
Bukovinian Math. Journal. 2022, 10, 1, 33�40 Áóêîâèíñüêè�è ìàòåì. æóðíàë 2022, Ò.10, �1, 33�40

Mulyava O. M.

ELEMENTARY REMARKS TO THE RELATIVE GROWTH OF SERIES BY

THE SYSTEM OF MITTAG-LEFFLER FUNCTIONS

For a regularly converging in C series F%(z) =
∞∑
n=1

anE%(λnz), where 0 < % < +∞ and

E%(z) =
∞∑
k=0

zk

Γ(1+k/%) is the Mittag-Le�er function, it is investigated the asymptotic behavior

of the function E−1
% (MF%

(r)), where Mf (r) = max{|f(z)| : |z| = r}. For example, it is proved

that if lim
n→∞

ln ln n
ln λn

≤ % and an ≥ 0 for all n ≥ 1, then lim
r→+∞

ln E−1
% (MF% (r))

ln r = 1
1−γ% , where

γ = lim
n→∞

ln λn

ln ln (1/an) .

A similar result is obtained for the Laplace-Stiltjes type integral I%(r) =
∞∫
0

a(x)E%(rx)dF (x).

Key words and phrases: relative growth, entire function, Mittag-Le�er function, regularly

converging series.
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Introduction

Let f(z) =
∞∑
k=0

fkz
k, g(z) =

∞∑
k=0

gkz
k be entire functions, Mf (r) = max{|f(z)| : |z| = r}

and Φf (r) = ln Mf (r). The study of growth of the function Φ−1f (ln Mg(r)) in terms of the

exponential type has begun in [1, 2] and was continued in [3]. As a result, it is proved that

if |fk−1/fk| ↗ +∞ as k →∞, then

lim
r→+∞

Φ−1f (ln Mg(r))

r
= lim

k→∞

(
|gk|
|fk|

)1/k

.

We remark that Φ−1f (x) = M−1
f (ex) and thus Φ−1f (ln Mg(r)) = M−1

f (Mg(r)). The order

%[g]f = lim
r→+∞

ln M−1
f (Mg(r))

ln r

and the lower order

λ[g]f = lim
r→+∞

ln M−1
f (Mg(r))

ln r
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of the function f with respect to the function g are used in [4]. Research of relative growth

of entire functions was continued by many mathematicians (see bibliography in [5]).

Let (λn) be a sequence of positive numbers increasing to +∞. Suppose that the series

F (z) =
∞∑
n=1

anf(λnz) by the system
(
f(λnz)

)
regularly convergent in C, i. e.

∞∑
n=1

|an|Mf (rλn) < +∞

for all r ∈ [0,+∞). Many authors have studied the representation of analytic functions by

series by the system
(
f(λnz)

)
and the growth of such functions. We will specify here only

the monographs of A. F. Leont'ev [6] and B. V. Vinnitskyi [3]. Recently M. M. Sheremeta

[7, 8] studied the growth of the function F with respect to the function f . In particular, for

the series by the system of Mittag-Le�er functions he proved the following statement.

Proposition 1. Let

E%(z) =
∞∑
k=0

zk

Γ(1 + k/%)
, 0 < % < +∞,

be the Mittag-Le�er function, and the series

F%(z) =
∞∑
n=1

anE%(λnz), 0 < % < +∞, (1)

regularly convergent in C. Suppose that lnn = O(λ%n) as n → ∞ and an ≥ 0 for all n ≥ 1.

If % > 1/2 and lnn = o(ln ln(1/an)) as n→∞, then

lim
r→+∞

ln E−1% (MF%(r))

ln r
= 1. (2)

In [8] it was conjectured that this statement is also true in the case when 0 < % ≤ 1/2.

Considering the general case 0 < % < +∞ by a slightly di�erent method here we obtain

results that generalize and supplement Proposition 1.

1 Main results

We need some results from the theory of entire Dirichlet series. Suppose that (µn) is an

increasing to +∞ sequence of non-negative numbers and

D(s) =
∞∑
n=1

an exp(sµn), s = σ + it, (3)

is an entire Dirichlet series. For σ < +∞ we put MD(σ) = sup{|D(σ + it)| : t ∈ R}. The

quantities

PR[D] := lim
σ→+∞

ln ln MD(σ)

ln σ
, pR[D] := lim

σ→+∞

ln ln MD(σ)

ln σ
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are called the logarithmic R-order and logarithmic lower R-order, respectively. We remark

that PR[D] ≥ pR[D] ≥ 1. If PR[D] = p > 1, then the quantities

TR[D] := lim
σ→+∞

ln MD(σ)

σp
, tR[D] := lim

σ→+∞

ln MD(σ)

σp

are called the logarithmic R-type and logarithmic lower R-type, respectively. Also, we put

KR[D] := lim
n→∞

ln µn

ln

(
1

µn
ln

1

|an|

) , kR[D] := lim
n→∞

ln µn

ln

(
1

µn
ln

1

|an|

)
and

QR[D] := lim
n→∞

µpn

(
ln

1

|an|

)1−p

, qR[D] := lim
n→∞

µpn

(
ln

1

|an|

)1−p

.

In [9] the following lemmas are proved.

Lemma 1. If lim
n→∞

ln ln n

ln µn
≤ 1, then PR[D] = KR[D] + 1. If, moreover,

ln |an| − ln |an+1|
µn+1 − µn

↗ +∞

and ln µn+1 ∼ ln µn as n→∞, then pR[D] = kR[D] + 1.

Lemma 2. If ln n = o
(
µ
p/(p−1)
n

)
as n→∞, then TR[D] = (p−1)p−1p−pQR[D]. If, moreover,

ln |an| − ln |an+1|
µn+1 − µn

↗ +∞

and µn+1 ∼ µn as n→∞, then tR[D] = (p− 1)p−1p−pqR[D].

Using Lemma 1, we prove the following theorem.

Theorem 1. Let 0 < % < +∞, lim
n→∞

ln ln n

ln λn
≤ %, an ≥ 0 for all n ≥ 1 and series (1) regularly

convergent in C.
If

γ := lim
n→∞

ln λn
ln ln (1/an)

<
1

%
, (4)

then

lim
r→+∞

ln E−1% (MF%(r))

ln r
=

1

1− γ%
. (5)

If
ln an − ln an+1

λ%n+1 − λ
%
n
↗ +∞, ln λn+1 ∼ ln λn as n→∞ and

γ := lim
n→∞

ln λn
ln ln (1/an)

<
1

%
, (6)

then

lim
r→+∞

ln E−1% (MF%(r))

ln r
=

1

1− γ%
. (7)
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Proof. It is well known [10, p. 115] that

MF%(r) = E%(r) = (1 + o(1))%er
%

, r → +∞. (8)

Therefore, E−1% (x) = (1 + o(1)) ln1/% x as x→ +∞ and

E−1% (MF%(r)) = (1 + o(1)) ln1/%

(
∞∑
n=1

ane
r%eλ

%
n

)
= (1 + o(1)) ln1/% D(σ), r → +∞, (9)

where σ = r% and µn = λ%n. Hence

ln E−1% (MF%(r))

ln r
=

(1 + o(1))

%

ln ln D(σ)

(ln σ)/%
= (1 + o(1))

ln ln D(σ)

ln σ
, σ → +∞ (10)

and thus by Lemma 1 in view of (4)

lim
r→+∞

ln E−1% (MF%(r))

ln r
= PR[D] = KR[D] + 1 = lim

n→∞

ln µn

ln

(
1

µn
ln

1

an

) + 1 =

= lim
n→∞

ln ln (1/an)

ln ln (1/an)− ln µn
=

1

1− lim
n→∞

ln µn
ln ln (1/an)

=
1

1− lim
n→∞

% ln λn
ln ln (1/an)

=
1

1− %γ
,

i. e. (5) holds. The �rst part of Theorem 1 is proved.

Now we remark that the conditions
ln an − ln an+1

λ%n+1 − λ
%
n

↗ +∞ and ln λn+1 ∼ ln λn as

n → ∞ imply the conditions
ln an − ln an+1

µn+1 − µn
↗ +∞ and ln µn+1 ∼ ln µn as n → ∞.

Therefore, by Lemma 1 from (10) in view of (6) as above we obtain

lim
r→+∞

ln E−1% (MF%(r))

ln r
= pR[D] = kR[D] + 1 =

1

1− lim
n→∞

% ln λn
ln ln (1/an)

=
1

1− %γ
,

i. e. (7) holds. The proof of Theorem 1 is complete.

Remark 1. Since PR[D] ≥ pR[D] ≥ 1 and the condition ln λn = o(ln ln (1/an)) as n → ∞
implies γ = 0, from Theorem 1 it follows that if lim

n→∞

ln ln n

ln λn
≤ %, an ≥ 0 for all n ≥ 1 and

ln λn = o(ln ln (1/an)) as n→∞, then (2) holds.

The growth of the function E−1% (MF%(r)) should be compared with the growth of the

function rp, where p = PR[D]. Using Lemma 2, we prove the following theorem.

Theorem 2. Let 0 < % < +∞, PR[D] = p > 1, Ap := (p − 1)p−1p−p, ln n = o(λ
%p/(p−1)
n ) as

n→∞, an ≥ 0 for all n ≥ 1 and series (1) regularly convergent in C. Then

lim
r→+∞

E−1% (MF%(r))

rp
= A1/%

p lim
n→∞

λpn

(
ln

1

an

)(1−p)/%

. (11)
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If, moreover,
ln an − ln an+1

λ%n+1 − λ
%
n
↗ +∞ and λn+1 ∼ λn as n→∞, then

lim
r→+∞

E−1% (MF%(r))

rp
= A1/%

p lim
n→∞

λpn

(
ln

1

an

)(1−p)/%

. (12)

Proof. In view of (9) we have

E−1% (MF%(r))

rp
= (1 + o(1))

ln1/% D(σ)

σp/%
= (1 + o(1))

(
ln D(σ)

σp

)1/%

, σ = r% → +∞.

Since µn = λ%n, hence by Lemma 2 we get

lim
r→+∞

E−1% (MF%(r))

rp
= TR[D]1/% =

(
Ap lim

n→∞
λ%pn

(
ln

1

|an|

)1−p
)1/%

,

i. e. (11) holds. The proof of (12) is similar.

2 Relative growth of Laplace-Stieltjes type integrals

Let V be the class of the function F which are nonnegative, nondecreasing, unbounded

and continuous on the right on [0,+∞). Suppose that 0 < % < +∞ and positive on [0,+∞)

function a is such that the Laplace-Stieltjes type integral

I%(r) =

∞∫
0

a(x)E%(rx)dF (x) (13)

exists for every r ∈ [0,+∞). As in [11, p. 21] we say that the function a has the regular

variation regard to F if there exists ξ ≥ 0, η ≥ 0 and h > 0 such that
∫ x+η
x−ξ a(t)dF (t) ≥ ha(x)

for all x ≥ ξ.

As in the proof of Theorem 1 we have

E−1% (I%(r)) = (1 + o(1)) ln1/%

 ∞∫
0

a(x)er
%x%dF (x)

 =

= (1 + o(1)) ln1/% I(σ), I(σ) =

∞∫
0

a1(x)exσdF1(x), (14)

where a1(x) = a(x1/%), F1(x) = F (x1/%) and σ = r% → +∞.

For the integral I(σ) in [11, p. 73] and [12] the following analogs of Lemmas 1 and 2 are

proved.

Lemma 3. If F1 ∈ V , lim
x→+∞

ln ln F1(x)

ln x
≤ 1 and a function a1 has the regular variation

regard to F1, then

PR[I] := lim
σ→+∞

ln ln I(σ)

ln σ
= lim

x→+∞

ln x

ln

(
1

x
ln

1

a1(x)

) + 1. (15)
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If, moreover, the function v(x) = −(ln a1(x))′ is continuous and increasing on [x0, +∞),

then

pR[I] := lim
σ→+∞

ln ln I(σ)

ln σ
= lim

x→+∞

ln x

ln

(
1

x
ln

1

a1(x)

) + 1.

Lemma 4. If F1 ∈ V , p > 1, ln F1(x) = o(xp/(p−1)) as x→ +∞ and a1 has regular variation

regard to F1, then

TR[I] := lim
σ→+∞

ln I(σ)

σp
= (p− 1)p−1p−p lim

x→+∞
xp
(

ln
1

a1(x)

)1−p

.

If, moreover, the function v(x) = −(ln a1(x))′ is continuous and increasing on [x0, +∞),

then

tR[I] := lim
σ→+∞

ln I(σ)

σp
= (p− 1)p−1p−p lim

x→+∞
xp
(

ln
1

a1(x)

)1−p

.

Using asymptotic equality (14) and Lemmas 3 and 4, we can prove the following two

theorems.

Theorem 3. If F ∈ V , 0 < % < +∞, lim
x→+∞

ln ln F (x)

ln x
≤ % and a function a has the regular

variation regard to F , then

lim
r→+∞

ln E−1% (I%(r))

ln r
=

1

1− γ%
, γ := lim

x→+∞

ln x

ln ln (1/a(x))
. (16)

If, moreover, the function v∗(x) = −(ln a(x))′

x%−1
is continuous and increasing on [x0, +∞),

then

lim
r→+∞

ln E−1% (I%(r))

ln r
=

1

1− γ%
, γ := lim

x→+∞

ln x

ln ln (1/a(x))
.

Theorem 4. If F ∈ V , p > 1, 0 < % < +∞, ln F (x) = o(x%p/(p−1)) as x → +∞ and a

function a has the regular variation regard to F , then

lim
r→+∞

E−1% (I%(r))

rp
= A1/%

p lim
x→+∞

xp
(

ln
1

a(x)

)(1−p)/%

.

If, moreover, the function v∗(x) = −(ln a(x))′

x%−1
is continuous and increasing on [x0, +∞),

then

lim
r→+∞

E−1% (I%(r))

rp
= A1/%

p lim
x→+∞

xp
(

ln
1

a(x)

)(1−p)/%

.

By analogy, we will stop only on the proof of equality (16). It is easy to verify that the

conditions of Theorem 4 imply the conditions of Lemma 3. Therefore, as in the proof of

Theorem 1, in view of (14) and (15) we get

lim
r→+∞

ln E−1% (I%(r))

ln r
= lim

σ→+∞

ln ln I(σ)

ln σ
=
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=
1

1− lim
x→+∞

ln x

ln ln
1

a1(x)

=
1

1− lim
x→+∞

ln x

ln ln
1

a(x1/%)

=
1

1− lim
x→+∞

% ln x

ln ln
1

a(x)

=
1

1− %γ
,

i. e. (16) holds.
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Äëÿ ðåãóëÿðíî çáiæíîãî â C ðÿäó

F%(z) =

∞∑
n=1

anE%(λnz),

äå 0 < % < +∞ i E%(z) =

∞∑
k=0

zk

Γ(1 + k/%)
� ôóíêöiÿ Ìiòòàã-Ëåôôëåðà, äîñëiäæåíî àñèìï-

òîòè÷íå ïîâîäæåííÿ ôóíêöi¨ E−1
% (MF%

(r)), äå Mf (r) = max{|f(z)| : |z| = r}. Äîâåäåíî,

íàïðèêëàä, ùî ÿêùî an ≥ 0 äëÿ âñiõ n ≥ 1 i

lim
n→∞

ln ln n

ln λn
≤ %,
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òî

lim
r→+∞

ln E−1
% (MF%(r))

ln r
=

1

1− γ%
,

äå

γ = lim
n→∞

ln λn
ln ln (1/an)

.

Ïîäiáíèé ðåçóëüòàò îòðèìàíî äëÿ iíòåãðàëó òèïó Ëàïëàñà-Ñòiëòü¹ñà

I%(r) =

∞∫
0

a(x)E%(rx)dF (x).

Êëþ÷îâi ñëîâà i ôðàçè: âiäíîñíå çðîñòàííÿ, öiëà ôóíêöiÿ, ôóíêöiÿ Ìiòòàã-Ëåôëåðà, ðå-

ãóëÿðíî çáiæíèé ðÿä.


