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ELEMENTARY REMARKS TO THE RELATIVE GROWTH OF SERIES BY
THE SYSTEM OF MITTAG-LEFFLER FUNCTIONS

118

For a regularly converging in C series F,(z) = anE,(Anz), where 0 < ¢ < +oo and

n=1

o0
Ey(z) = kzo F(%Z/Q) is the Mittag-Leffler function, it is investigated the asymptotic behavior

of the function E; ' (Mp,(r)), where My (r) = max{|f(z)| : |2] =7} 1For example, it is proved
In B, (Mg, ()

that if n@lﬁlliiﬂn < o and a, > 0 for all n > 1, then rHTJPoo — = 17%9, where

v n—oo InIn(1/an)

A similar result is obtained for the Laplace-Stiltjes type integral I,(r) = [ a(z)E,(rz)dF ().

0
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INTRODUCTION

Let f(2) = Y fiz", g(z) = >_ gx2" be entire functions, M(r) = max{|f(z)| : |z| = r}

k=0 k=0
and ®;(r) = In My(r). The study of growth of the function @;1(11& M,(r)) in terms of the
exponential type has begun in [1, 2| and was continued in [3]. As a result, it is proved that

if | fr—1/fi| /* +00 as k — oo, then

— (I My(r)) (g "
lim = lim [ = .
r——+00 r k—o0 |fk|
We remark that ®7'(x) = M;'(e*) and thus &' (In M (r)) = M; ' (M,(r)). The order
ololy = T M ()
! r—+00 ln T
and the lower order M
n T
ol — 1 M O(0)

r—+00 In r
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of the function f with respect to the function g are used in [4]. Research of relative growth
of entire functions was continued by many mathematicians (see bibliography in [5]).

Let (/\ ) be a sequence of positive numbers increasing to +oco. Suppose that the series
F(z) = Z an f(A,z) by the system (f()\nz)) regularly convergent in C, i. e.

n=1

> " lan|Ms(rA,) < 400

n=1

for all » € [0,4+00). Many authors have studied the representation of analytic functions by
series by the system ( f ()\nz)) and the growth of such functions. We will specify here only
the monographs of A. F. Leont’ev [6] and B. V. Vinnitskyi [3]. Recently M. M. Sheremeta
[7, 8] studied the growth of the function F' with respect to the function f. In particular, for
the series by the system of Mittag-Leffler functions he proved the following statement.

Proposition 1. Let

00 k

z
E :§ - 00
Q(Z) kzor<1+k/g)7 O<o<+eo,

be the Mittag-Leffler function, and the series
Zan (Anz), 0<p< o0, (1)
regularly convergent in C. Suppose that Inn = O(A\2) as n — oo and a,, > 0 for all n > 1.

If o>1/2 and Inn = o(Inln(1/a,)) as n — oo, then

In E-1(M
i e Mr(r) ) 2)
r—+00 In r

In [8] it was conjectured that this statement is also true in the case when 0 < o < 1/2.
Considering the general case 0 < p < 400 by a slightly different method here we obtain
results that generalize and supplement Proposition 1.

1 MAIN RESULTS

We need some results from the theory of entire Dirichlet series. Suppose that (i) is an
increasing to 400 sequence of non-negative numbers and

o0

Z an, exp(spy,), §= o +it, (3)

n=1

is an entire Dirichlet series. For o < +o00 we put Mp(o) = sup{|D(c +it)| : t € R}. The

quantities
WM In ln M
PolD] = T BMo(0) gy I Mb(o)

o—+00 In o 100 In o
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are called the logarithmic R-order and logarithmic lower R-order, respectively. We remark
that Pg[D] > pr[D] > 1. If Pg[D] = p > 1, then the quantities

Tr[D] := lim M, tp[D] == lim In Mp(o)

o—r+00 oP o—+00 oP

are called the logarithmic R-type and logarithmic lower R-type, respectively. Also, we put

— In g, In g,
Kg[D] := lim e ,  kg[D]:= lim e
n—00 1 1 0o 1 1
In [ —In — In [ —In —
,un ’an’ :U’TL |a7l|
and
o 1 1-p 1 1-p
Qr[D] == lim p? (ln —) . qr|D]:= lim p? (ln —) :
n—0oo |an| n—00 ‘an|

In [9] the following lemmas are proved.

—Inl
Lemma 1. If lim nn
n—oo n l,[,n

< 1, then Pg[D] = Kg[D] + 1. If, moreover,

In |a,| —1n |ap41]
Hn+1 — Hn

 +00
and In pi,41 ~In p, as n — oo, then pr[D] = kg[D] + 1.
Lemma 2. Ifln n =0 <uﬁ/(p_1)) asn — oo, then T[D] = (p—1)P"'p~PQg[D]. If, moreover,

In |a,| —In |ap41]
Hn+1 — Hn

400

and fip 41 ~ f, asn — 0o, then tr[D] = (p — 1)?~'p~Pqg[D].

Using Lemma 1, we prove the following theorem.

— Inl
Theorem 1. Let 0 < o < +00, lim Ill 1)1\71 < 0, a, >0 foralln > 1 and series (1) regularly
n—oo 1IN A,
convergent in C.
: In A 1
[ n n
oo T A L .
T e In(1/a,) < o’ (4)
then ety
_— In B r 1
hm Q ( Fg( )) _ . (5)
r—+o0 In r 1—7o
na, —In a,
It 1_an“ /400, In Ay ~In A, asn — oo and
n-+ n
In A 1
= 1 S L < — 6
T e M (a0 (6)
then

~In Eg_l(MFQ('r’)) 1
lim =

. In r C1—70
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Proof. Tt is well known [10, p. 115] that
Mp,(r) = Ey(r) = (1 + 0(1))@67"9, r — 4o00. (8)

Therefore, E,'(z) = (1 + 0(1))In"/? z as z — +oo and

o0

E; N (Mp,(r)) = (1+o0(1)) In'/ (Z anerg&%) = (1+o0(1)In"¢ D(o), r— +o0, (9)

n=1

where o = r? and p, = A\2. Hence

In E; (Mg, (r)) (14 0(1))In In D(o) In In D(o)
2 : = =(1 1) ———~ 1
R ST o) 2 s (10
and thus by Lemma 1 in view of (4)
— In E;Y (M S
i 2P Wal)) _ poip) - kD) 41 = -
r—+400 In r n—00 n i n i
[ G
o InIn(1/a,) B 1 B 1 1
n%mlnln(l/an)—lnun_l_m In g, _1_m oln N\, 11—y
n—oo In In (1/ay,) n—oo In In (1/ay,)

i. e. (5) holds. The first part of Theorem 1 is proved.
na, —Ina,

0 0
)\n—i—l - )\”
In a, —In a,4+1

Now we remark that the conditions " 4oo and In A,y 1 ~ In )\, as

' +oo and In pyyq ~ In oy, as n — oo.

n — oo imply the conditions

Hn+1 — Hn
Therefore, by Lemma 1 from (10) in view of (6) as above we obtain
In ESY (Mg, (r 1 1
li_m o ( FQ( )):pR[D]:kR[D]+1: _ :
oo In r . oln A, l—oy
1—lm ——— -+
n—oo In In (1/ay,)
i. e. (7) holds. The proof of Theorem 1 is complete. O

Remark 1. Since Pg[D] > pr[D] > 1 and the condition In A, = o(ln In (1/a,)) as n — oo
nlnn
<o, a, >0 foralln>1 and

implies 7 = 0, from Theorem 1 it follows that if lim
n—oo 11l

In A\, =o(In In(1/a,)) as n — oo, then (2) holds.

n

The growth of the function E,'(Mp,(r)) should be compared with the growth of the
function r?, where p = Pg[D]. Using Lemma 2, we prove the following theorem.

Theorem 2. Let 0 < o < 400, Pr[D]=p>1, A, :=(p—1)P"'p?, Inn = o(AZ/ P71 ag

n — 00, a, > 0 for all n > 1 and series (1) regularly convergent in C. Then

B YM o 1\ U-p/e
e Mr() _ Al/e Tim AP (m —> . (11)

r—+o00 TP n—00 Qp,
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In a, —In a,q

If, moreover, 400 and A\, y1 ~ A\, as n — oo, then

Afz—i—l — AR
E-Y M=~ (r 1\ U-p/e
lim M _ A}O/Q lim \? (ln _) . (12)
r—>+00 rP n— 00 Qn,

Proof. In view of (9) we have

In'/¢ D(0)

B M) oy (B2

oPb

/e
rp O'p/g ) ’ 0= ¢ — +00.

Since p,, = A2, hence by Lemma 2 we get

BN (M . 1\ Ve
lim M — TR[D]l/Q — <Ap lim A2 (ln L) ) ’

r—+00 rP n—o0 |an|

i. e. (11) holds. The proof of (12) is similar. O

2 RELATIVE GROWTH OF LAPLACE-STIELTJES TYPE INTEGRALS

Let V' be the class of the function F' which are nonnegative, nondecreasing, unbounded
and continuous on the right on [0, +00). Suppose that 0 < ¢ < 400 and positive on [0, +00)
function a is such that the Laplace-Stieltjes type integral

L) = [ a0)E,(ra)aF ) (13)
0
exists for every r € [0,4+00). As in [11, p. 21] we say that the function a has the regular
variation regard to F if there exists £ > 0,7 > 0 and h > 0 such that f;_zn a(t)dF(t) > ha(x)
for all x > €.
As in the proof of Theorem 1 we have

e

E-N (L) = (14 o(1)) In'/e / a(z)e = dF(z) | =

= (1+o(1)In'e I(0), I(o)= /al(x)ewdFl(x), (14)
0
where a;(z) = a(z'/?), Fi(z) = F(2'/?) and o = r? — +o0.
For the integral /(o) in [11, p. 73] and [12] the following analogs of Lemmas 1 and 2 are
proved.

Lemma 3. If F; € V, lim M

< 1 and a function a; has the regular variation
T—+00 In z

regard to Fi, then

Poll] = T inllo) g I @ 41 (15)

o—=+oo  Ino 400 1 1
In [ —In
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If, moreover, the function v(z) = —(In ay(z))’ is continuous and increasing on [xg, +00),
then I 1n T |
pell] = lim —— % @) _ lim = + 1.
o—+00 In o T—4-00 1 1
In ( —In
r  ay(z)

Lemma 4. If F, € V,p>1,1In F(2) = o(z?/"Y) as x — 400 and a, has regular variation
regard to Fi, then

T In I(U) _ p—1,_-p 5,y P 1 o
Tell] = Hm —2==@— 17 p I a?{In2rs ]
If, moreover, the function v(x) = —(In ay(z))’ is continuous and increasing on [xg, +00),
then -
. InI(0) IR ( 1 ) B
tr|l| := lim =(p—1""'p? lim 2 (In .
R[ ] o too oP (p ) b T—+o00 al(x)

Using asymptotic equality (14) and Lemmas 3 and 4, we can prove the following two
theorems.

— Inln F
Theorem 3. If F e V,0 < o < 400, MT M < 0 and a function a has the regular
T——+00 nTx

variation regard to F', then

— In E;YI,(r 1 — 1
m B (Blr) 1 Fi= fm — " (16)
r—-+00 Inr 1—7p0 z—+o0 In In (1/a(x))
1 /
If, moreover, the function v*(z) = —(HZ# is continuous and increasing on [xg, +00),
x
then
’ In E; 1 (1,(r)) 1 5 In x
im = = lim ————.
oo In r 1 -0’ 1 soto0 In In (1/a(x))

Theorem 4. If F € V, p > 1,0 < o < +o0, In F(z) = o(z?/®?Y) as x — +o0 and a
function a has the regular variation regard to F', then

_ E7Y(I(r _ 1 (1-p)/e
lim M = AYe Tim P (In — .

r—-+00 rp P ozt a(g})

1 /
If, moreover, the function v*(x) = —(HZ# is continuous and increasing on [rg, +00),
x
then ) Y

E(1,(r 1 e
lim M :All,/g lim 2P <ln —> )

r—+00 rP T—+00 CL(JZ)

By analogy, we will stop only on the proof of equality (16). It is easy to verify that the
conditions of Theorem 4 imply the conditions of Lemma 3. Therefore, as in the proof of
Theorem 1, in view of (14) and (15) we get

— In E;1(I,(r)) T In In I(0)

lm —————~ = lim —~% =
r—+00 Inr oo+ Ino
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B 1 B 1 B 1 B 1
n _— 1 o - 1 o _ 1 -7 _ =
- Tm % Ey gy emr -y
r——+00 1 T—r+00 ]. T—>—+00 ].
In In Inln —— In In
ai(z) a(z'/e) a(z)
. (16) holds.
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s peryssipuo 36ixkuoro B C psamy

Fo(z) = Z anEo(Anz),

oo k
Te 0 < o< 400l Ey(z) = Z m — dyukia Mitrar-Jledpdnepa, mocaimkeno acuMmii-
k=0

TOTUYHE TTOBOJIZKEHHSI (byHKILiI E; Y (MFp,(r)), ne My(r) = max{|f(z)| : |z| = r}. Hosexeno,
HAIIPUKJIAJL, M0 KO a, > 0 ains Beix n > 11

— Inlnn
im
n—oo In A,

=0
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TO .
Tim In EQ_ (MFQ (’I")) _ 1
r—+00 Inr 1—7o’

ze
— In A\,

T In(1/a,)

[Moxibuuit pesyiaprar orpuMano s inrerpaiy tuiy Jlamraca-Crinrbeca
o0
I(r) = /a(:ﬂ)EQ(rm)dF(x).
0

Karowosi crosa i dpasu: BimHOCHE 3pocranns, mina ¢GyHkiia, dyukmia Mirrar-JIedaepa, pe-
TYJIAPHO 3012KHUM P,



