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STOKES SYSTEM WITH VARIABLE EXPONENTS OF NONLINEARITY

Some nonlinear Stokes system is considered. The initial-boundary value problem for the
system is investigated and the existence and uniqueness of the weak solution for the problem
is proved.
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INTRODUCTION

Let n € N and T > 0 be fixed numbers, n > 2, 2 C R” be a bounded domain with
the Lipschitz boundary 092, Qo7 := Q x (0,7), Xo7r := 0Q x (0,T), Q, := {(z,t) | v € Q,
=7}, 7 €1]0,T]. We seek a weak solution {u, 7} of the problem

g — Z <Aij(x, t)ux> o+ Gz, t)|ult®) 2y + Vr(z,t) = F(z,t),  (z,t) € Qor, (1)

ij=1

divu = 0, (ZL‘, t) - Q07T7 (2)

/7T($,t) de =0, te(0,7), (3)

Q
ulsyr =0, (4)

Ulp=o = up(x), x€ Q. (5)

Here u = (uy,...,u,) : Qor — R™ is the velocity field, |u| = (Juy|? + ... + |u.|})Y2,
divu = g% +...+ g%:, 7 : Qor — R is the pressure, Vi = (57“1, e %), and q(z,t) is the

variable exponent of the nonlinearity of system (1).
The linearized version of the Navier-Stokes system is called the Stokes system. It is well
known that these equations describe the time evolution of the solutions to the mathematical
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models of the viscous incompressible fluids. For more details about the physical meaning of
the Navier-Stokes and Stokes systems see [1], [2], etc. The initial-boundary value problem
for the Stokes system are considered in [3], [4], [5], [6], [7], [8], [9], [L0] (see also the references
given there).

We perturb the classical Stokes equations by the monotonous nonlinear term with the
exponent of the nonlinearity ¢ = ¢(z,t). This exponent is Lipschitz continuous function only
with respect to the time variable t. We seek a weak solution to the initial-boundary value
problem (1)-(5). As we know this problem is not studied yet. The paper is organized as
follows. In Section 1, we formulate the considered problem and main results. The auxiliary
statements are given in Section 2. Finally, in Section 3 we prove the main results.

1 STATEMENT OF PROBLEM AND FORMULATION OF MAIN RESULTS

Let || - ||z = || -; B|| be a norm of some Banach space B, B* be a dual space, (-,-); be
a scalar product between B* and B, B" := B X ... X B be n-th Cartesian product of the
B, ||z; B"|| == ||zl + .- - + ||zal|B for z = (21,...,2,) € B", (-,-)mg be a scalar product in
some Hilbert space H, |- |y :==/(-,")n.

Suppose that N € N, O is a measurable set in RY (for example, O = Q or O = Qq 1),
Bi(O) :={q € L>*(0) | ess (ionf q(y) > 0}. For every q € B, (0O), by definition, put
ye

=esssup q(y), q(y):= _aly) fora.e. ye O

yeo q(y) — 1

pq(v; O) = / ()" dy, v:O —R.
0

o ; 0
90 :=ess inf q(y), q

Assume that q € B, (O) and qo > 1. The set LYW (0) := {v: O = R | py(v;O) < +o0}
with the Luxemburg norm |[|v; LY (O)|| = inf{A > 0 | pg(v/X;0) < 1} is called a
generalized Lebesgue space. It is well known that L% (0O) is the Banach space which is
reflexive and separable.

Let Ai(Qor) be a set of the functions ¢ : Qo — R for which there exists an extension

outside Qo r (we denote it ¢ again) such that the following conditions are satisfied:
(i) ¢ € C(Ry; L>=(R2)) N BL(RETY); (ii) go > 1; (iii) there exists a constant L > 0 such that

lq(z,t) —q(z,s)| < Lt —s|, z€R" t,seR.

For the sake of convenience we shall write u(t) instead of u(,t) and LP(0,7T) instead
of LP((0,T)) etc. Let us consider the set of the solenoidal functions (functions for which
the incompressibility constraint divu = 0 holds) Cygy := {u € [D(Q)]" | divu = 0}. Here
u = (u,...,u,) and divu::g—gi—kg—;‘;#—...—%%. Let r € [1,400), s € N,

X, is a closure of Cgy, in [L'()]", H:= Xy, (6)

Zs is a closure of Cyy, in [Hy(Q)]". (7)



30 Kuoma M.V., Bunrit O.M.

Take a function g € Ay (Qo 1) and denote

Vii=Z, N [L1@D(Q)" for every t € [0,T], (8)
U(Qox) == L*0,T; Zy) N [Lq(z’t)(Qo,T)]na (9)
Ddiv = {U € [D(QO’T)]TL ‘ divu = O} (10)

Since Z; and [LI®Y(Q)]" are continuously embedded in the locally convex space [L'(£)]"
(see [11, c. 17]), from Remark 5.12 [11, c. 22|, we get that, V" is Banach space with standard
norm for the intersection of the spaces. Easy to show, that V' is reflexive and separable. We
will make similar consideration for the space U(Qo ). We also consider the space

W(Qor) ={ueU(Qor) | we[UQor)}

with the norm ||u; W(Qor)|| := ||u; U(Qox)|| + ||ut; [U(Qor)]*||- The notation u; stands for
the distributional time derivative which is defined by the rule

(U, P) Dy, = — / u(z, t)p(x, t) dedt for ¢ € Dgiy. (11)
Qo, 1
Assume that the following conditions are fulfilled.
(A): A;; are n-order square matrix with the elements from L*(Qor); Aij = Aji
(i,7 = 1,n); for a.e. (z,t) € Qor and for every £',... " € R™, we get

aOZ|§Z|2 < Z( g(m, t)E, §J> < aoz:|§i|2 (0 < ap < a’ < +00);
4,j=1 i=1
(G): G is n-order square matrix, G = diag(g1,...,9n), g1 € L=(Q
0<go<gi(z,t) <g® < +oo for ae. (z,t) € Qor, where [ =
(F): F e L*0,T; H);
(U): up € H.
We define the operators A(t) : V! — [V']*, A: U(Qor) — [U(Qor)]* by the rules
(A(t)z, W)y == /[ 3 <Al-j(:1:,t)zxi(x),wxj(x)>w+

o ia=1

_>
I,n

+<G(x,t)|z(x)|q($’t)_2z(x),w(x))R | do, zwevt, teqm) (12)
T
(Au o)y = [0, o)y db, w0 € UQur), (13
0
Suppose that
0
— i 4
h = m1n{2, pr— } (14)
Let (-, -)rn be a scalar product in the space R",
(1, 0)g == / (u(@), o(@))sn dz, = (ur, )0 = (vr, o 0) QR (15)

Q
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Definition 1. The pair of the functions {u, 7} is called a weak solution of problem (1)-(5),
ifue W(Qor)NL®0,T;H), 7 € L"(Qor), u satisfies (5) in H,

T

(te + A, 2) o) = / (F(t), 2(t))q dt (16)

0

holds for z € U(Qo,r), 7 satisfies (1) in D},,, and 7 satisfies (3) in D*(0,T).

Theorem 1 (existence). Let ¢ € A(Qo 1), conditions (A)-(U) hold. Then problem (1)-(5)
has a weak solution {u,n}. Moreover, v € C([0,T]; H).

Theorem 2 (uniqueness). Let ¢ € A((Qor), conditions (A)-(G) hold. Then, problem
(1)-(5) can‘t have more the one weak solution.

2 AUXILIARY STATEMENTS

For the Banach spaces X and Y the notation X O Y means the continuous embedding;

the notation X O Y means the continuous and densely embedding; the notation X Cy
means the compact embedding.

2.1 Projection operator

Suppose that H and Z; are determined from (6) and (7) respectively, where s € N. From [12,
Ch. 1, §6.1|, we obtain the embeddings

Z,OZLOHEH O 20 7.

Moreover, Z, C [H§(Q)]" and Z; C H. Let wh, 1 € N, be eigenfunctions (associated to the
eigenvalues A, > 0) of the spectral problem

/ Z (Dw", D)gn dz = A, /(w“,v)Rn de VYwveZ,. (17)
Q lol=s Q
For the sake of convenience we have assumed that {w”},cn is an orthonormal set in H.

Proposition 1. (see [12, Ch. 1, §6.3]). If s € N and s > 3, then the set {w"},en of all
eigenfunctions of problem (17) is a basis for the space Z;.

Let m € N be a fixed number, and 2 be a set of all linear combinations of the elements

from {w!,...,w™}. Define an unique orthogonal projection P, : H — 9 by the rule
(see [13, p. 527])
Pyuh:=Y (h,w)yw’, heH. (18)
j=1

Since {w'}jen CV = Z, s € N, then let us define an operator P,:V—V by the rule
Pov = P,v for every ve V. (19)

For a conjugate operator P* : V* — V* we have P*(V*) C V (see [14, p. 865]).
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Proposition 2. (see Lemma 3.9 [14, p. 865-866]). If 7*,....¢v" € R, F € V*. and
2™ =Y YPTw® €V satisfies

s=1

<Zm’w1>v = <F7w1>V7

<Zm’wm>v = <F7 wm>\i7
then the following equality is satisfied z™ = R’;F in V*.

Proposition 3. (see Lemma 1 [10, p. 111]). Suppose that P,, and P,, are determined from
(18) and (19) respectively, where V = Z;, s € N, and {w"} ey Is an orthonormal basis for the
space H that consists of all eigenfunctions of problem (17). Then, for every w € L"(0,T; Z?)
and r > 1, we have the inequality

[|Bw; L7(0,T; Z3)[] < [[w; L7(0, T; Z3). (20)

2.2 Cauchy’s problem for system of ordinary differential equations

Take ¢ € N and Q = (0,T) x R’ In this section we seek a weak solution ¢ : [0, 7] — R of
the problem

P'(t) + L{t, (1) = M(t), te[0,T],  ¢(0)=¢" (21)

where M : [0,7] — R® and L : Q — R are some functions (for the sake of convenience we
have assumed that L(¢,0) = 0 for every ¢ € [0,T]), and ©° = (¢9,...,¢?) € R

Definition 2. We shall say that a function L : Q — R’ satisfies the Carathéodory condition
if for every & € R’ the function (0,T) > t — L(t,€) € R’ is measurable and if for a.e.
t € (0,7T) the function R* 3 £ — L(t,€) € R is continuous.

Definition 3. We shall say that a function L : Q — R’ satisfies the LP-Carathéodory
condition if L satisfies the Carathéodory condition and for every R > (0 there exists a
function hg € LP(0,T') such that

L, )] < h(t)
for a.e. t € (0,T) and for every £ € D == {y € R | |y| < R}.

Lemma 1. Suppose that ¢ € A(Qo 1), condition (G) holds, m € N, £ = (&,...,&,) € R™,

m

w', . w™ e LCQ), wz, &) =3 &ul(z), and z € [LY (Q)]". Then the function
i=1

I(t,¢) ::/(G(x,t)\w(x,§)|q<m’t)_2w(x,§),z(x))Rn dr, te(0,T), €cR™

Q

satisfies the L°°-Carathéodory condition.



STOKES SYSTEM WITH VARIABLE EXPONENTS OF NONLINEARITY 33

Proof. We use the methods of Lemma 3.25 [14, p. 874]).
Step 1. Since
a(z,t)— 1q0 0 o
[t 2] < G (127 4wl T ) < CoJal + wl +1)), (22)

the Fubini Theorem [15, p. 91| yields that I(-,&) € L'(0,T). Then [0,T] >t — I(t,§) € R
is the measurable function.
Step 2. Let us prove that the function R 3 & — I(¢,&1,...,&,) € R is continuous at the

point {7 € R. Take { = (§1,&z, -+, &m), €0 = (7,62, -+, &), Where [§ — €] < 1.
By Theorem 2.1 [16, p. 2|, we get

| 10|02y — || D020 | < Cy(|m] + [a]) 2D TEBED |y — gy P,

where 0 < B(x,t) < min{l,q(z,t) — 1}, n1,m2 € R, C3 > 0 is independent of ny, s, z, .
Hence,

169 = 168 = | [(6 (1w 012w, - [ulw, )1 u(n,). 2) i<

<0, / (Jew(, €)] + [w(z, €))7 (2, €) — w(z, €)P@D]2] du =

Q
= 04(11(75) + (1)), (23)
where I1(t) == [ h(z,t,£,8°) dz, I(t) = [ h(z,t,£E%) du,
Q1(t) Qa(t)

Q) ={z € Q| q(z,t) <2}, Q(t) ={zr € Q| q(x,t) > 2}, and
b t.6,6%) = (Ju(z. )] + [, &))" u(z, &) - w(z &))<
Taking 5(z,t) = q(z,t) — 1, x € Q4(t), gives (see also (22))

/ w(z, &) —w(z, €)1 2(x)| do = / €1 =170 ! (2) |10 2(2)] da <

Q1 (t) Q1(t)

<l gt / jw! (2)|"CD 2 (2)| dar = Cs[gy — &0 — 0.

&1—€Y
Q1(t)

Taking f(z,t) = 1, z € Qy, gives

B0 = [ (&) + o)) o, €) - u(e )] - |2(0)] do =

Qa(t)
x,t)—2
= |6 — €| / (e 1 + o, €)™ @) 22| do < ColEDlés = €] —, 0.
Qa(t)
Therefore, by (23), we obtain that |I(¢,£) — I(t,£°)] — 0. Continuing in the same way, we
1_)51
see that [ is continuous with respect to &, ..., &n.

Step 3. Taking into account the results of Step 1 and Step 2, we obtain that the function
I satisfies the Carathéodory condition. Since g € L>(Qo 1), the L>*°-Carathéodory condition
holds. [J
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Proposition 4. (the Carathéodory-LaSalle theorem, see Theorem 3.24 [14, p. 872]). Sup-
pose that p > 2, function L : Q — R’ satisfies LP-Carathéodory condition, M € LP(0,T;R"),
and ¢° € RY. If there exist nonnegative functions a, 3 € L'(0,T) such that for every ¢ € R
and for a.e. t € [0,T] the inequality

(L(t,€),&re > —a(t)|E]* — B(t) (24)

holds, then problem (21) has a global weak solution p € W1P(0, T;R).

2.3 Additional statements

Let Zs_y:={s€Z | s> —1}. The following Propositions are needed for the sequel.

Proposition 5. (the generalized De Rham theorem, see Theorem 4.1 [17], Remark 4.3 [17],
and Lemma 2 [18]). Suppose that Q) be an open bounded connected and Lipschitz subset of
R", T > 0, 81,82 € Z>_1, h1, hy € [1,00], and F € W*rhi1(0, T; [Ws2h2(Q)]™). Then, if

(F(), 0@y =0 in D™(0,T) (25)

for all v € Cyj,, then there exists an unique

€ Werh(0, T; Wethhz(Q)) (26)
such that
Vr=F in [D*(Qor)]", (27)
/7?(-) dz=0 in D*(0,T). (28)
Q

Moreover, there exists a positive number C; (independent of F, ) such that
|| Wer(0, T W22 (Q) || < Cr[|F; Wonm (0, T W2 (Q)] )] (29)

Proposition 6. (the Aubin theorem, see [19] and [20, p. 393]). If s,h € (1,00) are fixed
numbers, W, L, B are the Banach spaces, and VW L O B, then
{ue L0, ;W) | w € L"0,T;B)} C [L5(0,T; £) N C([0,T]; B)].

Proposition 7. (Lemma 1.18 [11, p. 39]). If u™ — w in LP(Qor) (1 < p < o0), then
m—00

there exists a subsequence (we call it {u™}en again) such that u™ — w a.e. in Qg .
m—0oQ

Proposition 8. (Theorem 1 [21, p. 108]). If ¢ € A (Qo 1), then for every u € W(Qo 1) we
have that u € C([0,T]; H) and the following formula of integration by parts is true

1 1
(Xt t)oiann = 5 [ Jule ) do =5 [fuGet)Pdo, 0<h<t<T (30)
Q Q

where

e ={ g Lo (31)
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Tt's clear that if u = (uy,...,u,) € [L*(0)]", where O = Q or O = Qo r, then
[l ul; L*(O)|[* = / [ul* dy =Y [l L(O)| < nlfu; [L*(O)]"]%,
) =1

and so || [ul; L*(O)|| < v/nlu; [L*(O)]"]].
Lemma 2. Let conditions (A)-(G) hold, {w’};exy C VY, m €N, L = (Ly, L, ..., Ly),

L,(t,&) = (A@t)z", w')ye, p=1,m, te(0,T), £€R™,

and 2" (x) = > {uwH(x) for v € Q. Then
p=1

(L(t,g),g)Rmz /[aOZ]z;Z!Q—l—go\zm\Q(x’t) dv, te(0,T), €cR™ (32
o i=1
Proof. 1t‘s clear that
(L(tvg)vg)Rm = <A(t)zm72m>Vt (33)

Using condition (A), we get the following estimate:

n

m , m m |2
Z (Aijuxi, uxj)an ag ; luy|*. (34)

1,j=1

It follows from condition (G) that

(Glumprtet=2um ) =7 gl a5 -2 2 >
=1

> go 3 Ju 5072 |2 = gofur 4= (35)
=1

If we use conditions (A) and (G), then we get

n

A=y = [[ 3 (gt 0z, 2w) |+

+(G<x,t)\zm<x>yq<m>*2zm(a:),zm(x))w} dr > / [aoi\zgg\? + goizmqu} dr.  (36)

Q i=1

Thus, (33)-(36) imply that (32) holds. OJ
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3 PROOFS OF MAIN RESULTS

Proof of Theorem 1. The solution will be constructed via Faedo-Galerkin’s method. Let

r_ =min{2,q}, r = max{2,¢°}, = S, = Tiip
Ve = Z N [LE Q) Vo= Z N0 [LO(Q)]" (37)

(see notation (7)). Note that

Caiw OV, OVIOV_OHOVFO VIOV, t€](0,T), (38)
L0, T;Vy) OU(Qor) O L™ (0,T;V_) O L*0,T; V), (39)
L™=(0,T;V2) O [U(Qor)) O L™+(0,T; V) O L0, T; V). (40)

Thus, the elements from U(Qor) and [U(Qor)|* are distributions on (0,7") with value in
V. Then, similarly to Proposition 2.6.2 [22, p. 58], for v € W(Qo,r) we have that wu, (see
(11)) is the distributional derivative in sense of the set of functions on (0,7") with value in
V4 [LY()]™. Let
€N, s>ma {2 n n(l 1)} (41)
X - - — —= .
S ) — ) 2 Y 2 qo

Note that (41) implies that Z, O V, O V"

Step 1 (construction of approximation). Let {w"},en is taken from Proposition 1, s € N
satisfies (41). By definition, put

m

(1) = SO (a), (e.8) € Qor, mEN,
pn=1
where the unknown function ¢ := (¢, ..., ¢ satisfies (see notation (12) and (15))
(W (t), w")a + (A@)u™ (1), w')ve = (F(1),w"), t€(0,T), p=1m, (42)
e'(0)=af", ..., ¢n(0)=ay. (43)
Here the numbers af’,..., o)’ € R we choose such that u{j' — u¢ strongly in H, where
m—oQ

ug'(z) =Y 00 afw’(x), @ € Q. It's clear that (43) implies that
u™(0) = ug'". (44)

Let us show that the mentioned function ¢ exists. Let L be a vector-valued function from
Lemma 2. Then Cauchy problem (42)-(43) takes form (21) if

M(t) = ((F(t)>w1)97 SO (F(t)vwm)ﬁ)ﬂ te (OaT)

It follows from condition (F) that M € L?*(0,T;R™). Conditions (A)-(G) and Lemma
1 yield that the function L satisfies the L>-Carathéodory condition. Using estimate (32),
conditions ag > 0 and gy > 0, we receive (L(t,¢™),¢"™)gm > 0. Then estimate (24) with
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a(t) = 0 and S(t) = 0 holds, and from the Carathéodory-LaSalle theorem (see Proposition
4) we have the existence of the solution

o € WH(0,T;R™) (45)

of problem (21) and so problem (42)-(43).
Step 2 (first estimates). Multipling the u-th equation of (42) by ¢7*(¢) and summing over
=1,m, we get

i( t), Wy t))ﬂ+<L(t7 wm(t)),wm(t))Rmzi(ﬂt),w%f(t))g, te(0,7).

p=1

After integrating for ¢ € (0,7) C (0,7") and some transformation, we receive

/ (W, u™)gn drdt + / (L(t, me),gom>Rm dt = / (F,u™)gn dzdt, 7€ (0,T].  (46)

QO,T 0 QO,T

Using (44), (45), we obtain

1
/(u?,um)Rn dxdt = / E%GU ) dxdt = /|um|2 dr — = /|u6”|2 dx. (47)

QO,T QO,T
Clearly,
F um2
(Fomee] < 1] - fum) < EE 0T

Using (32), (47)-(48), from equality (46), we obtain the following estimate

/|u (z,7)|? dx + / [aozm 12+ go |um|q(“} dxdt <

/yu dx + = /|F|2da:dt—|— /\um\zdxdt (49)

QO T O,‘r

Take y(t) := [, |u™(x,t)]> dz, t € [0,T]. Then, from (49), we get an estimate

T

—y(1) < Cg+%/y(t) dt, T€l0,T].

0

Therefore, the Gronwall lemma implies that y(7) < Cy, and so

/yum(x,T)P dw < Cy, 7€ (0,T]. (50)

It follows from (49) and (50) that

/ [Zlu;:PHuPHuPW drdt < Cyy, 7€ (0,7, (51)

QO,T =1
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This estimate yields that

q'(,t)
/ ‘G|um|Q(I’t)_2um drdt < Ch, / ™ |9 dgdt < Chy. (52)
QD,T QO,T

From (50) and (51) it follows the estimates
[|u™; L=(0, T, H)|| + ||u™; U(Qox)l| < Cha, (53)

Here the constants Cg, ..., (3 are independent of m.
By (52)-(53) we have existence of the subsequence {u"* }reny C {u™}en such that

u™ — u  x —weakly in L*>(0,7; H) and weakly in U(Qor),

k—oo
G|um\Q(I’t)_2um k—) x1 weakly in [Z,q/(”’t)((fggj)]”. (54)
—00

Step 3 (additional estimates). From (13) and (51) it follows an inequality

(Au™, V) U(Qor) = [ Z (Aijug., Ve, )rn + (Glum™| @) =2ym U)Rn:| dxdt <

Qo, 1 b=l

< Cua(|lu™s 20,73 22) | - | o3 L2(0. T) 20)]| +

[G 02 (170 (Qo)7| - [los (£ Qo)) < Chslles U Qo)

and so
[ Au™; [U(Qor)]"|| < Chs. (55)

Since s satisfies (41), from (39) and the construction of the space U(Qo ), we obtain

U(QO,T) O L2(07T§ H) O [U(QO,T)]*a (56>

L™(0,T;Zs) O L™ (0, T;Vy) O U(Qor)-

Therefore,
U(Qor)]" O L™(0,T: Z7). (57)

Using (39) and (53), we obtain
[u™; L™ (0, T; V)| < Crel[u; U(Qor)l| < Chs. (58)

Using Proposition 2 and notation (12)-(13) and (18)-(19), in same way as in [12, Ch. 1,
§5.3|, we rewrite (42) as
ut = Py (F — Au™).

Thus, from estimate (20), embeddings (57) and (56), and estimate (55), we get

Jug™; L (0, T3 Z2)|| = || PL(F — Au™); L' (0, T; Z2)|| <
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< |[|F = Au™; L0, T3 Z7)|| < Chol|[F — Au™; [U(Qor)]|| <

< Cuo (|IF5 L2(0, 73 H| | + || Au™ [U Qo)) < Cor. (59)

Here the constant Clg,...,Cs > 0 are independent of m.
Since V. C H O Z¥, from (58), (59), the Aubin theorem (see Proposition 6), and
Proposition 7, we obtain

u™ —u in L'™(0,T;H)NC([0,T];Z) and a.e. in Qor.

k—oo

Therefore, (5) holds and y; = G|u|?®Y =2y (see (54)).

Step 4 (passing to the limit). Take ) € C*([0, T) such that ¢)(T") = 0. When we multiply
equality (42) by 1(t), integrate for ¢t € (0,7), and the first term integrate by parts. We obtain
the following

/ [— <um, w“) Rnwt —i—i (Aiju;’z, ng)ww%— (G!umIQ(x’t)’Qum, w“)anp] dxdt +

Qo, T b=l

_ / (ugn,w“)wqﬁ(()) dz + / <F,w“>Rn@/} dadt.

Q Qo,T

Taking m = m;, and letting k& — oo, thanks to arbitrariness of ¢, we get

(F, z>U(QO7T) =0 VzeU(Qor), (60)

where F := F' — u; — Au. Hence, u; € [U(Qo.r)]*, (16) holds and v € C([0,7]; H). Taking
2(z,t) = w(x)p(t), x € Q, t € (0,T), from (60), we obtain

T
/ D(Q " (P(t) dt - O, w e C(diV7 (p € D<O7 T)’
0

and so (25) holds. Clearly, from (40) we get

qO

F e L0,T [HH(Q)]") + [LL-1(Qor)]" € W0, T3 WM (Q)]"),

where h is taken from (14). Then, the generalized De Rham theorem (see Proposition 5)
yields that there exists m € Wo"(0,T; W%"(Q)) = L"(Qo r) such that (27)-(28) hold. Thus,
7 satisfies (1) in [D*(Qor)]" and (3) in D*(0,7"). Theorem 1 is proved. O

Proof of Theorem 2. Let {uy,m} and {ug, m} be weak solutions of problem (1)-(5). Set
w = uy — uy. Take (16) for uy:

T
<u1t +./4U1, U(Qo,T) / dt. (61)
0



40 Kuoma M.V., Bunrit O.M.

Take (16) for us:
T
(a1 + Atz 2@y = [ (F0),2(0)n . (62)
0

Subtracting (62) from (61), setting z = o (see notation (31)), 7 € (0,7, we obtain

T T

{ur, X0 W) U(Qor)+ / (A)ur () = A()ua(t), ur (t) —ua(t))ve dt = / (F'(t), u(t))o dt, 7 € (0,T].

Using (30) and simple transformations, in the same way as (49), from this equality, we get
1 n

5 / lu|? d + / [ag Z g |? 4+ (Glua| "D 2uy — Glug| "™ 20y, uy — ug)pn | dadt <
QT QO,T i=1

< Oy / lu|? dzdt, T € (0,T). (63)
QO,T
Let y(7) := [, |ul* dz, 7 € (0,T]. Then, from (63) it follows that $y(7) < Cs [ y(t) dt,
7 € (0,T]. Using the Gronwall lemma, we see that y(7) < 0 for 7 € [0, 7], and so u; = us.
Since m; and 7y satisfy (1) in Dg;y, we obtain

(Ul — Uz)t +AU1 - AUQ + V(ﬂ'l — 7T2) =0.

Then the equality u; = uy yields that V(m — m3) = 0. Therefore, for ¢t € (0,7) we have
that m (t) — ma(t) = C(t). It follows from condition (3) with 7m; and my that C(¢) = 0. Thus,
w1, = w9 and Theorem 2 is proved. [
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VY crarri po3risHyTO Mimany 334y Ajid HeJiHIFHOI cucTeMu PiBHAHD IiIPOAMHAMIKY, AKY
npuiiaaTo HasuBaru cucremoro Crokca. Mwu 30yproemo kinacuuni piBHsHHS CTOKCA MOHOTOH-
HUM HeJIHIHHUM OaHKOM 31 3MIHHMM NOKA3HUKOM HesliHilHocT — dyukiieo g = g(x,t). Leit
MMOKA3HUK HEJTIHIMHOCTI ¢ 3a7€KUTh BiJI MPOCTOPOBOI Ta 9acOBOI 3MIHHOI 1, 30KpeMa, 33/ I0BOJTb-
usie ymoBy Jlimmmis 3a 3miaa00 t. Y PoOOTI JOCIi/ZKYEMO iICHYBaHHS Ta €IUHICTH y3arajibHe-
HOI'O PO3B 53Ky po3rigayBanoi 3ana4i. Jlosenenns reopemu icHyBaHHS PO3B’S3KY I'DYHTYETHCS
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ua meroni Paemno-lambopkina. [Ipu mobymOBi rabOPKiHCHKUX HAOINKEHH BHKOPUCTAHO TEOPE-
my Kapareomopi-Jla Casis npo riobanbay po3s’s3uicTs 3aa4i Ko mist cucremu 3smaaiinux
nudepeHmianbHuX piBHAHL. [l00yayBaBINN TaaIbOPKIHCHKI HAOIMIKEHHS I HAIOI CHCTEMH,
JIOBOJIMMO iX OOMErKeHICTb y BinmoBiguux (PyHKIIHHUX mpocTopax (YHKINH 31 3MIHHAM MMOKa-
3HUKOM CyMOBHOCTi. 3aTuM HOKa3yeMO 30LKHICTH HADJIUKEHD JI0 y3arajbHEHOIO PO3B’A3KY
3amaqai. Teopemy €quHOCTI PO3B’A3KY MIITaHOT 331441 JOBOIUMO METOIOM BiJI CyIPOTHBHOTO.



