Mulyava O. M

ELEMENTARY REMARKS TO THE RELATIVE GROWTH OF SERIES BY THE SYSTEM OF MITTAG-LEFFLER FUNCTIONS

For a regularly converging in \mathbb{C} series $F_{\varrho}(z)=\sum_{n=1}^{\infty} a_{n} E_{\varrho}\left(\lambda_{n} z\right)$, where $0<\varrho<+\infty$ and $E_{\varrho}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(1+k / \varrho)}$ is the Mittag-Leffler function, it is investigated the asymptotic behavior of the function $E_{\varrho}^{-1}\left(M_{F_{\varrho}}(r)\right)$, where $M_{f}(r)=\max \{|f(z)|:|z|=r\}$. For example, it is proved that if $\varlimsup_{n \rightarrow \infty} \frac{\ln \ln n}{\ln \lambda_{n}} \leq \varrho$ and $a_{n} \geq 0$ for all $n \geq 1$, then $\varlimsup_{r \rightarrow+\infty} \frac{\ln E_{\varrho}^{-1}\left(M_{F_{\varrho}}(r)\right)}{\ln r}=\frac{1}{1-\bar{\gamma} \varrho}$, where $\bar{\gamma}=\varlimsup_{n \rightarrow \infty} \frac{\ln \lambda_{n}}{\ln \ln \left(1 / a_{n}\right)}$.

A similar result is obtained for the Laplace-Stiltjes type integral $I_{\varrho}(r)=\int_{0}^{\infty} a(x) E_{\varrho}(r x) d F(x)$.
Key words and phrases: relative growth, entire function, Mittag-Leffler function, regularly converging series.

Kyiv National University of Food Technologies, Kyiv, Ukraine
e-mail: oksana.m@bigmir.net

Introduction

Let $f(z)=\sum_{k=0}^{\infty} f_{k} z^{k}, g(z)=\sum_{k=0}^{\infty} g_{k} z^{k}$ be entire functions, $M_{f}(r)=\max \{|f(z)|:|z|=r\}$ and $\Phi_{f}(r)=\ln M_{f}(r)$. The study of growth of the function $\Phi_{f}^{-1}\left(\ln M_{g}(r)\right)$ in terms of the exponential type has begun in [1, 2] and was continued in [3]. As a result, it is proved that if $\left|f_{k-1} / f_{k}\right| \nearrow+\infty$ as $k \rightarrow \infty$, then

$$
\varlimsup_{r \rightarrow+\infty} \frac{\Phi_{f}^{-1}\left(\ln M_{g}(r)\right)}{r}=\varlimsup_{k \rightarrow \infty}\left(\frac{\left|g_{k}\right|}{\left|f_{k}\right|}\right)^{1 / k} .
$$

We remark that $\Phi_{f}^{-1}(x)=M_{f}^{-1}\left(e^{x}\right)$ and thus $\Phi_{f}^{-1}\left(\ln M_{g}(r)\right)=M_{f}^{-1}\left(M_{g}(r)\right)$. The order

$$
\varrho[g]_{f}=\varlimsup_{r \rightarrow+\infty} \frac{\ln M_{f}^{-1}\left(M_{g}(r)\right)}{\ln r}
$$

and the lower order

$$
\lambda[g]_{f}=\lim _{r \rightarrow+\infty} \frac{\ln M_{f}^{-1}\left(M_{g}(r)\right)}{\ln r}
$$

of the function f with respect to the function g are used in [4]. Research of relative growth of entire functions was continued by many mathematicians (see bibliography in [5]).

Let $\left(\lambda_{n}\right)$ be a sequence of positive numbers increasing to $+\infty$. Suppose that the series $F(z)=\sum_{n=1}^{\infty} a_{n} f\left(\lambda_{n} z\right)$ by the system $\left(f\left(\lambda_{n} z\right)\right)$ regularly convergent in \mathbb{C}, i. e.

$$
\sum_{n=1}^{\infty}\left|a_{n}\right| M_{f}\left(r \lambda_{n}\right)<+\infty
$$

for all $r \in[0,+\infty)$. Many authors have studied the representation of analytic functions by series by the system $\left(f\left(\lambda_{n} z\right)\right)$ and the growth of such functions. We will specify here only the monographs of A. F. Leont'ev [6] and B. V. Vinnitskyi [3]. Recently M. M. Sheremeta $[7,8]$ studied the growth of the function F with respect to the function f. In particular, for the series by the system of Mittag-Leffler functions he proved the following statement.

Proposition 1. Let

$$
E_{\varrho}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(1+k / \varrho)}, \quad 0<\varrho<+\infty
$$

be the Mittag-Leffler function, and the series

$$
\begin{equation*}
F_{\varrho}(z)=\sum_{n=1}^{\infty} a_{n} E_{\varrho}\left(\lambda_{n} z\right), \quad 0<\varrho<+\infty, \tag{1}
\end{equation*}
$$

regularly convergent in \mathbb{C}. Suppose that $\ln n=O\left(\lambda_{n}^{o}\right)$ as $n \rightarrow \infty$ and $a_{n} \geq 0$ for all $n \geq 1$. If $\varrho>1 / 2$ and $\ln n=o\left(\ln \ln \left(1 / a_{n}\right)\right)$ as $n \rightarrow \infty$, then

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\ln E_{\varrho}^{-1}\left(M_{F_{e}}(r)\right)}{\ln r}=1 \tag{2}
\end{equation*}
$$

In [8] it was conjectured that this statement is also true in the case when $0<\varrho \leq 1 / 2$.
Considering the general case $0<\varrho<+\infty$ by a slightly different method here we obtain results that generalize and supplement Proposition 1.

1 Main Results

We need some results from the theory of entire Dirichlet series. Suppose that $\left(\mu_{n}\right)$ is an increasing to $+\infty$ sequence of non-negative numbers and

$$
\begin{equation*}
D(s)=\sum_{n=1}^{\infty} a_{n} \exp \left(s \mu_{n}\right), \quad s=\sigma+i t \tag{3}
\end{equation*}
$$

is an entire Dirichlet series. For $\sigma<+\infty$ we put $M_{D}(\sigma)=\sup \{|D(\sigma+i t)|: t \in \mathbb{R}\}$. The quantities

$$
P_{R}[D]:=\varlimsup_{\sigma \rightarrow+\infty} \frac{\ln \ln M_{D}(\sigma)}{\ln \sigma}, \quad p_{R}[D]:=\lim _{\sigma \rightarrow+\infty} \frac{\ln \ln M_{D}(\sigma)}{\ln \sigma}
$$

are called the logarithmic R-order and logarithmic lower R-order, respectively. We remark that $P_{R}[D] \geq p_{R}[D] \geq 1$. If $P_{R}[D]=p>1$, then the quantities

$$
T_{R}[D]:=\varlimsup_{\sigma \rightarrow+\infty} \frac{\ln M_{D}(\sigma)}{\sigma^{p}}, \quad t_{R}[D]:=\lim _{\sigma \rightarrow+\infty} \frac{\ln M_{D}(\sigma)}{\sigma^{p}}
$$

are called the logarithmic R-type and logarithmic lower R-type, respectively. Also, we put

$$
K_{R}[D]:=\varlimsup_{n \rightarrow \infty} \frac{\ln \mu_{n}}{\ln \left(\frac{1}{\mu_{n}} \ln \frac{1}{\left|a_{n}\right|}\right)}, \quad k_{R}[D]:=\varliminf_{n \rightarrow \infty} \frac{\ln \mu_{n}}{\ln \left(\frac{1}{\mu_{n}} \ln \frac{1}{\left|a_{n}\right|}\right)}
$$

and

$$
Q_{R}[D]:=\varlimsup_{n \rightarrow \infty} \mu_{n}^{p}\left(\ln \frac{1}{\left|a_{n}\right|}\right)^{1-p}, \quad q_{R}[D]:=\varliminf_{n \rightarrow \infty} \mu_{n}^{p}\left(\ln \frac{1}{\left|a_{n}\right|}\right)^{1-p} .
$$

In [9] the following lemmas are proved.
Lemma 1. If $\varlimsup_{n \rightarrow \infty} \frac{\ln \ln n}{\ln \mu_{n}} \leq 1$, then $P_{R}[D]=K_{R}[D]+1$. If, moreover,

$$
\frac{\ln \left|a_{n}\right|-\ln \left|a_{n+1}\right|}{\mu_{n+1}-\mu_{n}} \nearrow+\infty
$$

and $\ln \mu_{n+1} \sim \ln \mu_{n}$ as $n \rightarrow \infty$, then $p_{R}[D]=k_{R}[D]+1$.
Lemma 2. If $\ln n=o\left(\mu_{n}^{p /(p-1)}\right)$ as $n \rightarrow \infty$, then $T_{R}[D]=(p-1)^{p-1} p^{-p} Q_{R}[D]$. If, moreover,

$$
\frac{\ln \left|a_{n}\right|-\ln \left|a_{n+1}\right|}{\mu_{n+1}-\mu_{n}} \nearrow+\infty
$$

and $\mu_{n+1} \sim \mu_{n}$ as $n \rightarrow \infty$, then $t_{R}[D]=(p-1)^{p-1} p^{-p} q_{R}[D]$.
Using Lemma 1, we prove the following theorem.
Theorem 1. Let $0<\varrho<+\infty, \varlimsup_{n \rightarrow \infty} \frac{\ln \ln n}{\ln \lambda_{n}} \leq \varrho, a_{n} \geq 0$ for all $n \geq 1$ and series (1) regularly convergent in \mathbb{C}.

If

$$
\begin{equation*}
\bar{\gamma}:=\varlimsup_{n \rightarrow \infty} \frac{\ln \lambda_{n}}{\ln \ln \left(1 / a_{n}\right)}<\frac{1}{\varrho}, \tag{4}
\end{equation*}
$$

then

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\ln E_{\varrho}^{-1}\left(M_{F_{\varrho}}(r)\right)}{\ln r}=\frac{1}{1-\bar{\gamma} \varrho} . \tag{5}
\end{equation*}
$$

If $\frac{\ln a_{n}-\ln a_{n+1}}{\lambda_{n+1}^{\varrho}-\lambda_{n}^{\varrho}} \nearrow+\infty, \ln \lambda_{n+1} \sim \ln \lambda_{n}$ as $n \rightarrow \infty$ and

$$
\begin{equation*}
\underline{\gamma}:=\underline{\lim }_{n \rightarrow \infty} \frac{\ln \lambda_{n}}{\ln \ln \left(1 / a_{n}\right)}<\frac{1}{\varrho}, \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{r \rightarrow+\infty} \frac{\ln E_{\varrho}^{-1}\left(M_{F_{\varrho}}(r)\right)}{\ln r}=\frac{1}{1-\underline{\gamma} \varrho} . \tag{7}
\end{equation*}
$$

Proof. It is well known [10, p. 115] that

$$
\begin{equation*}
M_{F_{\varrho}}(r)=E_{\varrho}(r)=(1+o(1)) \varrho e^{r^{\varrho}}, \quad r \rightarrow+\infty . \tag{8}
\end{equation*}
$$

Therefore, $E_{\varrho}^{-1}(x)=(1+o(1)) \ln ^{1 / \varrho} x$ as $x \rightarrow+\infty$ and

$$
\begin{equation*}
E_{\varrho}^{-1}\left(M_{F_{\varrho}}(r)\right)=(1+o(1)) \ln ^{1 / \varrho}\left(\sum_{n=1}^{\infty} a_{n} e^{r e} e^{\lambda_{n}^{\varrho}}\right)=(1+o(1)) \ln ^{1 / \varrho} D(\sigma), \quad r \rightarrow+\infty \tag{9}
\end{equation*}
$$

where $\sigma=r^{\varrho}$ and $\mu_{n}=\lambda_{n}^{\varrho}$. Hence

$$
\begin{equation*}
\frac{\ln E_{\varrho}^{-1}\left(M_{F_{\varrho}}(r)\right)}{\ln r}=\frac{(1+o(1))}{\varrho} \frac{\ln \ln D(\sigma)}{(\ln \sigma) / \varrho}=(1+o(1)) \frac{\ln \ln D(\sigma)}{\ln \sigma}, \quad \sigma \rightarrow+\infty \tag{10}
\end{equation*}
$$

and thus by Lemma 1 in view of (4)

$$
\begin{aligned}
& \varlimsup_{r \rightarrow+\infty} \frac{\ln E_{\varrho}^{-1}\left(M_{F_{e}}(r)\right)}{\ln r}=P_{R}[D]=K_{R}[D]+1=\varlimsup_{n \rightarrow \infty} \frac{\ln \mu_{n}}{\ln \left(\frac{1}{\mu_{n}} \ln \frac{1}{a_{n}}\right)}+1= \\
= & \varlimsup_{n \rightarrow \infty} \frac{\ln \ln \left(1 / a_{n}\right)}{\ln \ln \left(1 / a_{n}\right)-\ln \mu_{n}}=\frac{1}{1-\varlimsup_{n \rightarrow \infty} \frac{\ln \mu_{n}}{\ln \ln \left(1 / a_{n}\right)}}=\frac{1}{1-\varlimsup_{n \rightarrow \infty} \frac{\varrho \ln \lambda_{n}}{\ln \ln \left(1 / a_{n}\right)}}=\frac{1}{1-\varrho \bar{\gamma}},
\end{aligned}
$$

i. e. (5) holds. The first part of Theorem 1 is proved.

Now we remark that the conditions $\frac{\ln a_{n}-\ln a_{n+1}}{\lambda_{n+1}^{\varrho}-\lambda_{n}^{\varrho}} \nearrow+\infty$ and $\ln \lambda_{n+1} \sim \ln \lambda_{n}$ as $n \rightarrow \infty$ imply the conditions $\frac{\ln a_{n}-\ln a_{n+1}}{\mu_{n+1}-\mu_{n}} \nearrow+\infty$ and $\ln \mu_{n+1} \sim \ln \mu_{n}$ as $n \rightarrow \infty$. Therefore, by Lemma 1 from (10) in view of (6) as above we obtain

$$
\lim _{r \rightarrow+\infty} \frac{\ln E_{\varrho}^{-1}\left(M_{F_{\varrho}}(r)\right)}{\ln r}=p_{R}[D]=k_{R}[D]+1=\frac{1}{1-\varliminf_{n \rightarrow \infty} \frac{\varrho \ln \lambda_{n}}{\ln \ln \left(1 / a_{n}\right)}}=\frac{1}{1-\varrho \underline{\gamma}},
$$

i. e. (7) holds. The proof of Theorem 1 is complete.

Remark 1. Since $P_{R}[D] \geq p_{R}[D] \geq 1$ and the condition $\ln \lambda_{n}=o\left(\ln \ln \left(1 / a_{n}\right)\right)$ as $n \rightarrow \infty$ implies $\bar{\gamma}=0$, from Theorem 1 it follows that if $\varlimsup_{n \rightarrow \infty} \frac{\ln \ln n}{\ln \lambda_{n}} \leq \varrho, a_{n} \geq 0$ for all $n \geq 1$ and $\ln \lambda_{n}=o\left(\ln \ln \left(1 / a_{n}\right)\right)$ as $n \rightarrow \infty$, then (2) holds.

The growth of the function $E_{\varrho}^{-1}\left(M_{F_{\varrho}}(r)\right)$ should be compared with the growth of the function r^{p}, where $p=P_{R}[D]$. Using Lemma 2, we prove the following theorem.

Theorem 2. Let $0<\varrho<+\infty, P_{R}[D]=p>1, A_{p}:=(p-1)^{p-1} p^{-p}, \ln n=o\left(\lambda_{n}^{\varrho p /(p-1)}\right)$ as $n \rightarrow \infty, a_{n} \geq 0$ for all $n \geq 1$ and series (1) regularly convergent in \mathbb{C}. Then

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{E_{\varrho}^{-1}\left(M_{F_{\varrho}}(r)\right)}{r^{p}}=A_{p}^{1 / \varrho} \varlimsup_{n \rightarrow \infty} \lambda_{n}^{p}\left(\ln \frac{1}{a_{n}}\right)^{(1-p) / \varrho} \tag{11}
\end{equation*}
$$

If, moreover, $\frac{\ln a_{n}-\ln a_{n+1}}{\lambda_{n+1}^{\varrho}-\lambda_{n}^{\varrho}} \nearrow+\infty$ and $\lambda_{n+1} \sim \lambda_{n}$ as $n \rightarrow \infty$, then

$$
\begin{equation*}
\varliminf_{r \rightarrow+\infty} \frac{E_{\varrho}^{-1}\left(M_{F_{\varrho}}(r)\right)}{r^{p}}=A_{p}^{1 / \varrho} \underline{\lim }_{n \rightarrow \infty} \lambda_{n}^{p}\left(\ln \frac{1}{a_{n}}\right)^{(1-p) / \varrho} \tag{12}
\end{equation*}
$$

Proof. In view of (9) we have

$$
\frac{E_{\varrho}^{-1}\left(M_{F_{\varrho}}(r)\right)}{r^{p}}=(1+o(1)) \frac{\ln ^{1 / \varrho} D(\sigma)}{\sigma^{p / \varrho}}=(1+o(1))\left(\frac{\ln D(\sigma)}{\sigma^{p}}\right)^{1 / \varrho}, \quad \sigma=r^{\varrho} \rightarrow+\infty
$$

Since $\mu_{n}=\lambda_{n}^{\varrho}$, hence by Lemma 2 we get

$$
\varliminf_{r \rightarrow+\infty} \frac{E_{\varrho}^{-1}\left(M_{F_{\varrho}}(r)\right)}{r^{p}}=T_{R}[D]^{1 / \varrho}=\left(A_{p} \varlimsup_{n \rightarrow \infty} \lambda_{n}^{\varrho p}\left(\ln \frac{1}{\left|a_{n}\right|}\right)^{1-p}\right)^{1 / \varrho}
$$

i. e. (11) holds. The proof of (12) is similar.

2 Relative growth of Laplace-Stieltjes Type integrals

Let V be the class of the function F which are nonnegative, nondecreasing, unbounded and continuous on the right on $[0,+\infty)$. Suppose that $0<\varrho<+\infty$ and positive on $[0,+\infty)$ function a is such that the Laplace-Stieltjes type integral

$$
\begin{equation*}
I_{\varrho}(r)=\int_{0}^{\infty} a(x) E_{\varrho}(r x) d F(x) \tag{13}
\end{equation*}
$$

exists for every $r \in[0,+\infty)$. As in $[11$, p. 21] we say that the function a has the regular variation regard to F if there exists $\xi \geq 0, \eta \geq 0$ and $h>0$ such that $\int_{x-\xi}^{x+\eta} a(t) d F(t) \geq h a(x)$ for all $x \geq \xi$.

As in the proof of Theorem 1 we have

$$
\begin{align*}
& E_{\varrho}^{-1}\left(I_{\varrho}(r)\right)=(1+o(1)) \ln ^{1 / \varrho}\left(\int_{0}^{\infty} a(x) e^{r^{\varrho} x^{\varrho}} d F(x)\right)= \\
& =(1+o(1)) \ln ^{1 / \varrho} I(\sigma), \quad I(\sigma)=\int_{0}^{\infty} a_{1}(x) e^{x \sigma} d F_{1}(x) \tag{14}
\end{align*}
$$

where $a_{1}(x)=a\left(x^{1 / \varrho}\right), F_{1}(x)=F\left(x^{1 / \varrho}\right)$ and $\sigma=r^{\varrho} \rightarrow+\infty$.
For the integral $I(\sigma)$ in [11, p. 73] and [12] the following analogs of Lemmas 1 and 2 are proved.

Lemma 3. If $F_{1} \in V, \varlimsup_{x \rightarrow+\infty} \frac{\ln \ln F_{1}(x)}{\ln x} \leq 1$ and a function a_{1} has the regular variation regard to F_{1}, then

$$
\begin{equation*}
P_{R}[I]:=\varlimsup_{\sigma \rightarrow+\infty} \frac{\ln \ln I(\sigma)}{\ln \sigma}=\varlimsup_{x \rightarrow+\infty} \frac{\ln x}{\ln \left(\frac{1}{x} \ln \frac{1}{a_{1}(x)}\right)}+1 \tag{15}
\end{equation*}
$$

If, moreover, the function $v(x)=-\left(\ln a_{1}(x)\right)^{\prime}$ is continuous and increasing on $\left[x_{0},+\infty\right)$, then

$$
p_{R}[I]:=\varliminf_{\sigma \rightarrow+\infty} \frac{\ln \ln I(\sigma)}{\ln \sigma}=\lim _{x \rightarrow+\infty} \frac{\ln x}{\ln \left(\frac{1}{x} \ln \frac{1}{a_{1}(x)}\right)}+1 .
$$

Lemma 4. If $F_{1} \in V, p>1$, $\ln F_{1}(x)=o\left(x^{p /(p-1)}\right)$ as $x \rightarrow+\infty$ and a_{1} has regular variation regard to F_{1}, then

$$
T_{R}[I]:=\varlimsup_{\sigma \rightarrow+\infty} \frac{\ln I(\sigma)}{\sigma^{p}}=(p-1)^{p-1} p^{-p} \varlimsup_{x \rightarrow+\infty} x^{p}\left(\ln \frac{1}{a_{1}(x)}\right)^{1-p} .
$$

If, moreover, the function $v(x)=-\left(\ln a_{1}(x)\right)^{\prime}$ is continuous and increasing on $\left[x_{0},+\infty\right)$, then

$$
t_{R}[I]:=\varliminf_{\sigma \rightarrow+\infty} \frac{\ln I(\sigma)}{\sigma^{p}}=(p-1)^{p-1} p^{-p} \underline{\lim }_{x \rightarrow+\infty} x^{p}\left(\ln \frac{1}{a_{1}(x)}\right)^{1-p} .
$$

Using asymptotic equality (14) and Lemmas 3 and 4, we can prove the following two theorems.

Theorem 3. If $F \in V, 0<\varrho<+\infty, \varlimsup_{x \rightarrow+\infty} \frac{\ln \ln F(x)}{\ln x} \leq \varrho$ and a function a has the regular variation regard to F, then

$$
\begin{equation*}
\varlimsup_{r \rightarrow+\infty} \frac{\ln E_{\varrho}^{-1}\left(I_{\varrho}(r)\right)}{\ln r}=\frac{1}{1-\bar{\gamma} \varrho}, \quad \bar{\gamma}:=\varlimsup_{x \rightarrow+\infty} \frac{\ln x}{\ln \ln (1 / a(x))} . \tag{16}
\end{equation*}
$$

If, moreover, the function $v^{*}(x)=-\frac{(\ln a(x))^{\prime}}{x^{\varrho-1}}$ is continuous and increasing on $\left[x_{0},+\infty\right)$, then

$$
\lim _{r \rightarrow+\infty} \frac{\ln E_{\varrho}^{-1}\left(I_{\varrho}(r)\right)}{\ln r}=\frac{1}{1-\underline{\gamma} \varrho}, \quad \underline{\gamma}:=\lim _{x \rightarrow+\infty} \frac{\ln x}{\ln \ln (1 / a(x))} .
$$

Theorem 4. If $F \in V, p>1,0<\varrho<+\infty, \ln F(x)=o\left(x^{\varrho p /(p-1)}\right)$ as $x \rightarrow+\infty$ and a function a has the regular variation regard to F, then

$$
\varlimsup_{r \rightarrow+\infty} \frac{E_{\varrho}^{-1}\left(I_{\varrho}(r)\right)}{r^{p}}=A_{p}^{1 / \varrho} \varlimsup_{x \rightarrow+\infty} x^{p}\left(\ln \frac{1}{a(x)}\right)^{(1-p) / \varrho}
$$

If, moreover, the function $v^{*}(x)=-\frac{(\ln a(x))^{\prime}}{x^{\varrho-1}}$ is continuous and increasing on $\left[x_{0},+\infty\right)$, then

$$
\varliminf_{r \rightarrow+\infty} \frac{E_{\varrho}^{-1}\left(I_{\varrho}(r)\right)}{r^{p}}=A_{p}^{1 / \varrho} \varliminf_{x \rightarrow+\infty} x^{p}\left(\ln \frac{1}{a(x)}\right)^{(1-p) / \varrho} .
$$

By analogy, we will stop only on the proof of equality (16). It is easy to verify that the conditions of Theorem 4 imply the conditions of Lemma 3. Therefore, as in the proof of Theorem 1, in view of (14) and (15) we get

$$
\varlimsup_{r \rightarrow+\infty} \frac{\ln E_{\varrho}^{-1}\left(I_{\varrho}(r)\right)}{\ln r}=\varlimsup_{\sigma \rightarrow+\infty} \frac{\ln \ln I(\sigma)}{\ln \sigma}=
$$

$$
=\frac{1}{1-\varlimsup_{x \rightarrow+\infty} \frac{\ln x}{\ln \ln \frac{1}{a_{1}(x)}}}=\frac{1}{1-\varlimsup_{x \rightarrow+\infty} \frac{\ln x}{\ln \ln \frac{1}{a\left(x^{1 / \varrho}\right)}}}=\frac{1}{1-\varlimsup_{x \rightarrow+\infty} \frac{\varrho \ln x}{\ln \ln \frac{1}{a(x)}}}=\frac{1}{1-\varrho \bar{\gamma}},
$$

i. e. (16) holds.

References

[1] Nachbin L. An extension of the notion of integral function of the finite exponential type. Arias Acad. Sci. Brazil. Ciuncias, 1944, 16, 143-147.
[2] Boas R. P., Buck R. C. Polynomial expansions of analytic functions. Springer, Berlin, 1958.
[3] Vinnitsky B. V. Some approximation properties of generalized systems of exponentials. Dep. in UkrNIINTI 25.02.1991, Drohobych, 1991. (in Russian)
[4] Roy Ch. On the relative order and lower order of an entire functiion. Bull. Soc. Cal. Math. Soc., 2010, 102 (1), 17-26.
[5] Mulyava O. M., Sheremeta M. M. Relative growth of Dirichlet series with different abscissas of absolute convergence. Ukr. Math. Journal, 2020, 72 (12), 1535-1543.
[6] Leont'ev A. F. Generalizations of exponential series. Nauka, Moscow, 1981. (in Russian)
[7] Sheremeta M. M. On the growth of series in systems of functions and Laplace-Stieltjes integrals. Math. Stud., 2021, 55 (2), 124-131.
[8] Sheremeta M. M. Relative growth of series in system functions and Laplace-Stieltjes type integrals. Axioms, 2021, 10 (2), 43.
[9] Reddy A. R. On entire Dirichlet series of zero order. Tohoky Math. J., 1966, 18 (2), 144-155.
[10] Gol'dberg A. A., Ostrovsky I. V. Distribution of values of meromorphic functions. Nauka, Moscow, 1976. (in Russian)
[11] Sheremeta M. M. Asymptotical behavior of Laplace-Stietjes integrals. VNTL Publishers, Lviv, 2010.
[12] Sheremeta M. M., Kuryliak A. O. On the growth of Laplace-Stietjes integrals. Math. Stud., 2018, 50 (1), 22-35.

Received 01.12.2021

Мулява О. М. Елементарні зауваження до відносного зростання рядів за системою функиій Міттаг-Леффлера // Буковинський матем. журнал - 2022. - Т.10, №1. - С. 33-40.

Для регулярно збіжного в \mathbb{C} ряду

$$
F_{\varrho}(z)=\sum_{n=1}^{\infty} a_{n} E_{\varrho}\left(\lambda_{n} z\right)
$$

де $0<\varrho<+\infty$ і $E_{\varrho}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(1+k / \varrho)}$ - функція Міттаг-Леффлера, досліджено асимптотичне поводження функції $E_{\varrho}^{-1}\left(M_{F_{\varrho}}(r)\right)$, де $M_{f}(r)=\max \{|f(z)|:|z|=r\}$. Доведено, наприклад, що якщо $a_{n} \geq 0$ для всіх $n \geq 1$ i

$$
\varlimsup_{n \rightarrow \infty} \frac{\ln \ln n}{\ln \lambda_{n}} \leq \varrho
$$

TO

$$
\varlimsup_{r \rightarrow+\infty} \frac{\ln E_{\varrho}^{-1}\left(M_{F_{\varrho}}(r)\right)}{\ln r}=\frac{1}{1-\bar{\gamma} \varrho},
$$

де

$$
\bar{\gamma}=\varlimsup_{n \rightarrow \infty} \frac{\ln \lambda_{n}}{\ln \ln \left(1 / a_{n}\right)} .
$$

Подібний результат отримано для інтегралу типу Лапласа-Стілтьєса

$$
I_{\varrho}(r)=\int_{0}^{\infty} a(x) E_{\varrho}(r x) d F(x)
$$

Ключові слова і фрази: відносне зростання, ціла функція, функція Міттаг-Лефлера, регулярно збіжний ряд.

