exp / Ly(t)dIn t

:‘au(r+h,A) ’Mf(T)\y(rJrh,A))

TAU(T+h,A)

<p(r, A) exp {T5((r + ) Aurin,a) In (1 +h/r)},

In p(r+h,A) —In p(r, A) <Tr((r + h)Avgs,a)) In (14 h/r). (10)
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Similarly,
My (rAv,a))
M(T7 A) = |av r,A |M ((T + h))‘u r,A ) \
(AT ) Mf((r + h))‘V(T,A))

(r+h)Ay(r, 4)

<u(r+h,A)exp ¢ — / Le(t)dln t
/r)\l/(’l‘,A)

<u(r+ h, A)exp {—Ff(r/\,,(T,A)) In(1+ h/r)} ,

i. e.

In p(r+h,A) —In p(r, A) > Tp(rA,q ) In (14 h/r). (11)
From (10) and (11) we obtain

In(1+h/r) < In p(r+h,A) —In p(r, A)

In (14 h/r)
h - h '

Ff (T)\u(r,A)) h

S Tp((r+ h)Avirna))

Hence it follows that the functions In ju(r, A), A4y and v(r, A) are non-decreasing. Our
reasoning is also correct if h < 0. Therefore, if (r1, r9) is an interval of constancy of the
function v(r, A) then at h — 0 we obtain

din p(r,A)  Tp(rAea)

dr r ’

r € (r, T2).

Since the function I'y(rA,(- 1)) has a finite number of discontinuities on each finite interval,
we obtain the equality (9). O

3  GrOwWTH OF M(r, A), pu(r, A) AND Ay, )
At first we prove the following theorem.

1
Theorem 2. If a(ln z) € Ly, B(In ) € Ly and lim nn

th
n—)oorf<)\ ) < 400 then

— a(ln u(r, 4))

Al = = 1
0eplA] = Caplu] = Tim B(n )

If a(e”) € Ly, B(In ) € Ly; and a(x) = o(B(x)) as © — +o0 then

o aly(rAra))
Qa,ﬁ[/i] - hm 6(111 ’f’) .

r—-+00

Proof. From (3) it follows that for ¢ > 1 and r > 1

qrin
pu(r, A) <m(r, A) < Z|a"|Mf qrin )j\]\/f(( /\)\ w(gr, A) Zexp — / s(t)dln t
qr
n=1 rAn

< pulgr, A) Y exp{=T(rA,) In ¢} < p(gr, A) D exp{=T¢(An) In ¢}

n=1 n=1
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Since, there exist K > 0 such that In n < KT4(\,) for all n > ng(K) for ¢ = e we have
K+
T;(A)ln g >

In p(r,A) < InM(r, A) < In u(qr, A) + In C' and in view of conditions a(In z) € Ly and
B(ln z) € Ly we get the equality 0,5[A] = 04[] The first part of Theorem 2 is proved.

1
In n and, thus, Z exp{—Tf(\,)In ¢} < C = const < +oo. Therefore,

Equality (9) implies

Pf (t)\V(t,A))

In p(er, A) =In u(r) +/ dt > T¢(rAya))

t
and
Ce(tA,
In p(r,A) =1n p(1, A) + / Mdt <In p(1,A) + Ts(rApma) In r.
1

Therefore,

In p(r, A)

BT +0(1) < Ty(rAya)) < Inpler,A), r — +oo. (12)

nr

Since fB(In x) € Lg;, hence we obtain

— aly(rAew)) _ — a(ln pler, A))

im < lim

400 B(]n r) r—4o00 ﬁ(ln ’I")

= Qa,ﬁ[/vb]'

On the other hand, in view of the conditions «a(e”) € Ly and a(x) = o(B(x)) as x — 400
we have

(I1+o(1)a(n u(r, A)) (Ce(rApray) In ) = a(exp{ln It (1A, 4)) +InIn 7})
(exp{2max{In I'f(rA (- 4)), In In r}})

= (14 o(1))a(exp{max{ln I's(rA,( 1)), In In r}})
= (14 o(1)) max{a(L¢(rAyra)), a(ln r)} < (14 o(1))(a(T¢(rAyera)) +a(ln 7))

= (L+ o) (T (rAvr,a) +o(B(In 1)), 7 — +oo,

<a
<«

Er—. r )\1/1"
1. e. 0ap[p] < lim aly(rhi))

. The proof of Theorem 2 is complete. n
r—+00 ﬂ (ln T)

Remark that if all fi, > 0 then M(r) = f(r). In this case the following theorem is true.

Theorem 3. Let a € Ly, f(In ) € Ly; and for all 7 > rg

dln In f(r)

| h <
nmes s dln r

< H < +o0. (13)
If series (5) regularly converge in C and A(z) = (A; * ... * Ay)m(2) then p,p[A] <
<max{p.g[4;]: 1 <j <p}

Moreover, if the function Ay is dominant then g, g[A;| < 0a.lA1] = 0as[Al.
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1
Proof. From (13) it follows that for n = % + 1 and for some & € (r/n, r)

Inln My(r)—Inln Ms(r/n)=Inln f(r) —Inln f(r/n) = (In In f(£))' (1 —1/n)r

< (1 ta f©)(1 = 1/009) = (0 - VL < (-t <,

i. e. My(r) < Mg(r/n)™. Therefore, (8) implies

an Mp(rda) < Y leng | (ML (X /)™ - oo (Janp | M (rh /0)),

kit +hp=m

p(r, A< 3 ek lu(r/m, AP - e/, Ay)Fr.

kit +hp=m

Since In™ (14 4c) < InTe; +---+1In" ¢, + In n, hence for all » enough large we get

ol A) < > In(er lu(r/n, AP - u(r/n, ApFr) + Cy
k14 +kp=m

< ) (anplr/n A + o+ kpIn p(r/n, Ap)) + Ca,

kit +hp=m

where C; and Cy are const > 0. But Inpu(r,A4;) < a '(gasl4;] + ¢)B(nr)) <
<aHo+e)B(nr)) for all € > 0 and all r > ry(e)), where p = max{0,5[4;] : 1 < j < p}.
Therefore, In pu(r, A) < ma=(go+¢)B(In r—1)+Cs, whence in view of the conditions « € L,
B(ln z) € Ly and of the arbitrariness of € we obtain g, g[A] < p. The first part of Theorem 3
is proved.

If the function A; is dominant then, as above, we have |a,| > c|a,1|™ for n > ng, where

1
¢ = const > 0. From (13) it follows that for ( = 1— nm

we have

and for some ¢ € ((r, r), as above,

InIn Ms(r) —Inln Ms(¢r) = (InIn £(£)'(1—¢)r > (1 —) > (1=¢)h >Inm,

i. e. My(r) > Ms(r¢)™. Therefore, pu(r, A) > cu(r¢, A)™, whence the inequality g, [A4;] <
< 0a.plA1] < 04 p]A] follows and 04 [A] = 0a.5[A1]. The proof of Theorem 3 is complete. [

4 GROWTH OF THE DERIVATIVE

Clearly, A®)(z) = 3 akA, fAP(N,2) and M(r, A®)) = 3 |a,|AE M0 (rA,). The fol-
n=1 n=1

lowing statement indicates that for each k > 1 the functions A®) and A have the same
growth.

Theorem 4. If a € Ly, B(In z) € Ly and a(z) = o(B(x)) as x — +oo then g, 3[AP)] =
= 0a,8lA].
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Proof. 1t suffices to prove Theorem 3 for & = 1. From Cauchy formula f'(z) =
1 M An

= — /() 5dT we obtain My (r) < M for all 7 and n. Therefore, choos-

ing r\, instead r we get

o0

M(r, ) <Z|an|A i “) =S Janl My ((r + DAL = M(r + 1, A),

n=1

whence the inequality 0, [A] < Oap [A] follows.

On the other hand, f(z ff’ )dz, whence M (r) < |f(0)|+7rMy(r) and, thus,
M(r, A) <D lanl(|FO)] + A Mp(rhn)) = (14 0(1)r Y |an| XMy (rAn)
n=1 n=1

= (1+o(1)rMm(r,A"), r— +o0,

whence, as above,

a(ln M(r, A)) < a(ln M(r, A)) +1In r+o(1)) < (1 + o(1))(2 max{ln M(r, A),In r})
= (1+o(1))a(max{ln M(r, A),In r}) < (1 + o(1))(a(M(r, A) + a(ln 7)), r — 400,

1. e. 0a5[A] < 0a[A]. Theorem 4 is proved.

u(r, (Agk) * ...k A;,k))m)
pl(r, ((Ag % .ok Ap)y ) R))

5 GROWTH OF THE RATIO

Let 7 > k. Since

(A 5 % AV, (2) = S a0 2)
kit +kp
and
(Ars x40 (k) = S el al | MFO0)
n=1 \ ki+-+kp=m
we have (with a,, > ckl_.kpafbfl e an?y)

kit thp=m

ulr, (AP 5o AD),) =1 490 2 aD)) A a9 aar), MO A 400, a0),)

|)‘k (4) (9)
v(r,(A7 . %Ay )m)

/-\
>~

= |a1/(r,(Agj)*...*A§,j))m) Aff(l€> (TAV(T,(Agj)*.A.*Aéj))m)) X

mj—k Mo (1A a0, sa@) )

(
I/(T,(Agj)*"'*A;gj>)m) Mf(k) (T}\V(T’(A(lj)*”.*A;j))m))

X A

Mo (P o s )

B f(]) I/(T (A(J)**A(J))m)
< **Am(k'))\m]k ) ) 1 L .
< pu(r, ((Aq p) ™) y(r,(Agj)*...*Aé]))m)Mf(k)(TA

V(r,(Agj)*...*A;j))m))
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Similarly,

pu(r, (Ar# e Ay))®) =la, Aot At o) M0 (PAu (1522, )

= 1@ ((Are 400 m) D) A ety 00 M D (T A o (A6 4 90)) X
s Nk Mf<k> (T)\u(r((Al* ..*Ap)m)(k>))
v(r,((Apk..xAp)m ) (F))) Mf( ) (r/\y(r ((Ay* --*Ap)m)(k)))
—m FF) v(r,((Ap*..xA )m)( ))
< u(r, (AP 5 % ADD), Y \EmmI v .
1 P v(r((Aps..xAp)m ) (R))) Mf(]) (TAV(T ((Arx -*Ap)m)<k)))

Therefore, the following lemma is proved.

Lemma 3. If functions (5) regularly converge in C and j > k then

mj—k Mo Aty ) plry (AP 5o AP )
*.% k =
v(r,((Ar..xAp)m) () Mf(k)(?“)\y (r,(( A1*...*Ap)m)(k))) ,u(r, ((Al ... % A ) )(k))
M ) (r) ) (14)
mj—k FONTA (AP s 54D,

I/(?",(Ag])**Ag(gﬁ)m) Mf(k)( >\ ( (A(j)* *A(]) m)>

If we put

k (m—l)k‘ (k’) (k‘)
®(T, A, k’) = (m=1k/ T lu(ry (Al * ...k 14[;g )m)
u(r, (Ag 5 ok Ap) ) )

then the following theorem is true.

Theorem 5. Let a(e*) € Ly, B(lnz) € Ly, a(r) = o(f(z)) as ¢ — +oo and
| Inl

m — " < +o00. Suppose that all f, > 0 and In m < h < M
n—oo I'f (A, dln r
for all r > ro. If series (5) regularly converge in C, A(z) = (Ay * ... x A,)m(2) and the
function A, is dominant then

T Oé(Ff(@(?“, A? k)))

1 = Al 1

A ) Oar5[A] (15)
Proof. If j = k from (14) we get A, (ays.va,) @y < O(1, A k) < 1A
whence

< H < 4+

(r (AP x AT )

L'y (T’/\ (Avs % Ap)m )(k)))) <Tp(&(r,Ak)) <Ty (7“)\ (AP .*Agc))m)>
and, thus, by Theorem 2

tusli (A x4))®)] < Tm GO0 AR)

(k)
r—+00 /B(ln 7«) < Qaﬁ[/i('a (Al **A;k))m)] (16)

By Theorems 2 and 4
Oa gl ((Ar# % Ap)i) )] = 0as[((Ar % oo % Ap)in) )] = 0a,pl(Ar % Ap)in] = 0a,plA]
and by Theorems 2, 3 and 4
Ga.gln (A % o A = 00 p[(AY 5 o AP) ] < max{0a 5l A}7] : 1 <5 < p)
= max{gas[4;] 1 1 <J < p} = 0as[Adi] = 0aslAl
Therefore, (16) implies (15). Theorem 5 is proved. O
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As an example, consider series in the system of Mittag-Leffler functions. Let

00 Sk
0 < o< +o0and E,(2) = _—
‘ )= T o

=Y anE,(\2) and A, ;(2) = > an;E,(Anz), 1 < j < p. It is well known [2, p. 115] that
n=1 =1
Mg, (r

be the Mittag-LefHler function. Denote A,(z) =

)= E,(r)=(1+ 0(1))967"9_&8 r — +oo and this equality can be differentiated. There-
dlnln E
fore, I'g,(r) = (1 + o(1))or? and Ild+rg(7‘) = (14 o0(1))p as 1 — +o00. Therefore, for

a(z) =1In" In x and B(x) = 2" we obtain the following statement.

Corollary 1. Let In n = O(\2) as n — oo and the series Z an, ; E,(A\n2) regularly converge
=1

inC. Ifln m < g, Ap(z) = (Ap1 * ... x Ay p)m(2) and the function A, 1 is dominant then

1 p(r, (AN 5 o AGD) ) — InlnIn M(r, A,)
lim In In =
r—+oo In 7 p(r, (A * ... % Ag,p)m)(k)) rtoo In r

We remark that the condition «(e®) € Lg used in the proof of equality

T (T (rAvra) . — Int _ o+
Oaplp) = TETOOW‘ But in the case when a(z) = In™ z and f(z) = z* from

(12) we get In In p(r, A) < In(T¢(rA,ga)) +0(1)) +1In In 7 and, thus,
— Inln p(r,A) T In Ff(r)\,,(nA)).

lim
r—+00 Inr  rotoo In r

As a result, we arrive at the following statement.
Proposition 1. Let Inn = O(N\2) as n — oo and the series Z an ; Ey(An2) regularly
-1
converge in C. IfIn m < g, Ay(2) = (Ap1 * ... * App)m(2) and the function A, is dominant
then
— In&(r,A, k)  — InlnM(r, A,
—————= = lim :

r—+00 Inr r—>+00 Inr

Put ¢ = 72, [, = A2 and D(0) = Z lanle™?. Then u(r,A,) = (1 + o(1))u(o, D) a

o — 400, where u(o, D) is maximal term of entire Dirichlet series D. It is known [8, p. 26]

dB; " (con(x))

that if ln n = O(l,,) asn — 00, a; € Lg;, f1(In x) € Ly and =0(l)asn — o0

dln x
for each ¢ € (0, +00) then
— D) _ — anp@D) —  oull)
oo Bi(0) otoo Bi(0) n—s00 11
61 l_ln | |
an

If we put os(z) = a(z), B ( ) = B((In z)/p) then here, under conditions a(e®) € Ly,
B(ln 2) € Ly and LP{2I " (car(@)}

= 0(1) as n — oo for each ¢ € (0, +00), we get

dln x
i B2 AY) o ol Dlo))
Ol Ag] = 1l Blnr) — rteo B((In 0)o)
_ a(X2) I o(4) o

N—00 1 1 1 I rey 1 1 1 ’
| —In — | —In —
B(g“<mrw%0) 5(g“<wrW%O)
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whence for a(r) = (In" In )9, 0 < ¢ < 1, and B(x) = 7 we obtain

r—+4-00 ﬁ (hl 7‘)

— In’Inln M(r,4,) — oln?In )\,
im = lim :
r—+oo Inr n—00 1 1 1 1
n|-—n—
DY

6 DiscussioN OPEN PROBLEMS

We were unable to solve the following actual problems.
1. Using inequalities (14) prove an analogue of Theorem 5 for j > k.

2. In the general case, find a formula for finding the generalized order g, s[A] =
— a(ln M(r, A))

lim in terms of coefficients and prove an analogue of equality (17).

3. Is it possible to establish a connection between the growth of functions A; and function

A if there is no dominant function among the functions A,?

[10]

(1]

[12]
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o0
Hms peryaspuo 36ikuux B C pagis Aj(z) = Y an;f(Mnz), 1 < j < p, ge f - mna
n=1

TPAHCIEHIEHTHA (DYHKIIisI, JOCTIKYEThC ACUMIITOTUIHE ITOBOJIXKEHHS 8 [aMapPOBOI KOMIIO3HUITIT

o0

k .
A(z) = (A1 * .. x Ap)m(2) = DO > ckl___kpaffbfl cerantp | f(Anz) pomy m. Oyaruisa
n=1 \ ki1+-+kp,=m
Ay Ha3UBAETHCS JOMIHAHTHOWO, SKIIO |Crmo..0|lan 1™ # 01 |anj| = o(lana]) mpu n — oo

o 2 < j < p. YsarampHeHuM mopsigkoM (yHKmil A; HasWBaeTbCS BeIMUHHA 04 g[A;] =

— In M(r, A; x
= i S e i 4y) = 5 e M), My(r) = max{[£()] < Jo = 1, a

byHKIIT o 1 § € momaTHi, HelepepBHi 1 3pocTatdi 10 400.

3a meBHUX YMOB Ha «, 3, M;(r) 1 (\,) moBeneno, mo axmmo cepen Gyukuiit A; iciye gominan-
THA, TO 0q,g|A] = max{pa g[A4;]: 1 < j < p}. V¥ repminax ysaraJbHeHUX HOPAIKIB BCTAHOBIIE-
HO 3B’SI30K Mi>K POCTOM MaKCUMAaJIbHUX YJICHIB (DYHKIIIH (Agk) *ok A](,k))m i((Ar*... *Ap)m)(k).
CdopmymboBaHO HEPO3B g3aHl TPOOIEMIU.
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