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ON SOLUTIONS OF THE NONHOMOGENEOUS CAUCHY PROBLEM
FOR PARABOLIC TYPE DIFFERENTIAL EQUATIONS IN A BANACH
SPACE

For a differential equation of the form u/'(t) + Au(t) = f(¢),t € (0,00), where A is the
infinitesimal generator of a bounded analytic Cy-semigroup of linear operators in a Banach
space B, f(t) is a B-valued polynomial, the behavior in the preassigned points of solutions of
the Cauchy problem u(0) = up € B depending on f(¢) is investigated.
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INTRODUCTION

The study of linear differential equations whose coefficients are unbounded operators in
a Banach or Hilbert space is expedient not only because they include a number of partial
differential equations but also because it offers the possibility to look at ordinary as well as
partial differential operators from a single point of view. The origin of the theory of such
equations dates from the work of Hille (1948) [1], in which the first existence theorems were
obtained for the Cauchy problem for an equation u' = Awu with unbounded operator A in
a Banach space. They were formulated in terms of semigroups of operators. Appreciating
their role in mathematics, E. Hille had written: "I hail a semigroup when I see one and I
seem to see them everywhere". During the last 50 years, the theory of operator differential
equations, boundary value problems for them and semigroups related to them was enriched
with significant results. It became a field of independent interest, attracting the attention
of many mathematicians.

We consider the Cauchy problem for a nonhomogeneous equation of the form

u'(t) + Au(t) = f(t), t€]0,00),
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where A is the generator of a bounded holomorphic semigroup of linear operators in a
Banach space B, and f(¢) is a strongly differentiable B-valued function. The purpose of
the present paper is to investigate a behavior in the preassigned points of solutions of the
Cauchy problem u(0) = ug € B depending on f(?).

1. PRELIMINARIES

Let B be a Banach space over the field C of complex numbers with norm |[|-||. Recall that
a one-parameter family {U(¢)}:>o of bounded linear operators on ‘B forms a Cy-semigroup
in ‘B if:

1) U(0) =1 (I is the identity operator in B) ;

2) Vt,s>0:U(t+s) =U(t)U(s);

3) Ve eB: %1_r>%||U(t)a: —z||=0.
(As for the theory of Cy-semigroups see, for example, [2], [3], [4] and [5], [6], [7]).

The linear operator A defined as

1 .1 .
Az = 11_{% ;(U(t)x —z), D(A) = {:1: €B: 11_1}1& ;(U(t)x — ) exists } ,
(D(-) denotes the domain of an operator) is called the generating operator or, simply, the
generator of {U(t)};>0. This operator is closed, D(A) is dense in B and U(t)-invariant, that
is, Vo € D(A) : U(t)x € D(A) (t > 0) and AU (t)x = U(t)Az. Moreover,

d
d—tU(t)x = AU(t)z, x € D(A).

A Cy-semigroup {U(t)}:>o in B is called (strongly) differentiable if for any = € B, the
B-valued function U(t)x is strongly differentiable on (0, 00). As is known (see [3]), for such
a semigroup

Vo € BVE>0:U(t)z € (] D(A™),

neN
the vector-valued function U(t)x is infinitely differentiable on (0, c0), and

d"U(t)x

Vo €B,Vt >0,Vn e N: T

= A"U(t)x.

Let now 6 € (0,%]. A Co-semigroup {U(t)};>0 in B is called holomorphic with angle ¢
(or, simply,holomorphic) if the operator-valued function U(-) is defined in the sector Sy =
{z € C:|argz| < 0} and:

1) Vz1,20 € Sp: U(z1 + 22) = U(21)U(22);

2) Vax € B : U(z)x is holomorphic in Sy;

3) Ve e®B:||U(z)r — x| — 0as z — 0 in any closed subsector of Sp.

If in addition the family U(z) is bounded on every sector Sy with ¢ < 6, then U(t) is called
a bounded holomorphic semigroup with angle 6.
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2. MAIN RESULTS

Consider now the nonhomogeneous Cauchy problem
u'(t) + Au(t) = f(t), t€(0,00), (1)

u(0) = yo, Yo € B, (2)

where A is the generator of a bounded holomorphic semigroup {U(t)}:>0 in B, and f(t) is a
strongly continuously differentiable on [0, 00) vector function with values in 8. By a solution
of problem (1),(2) we mean a continuously differentiable function u(t) : [0,00) — D(A)
satisfying (1) and (2). As has been shown in [6], the general solution of this problem is
represented in the form

u(t) = U(t)yo + / Ut —s)f(s)ds. (3)

We will be interested in a behavior in the given points of its solution depending on f(¢). In so
doing, we will assume 0 € p(A) (p(-) is the resolvent set of an operator). Then (see [5], [8])the
semigroup {U(t)}+>0 is exponentially stable, that is,

Je > 0,3w > 0,Vt € [0,00) : |U(t)| < ce™* (4)
(c and w are constants).

Lemma 1. For any t € (0,00), there exists the operator (I — U(t))™" (I is the identity
operator in B ), which is defined and bounded on the whole space *B.

Proof. Let x € ker(I — U(t)). Then, by virtue of the semigroup property 2), U(nt)z =
UM(t)r = z(n € Ny) = N{J{0}. It follows from (4) that z = nh_)rgoU(nt):z: = 0. So,
ker(I — U(t)) = {0}, that is, the operator (I — U(t))™! exists.

Show now that R(I — U(t)) =B (R(:) is the range of an operator). It is not difficult to
verify that

n—1

VyeB: (Unt)—Iy=(Ut)—1)) Ulkt)y. (5)

k=0

o0
Moreover, the series > U(kt)y converges to some element x € B, because

k=0
oo o0
Z U(kt)y|| < |yl Ze"”kt — 0, n — oo.
k=n k=n

The passage to the limit in (5) as n — oo yields the equality y = (I — U(t))z, i.e. y €
R(I —U(t)), as required. It remains to apply the closed graph theorem. ]

Lemma 2. Let in problem (1), (2) f(t) be such that ||f(t)|| — 0, t — oo. Then for a
solution u(t) of this problem, ||u(t)|| — 0 as t — oo.
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Proof. According to what has been said above, u(t) is represented in the form (3). It follows
from (4) that the first summand in this representation tends to 0 as ¢ — co. Let us show
that an analogous property holds for the second one, too. Indeed, choose in the equality

t T t

/U(t—s)f(s)ds - /U(t—s)f(s)ds+/U(t—s)f(s)ds,

a sufficiently large 7 such that || f(¢)|| <€ ast > 7 (¢ > 0 is arbitrarily small). Then

t

[ Ut =s)ss)as| < ma e+ / U(s)lds.

0

This inequality shows that the second summand in (3) is as small as desired. O

Lemma 3. Suppose that in the problem (1),(2),

f(t) = pa(t) +9(t),

where

= katk, z €B, and |g(t)|| —0ast— oo.
k=0

Then a solution u(t) of this problem can be represented in the form

u(t) = gn(t) +y(t),
where ||y(t)|| — 0 (t — o0), and

n—k

Zaktk ay, = Z( 1) (k—ki_,l) A~ (H—l

=0

Proof. Put

v(t) =U(t)yo + / Ut — s)g(s)ds.

Then the representation (3) for u(t) can be written as

U(t — s)pp(t — s)ds —|—/U S)pn(t — s)d

g
—~
~
~
Il
<
—~
-
~—
_|_
O\

where
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Since v(t) is a solution of the problem (1),(2) with f(t) = g(¢), in view of Lemma2, we have
|lv(t)]] = 0 as t — oo. Integrating by parts k times the integral under the sign of > in the
expression for y(t), we obtain

o0

/(t — MU (s)zpds = (1) KU () A~ *+ Dz,

whence

y(t) = v(t) — U[) S (=1)FR1A=(+Dy

For this reason ||y(t)|| — 0 as t — co. It remains to prove that

[e.9]

[ Ut = s = a, (o).

0

But
/U( )pn(t — s)ds /t—s s)rgds.
0 k=07

The integration by parts k times, taking into account the exponential stability of {U () };>o,
makes possible to conclude that

©0 k

It follows from this equality that f U(s)pn(t — s)ds is a polynomial:

kK .
n n—k (l{f—l-l)' n
D
k=0 =0 : P

]

Corollary 1. Suppose that in the problem (1),(2), f(t) = xo + tz1, (29,21 € B). Then its
solution u(t) can be represented in the form

uw(t) = Uy + ([ —U)A ey + (LA — T+ U(t)) A 2x,. (6)

The proof follows from Lemmagd if it is taken into account that in the case under consid-
eration g(t) =0 and n = 1.
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Theorem 1. For arbitrary t; > 0, yo € B, y; € D(A)(i = 1,2), there exists a unique
function f(t) of the form f(t) = xo+ txy such that the solution u(t) of problem (1),(2) with
this function on the right-hand side of (1) satisfies the conditions

u(0) = yo, utr) =y, lim @ = 1. (7)

Proof. We shall seek vectors z and x; for the solution u(t) of problem (1),(2) with f(t) =
xo + txy to satisfy the relations (7). Because of (6),

lim u(t) = lim Ult)yo + lim 1([ —Ut)A 'y + tlim (A — ]_TU(t)> A%z = A7l
—00

t—oo T t—oo t t—oo

Thus, x; = Ays. The representation (6) for ¢ = ¢; implies also the equality
(I -Ut)A g =91 — Ult))yo — (1A — T+ U(t1)) A s,
By Lemmal, there exists a bounded operator (I — U(t;))~!. Therefore,
v = (I =U(t)) " (Ayr — AU (t)yo — (0 A — T+ U(t1))y2)-

So, a function f(t) of the desired form is found. Its uniqueness follows from the uniqueness
of searching procedure for xy and x. O]

Theorem 2. Assume that B = §) is a Hilbert space with scalar product (-,-), and let A be
a positive definite selfadjoint operator in it (so, (Ax,x) > e(x,z) for an arbitrary x € D(A)
and some € > 0). Then for any ty > t; > 0,y9 € $ and y1,ys € D(A), there exists a unique
function f(t) of the form f(t) = xo+txy (xg,x1 € $), such that the solution u(t) of problem
(1),(2) with this function satisfies the conditions

u(0) = yo, u(t;) =y, i =1,2. (8)

Proof. As in the previous theorem, we seek xy and z; so that for the solution u(t) of problem
(1),(2) with f(t) = xo + tay (by virtue of Corollaryl, it can be represented in the form (6)),
to satisfy (8), i.e.

(I = Ut)A g + (A — (I — U(t)) A2y = yi — Ult:)yo (i = 1,2). 9)

Applying to both sides of these equalities the operators I — U(ty) and [ — U (t1) respectively
and subtracting the second equality from the first one, we obtain

(t1(I=U(t2)) —t2(I =U(t1))) 21 = (I =U(t2))(Ay1 — AU (t1)yo) — (I = U(t1)) (Aya — AU (t2)yo)-
(10)
Since

U(t) = / e MdE)

)
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(E, is the resolution of identity of A), we have

o0

BT — Ut) — oI — U(h)) = p(A) = / S(\dE,,

£

where the function @(A\) = t;(1 — e7*2) — t5(1 — e~*1) is such that

p(0) =0, lim p(\) =ty —ty < 0, @ (N) = tyty (€2 — e 1) < 0.

A—00

Then the function ﬁ is bounded on [e,00), and the operator (¢(A))~! (the function

((AN)~! of the operator A) is bounded on §. Applying it to both sides of (10), we ar-
rive at the equality

z1 = (p(A)7H (I = U(t2))(Ayr — AU(t1)yo) — (I — U(t1))(Ay2 — AU (t2)30))-

Taking into account that, by Lemmal, the operator (I — U(¢1))~! exists and it is defined on
the whole $), we can find z from (9). Namely,

wo = (I = U(t1)) " (Ayr — AU(t1)yo — (WA — (I = U(tr)))A™ ).

The uniqueness of a function f(t) of the form mentioned above, which guarantees fulfilment
of the conditions (8), follows from the construction itself of zo and z;. O
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Hns nudepentianbroro pisasaus surasany u' (t)+Au(t) = f(¢),t € (0,00), ne A — indinire-
3imMasbHUN TeHepaTop oOMekeHol anamiTuaHOl Cy-miBrpynu JiHIfTHUX onepaTopiB y baHaxoBOMY
upocropi B, f(t) — B-3uaunuit HOTIHOM, HOCIIKYETHCs IOBEIHKA Y HAIIEPE]] 33JaHUX TOYKAX

po3s’a3kis 3aza4i Kowi B 3asexunocti Big f(t).
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