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LINE AT INFINITY AND AN AFFINE REAL INVARIANT STRAIGHT
LINE OF TOTAL MULTIPLICITY FOUR

In this article, we show that a non-degenerate monodromic critical point of differential
systems with the line at infinity and an affine real invariant straight line of total multiplicity
four is a center type if and only if the first four Lyapunov quantities vanish.
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Introduction and statement of main results
We consider the real cubic system of differential equations

T =y+ax® + cry + fy® + kad + may + pry® +ryd = p(x,y),
Y= —(z+ g2° +day + by* + s2° + g2’y + nxy® + 1y°) = q (2,y) (1)
ged(p,q) = 1

and the homogeneous system associated to the system (1)

T =yz? + (ax? + cxy + fy*)z + ka® + mz*y + pry® + ry® = P (2,9, 2),
y = —(222 + (g2 + dvy + by?)z + s2® + g2’y + nxy® + 1Y) = Q (2,9, 2) .

Denote X = p (z,y) 2 +q(a:,y)a% and Xoo = P (2,y,2) & —|—Q(x,y,z)a%.

An algebraic curve f(z,y) =0, f € Clz,y] (a function f = exp(g/h), g,h € Clz,y]) is
called an invariant algebraic curve (exponential factor) of the system (1) if there exists a
polynomial K; € Clz,y], deg(K) < n — 1, such that the identity X(f) = f(z,y)Ks(x,v),
(z,y) € R?* ((z,y) € R?\ {(z,y) € R?|h(z,y) = 0}) holds. In particular, a straight line
l=ax+PBy+v=0, «a,f,v € Cis invariant for (1) if there exists a polynomial K; € C[z, y]
such that the identity aP(z,y) + 8Q(z,y) = (ax + By +v)Ki(z,y), (z,y) € R?, holds.
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The invariant straight line cx+ Sy +~ = 0 (respectively, the line at infinity z = 0) has the
multiplicity v (respectively, v+1) if v is the greatest positive integer such that (ax+ pfy—+7)”
(respectively, 2”) divides E = p-X(q) — ¢- X(p) (respectively, E,, = P-X(Q) — Q- X (P))
[5]. Denote by m(l;) (m(ls)) the multiplicity of an affine invariant straight line /; (of the
line at infinity lo).

The cubic systems (1) with invariant straight lines were investigated in the works |2, 3,
4,10, 11, 13, 14, 15, 16, 26, 27, 28, 29, 30|,

The critical point (0,0) of system (1) is either a focus or a center, i.e. is monodromic.
The problem of distinguishing between a center and a focus is called the center problem.

A critical point (0,0) is a center for (1) if and only if in a neighborhood of (0,0) the
system has a nonconstant analytic first integral F'(x,y) (an analytic integrating factor of the
form pu(z,y) =143 p;(z,y)) [12] ([1]).

It is known there exists a formal power series F'(z,y) = 2° +y*+ .4 Fj(2, y) such that
the rate of change of F(z,y) along trajectories of (1) is a linear combination of polynomials
{(x? +y*) 229, 1€ Cfi—f = Z;iz L;_1(2*+9y?)7. The quantities L;, j = 1, 00, are polynomials
with respect to the coefficients of system (1) called to be the Lyapunov quantities. The
origin (0, 0) is a center for (1) if and only if L; = 0, j = 1, 00. By the Hilbert basis theorem
there is a natural number N such that the infinite polynomial system {L; =0, j = 1,00} is
equivalent to the finite system {L; = 0,j = 1,N}. We denote by N, the smallest such N.

The center problem is completely solved for quadratic systems (k =l=m=n=p=¢q =
r=s=0; No = 3) |9] and for symmetric cubic systems (a =b=c=d = f = g=0; Ny =5)
[20]. For other polynomial differential systems the necessary and sufficient conditions for the
monodromic critical point to be a center were obtained in some particular cases (see, for
example, [6, 17]).

The problem of coexistence in cubic systems of distinct invariant straight lines and critical
points of center type was studied in |7, 8, 21, 22, 23, 24, 25|. In these works it was proved
that if the cubic system (1) has

— four non-homogeneous invariant straight lines, i.e. the lines of the form 14« 2+ B;y =
0, j=1,2,3,4, then Ny = 1 [7];

— two non-homogeneous and two homogeneous (y & iz = 0) invariant straight lines, then
No=21[8];

— three invariant straight lines in generic position, then Ny = 3 [25];

— a bundle of three invariant straight lines or three invariant straight lines two of which
are parallel, then Ny =5 [21, 24];

— two homogeneous and one non-homogeneous invariant straight lines, then Ny = 7 [23].

........

..........
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In this article we investigate the center problem for cubic differential systems with the
line at infinity and an affine real invariant straight line of total multiplicity four (see Fig.
1.1). Our main result is the following one:

Main Theorem. Fach cubic system (1) with an affine real invariant straight line I, and
the line at infinity l, of total multiplicity at least four: m(ly)+m(lw) > 4 has at critical point
(0,0) a center if and only if the first four Lyapunov quantities vanish Ly = Ly = L3 = Ly = 0.

1 SOLUTION OF THE CENTER PROBLEM FOR CUBIC SYSTEMS WITH AN AFFINE
REAL INVARIANT STRAIGHT LINE OF MULTIPLICITY THREE

In this section we will solve for (1) the center problem in the case of configuration a)
from Fig. 1.1.

1.1 Classification of cubic systems with an affine real invariant
straight line of multiplicity two or three

Let the cubic system (1) have an affine real invariant straight line [;. By a transformation
of the form
x—v-(rcosp+ysing), y = v-(ycosp —xsing), v#0
we can make [, to be described by the equation x = 1. Then, k = —a,m = —c—1,p =
—f,7 =0 and (1) is reduced to the system
&= (1—a)(y +aa® + (c+ Day + fy*) = plr,y),
= —(z+g2® +dzy + by® + s2° + qz?y + nay® + 1y°) = q(,y), (2)
ged(P,Q) = 1.
For (2) we have

E=(z—1)(Yaly) +Ya(0) - (v = 1)+ + Yaly) - (0 = 1)7),

where Y;(y), j = 2,...,7, are polynomials in y. The invariant line # — 1 = 0 has multiplicity
at least j if the system of identities {Y5(y) =0, ...,Y;(y) = 0} holds. In particular, the line
x — 1 = 0 has multiplicity at least two (three) if Y5(y) =0 ({Y2(y) = 0,Y3(y) = 0}). The
polynomials Y5(y) and Y3(y) look as, respectively:

Ya(y) = (1+g+s+dy+qy+by2+ny2+ly3)<2+a2+c—ad+2g+cg—aq
+2s+cs+2(2a —ab+ac+ f+ fg—an+ fs)y — ((c+2)(b—2 —c+n)
~20f — df + 3al — fq)y? +2(c+2)(f — Oy + F(f — y?),

Ys(y) = a(g +2)(d+ q) — (8 — 6a® + 4c + 6ad + 49 + 2cg + Taq)(g + s + 1)
+(Te+13)(g +s+1)2 + (2a((9+2)(b+n) + (3a — 2d — 3¢)(d + q))
—(c+2)(g+2)(d+q) — (3a+10ab+d + 8f +4fg +12an + q — (c + 2)
(9a+5d +6¢))(g + s +1) + 12f(g+31)2>y—|—3<a((9+2)l—|— (2a + d)
‘(b+n)) — (a+4ab—3alc+2)+2f + fg+ 5an)(d + q) + (2 + 3¢ + ¢*
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2af + 4df — 5al + 5fq)(g+ 5 + 1)>y2 + <15ab — 4ab? + 9abe + 6d — 3bd

+9c¢d — 2bed + 3c2d + 3f + 2bf + 3cf + 6adf + 2d*f + 3fg +4bfg+ 3cfg
=3l + 6a*l — 2cl — 12adl — 5gl — 3cgl + 15an — 12abn + 9acn — 5dn — 3cdn
+4fn+ 6fgn — 8an? + 6q — 5bq + 9cq — 3bcq + 3c¢*q + 6afq + 6dfq — 16alq
—Tng —4eng +4fq* + 3fs + 6bfs + 3cfs — Tls — 4cls + 8fn3>y3 + (fl — 3df
—bdf — 3al + 5abl + 2dl + 2fgl —3fq —bfq+ 2lq + 3fls + (3df + 9al — 4dl
+3fq —6lq)(c+2) + (6af + 2df —15al +3fq)(b+n) + (c+2)(b+n)(3c—1b
—3n+3)+ (b+n)2>y4 + 3<2al(f —D)+1Ub—1)(c+2)+1(c+2)?

(U= F)b+n)+ (f = 20)(c+2)(b+ )y +1((e+1)Bf = 20) = fn)y®
Remark 1. If 1 + g+ s+ dy + qy + by* + ny* + ly> = 0, then the system (2) is degenerate,
iLe. deg<g0d(p(:v,y),q(w,y))) > 0.

Solving the identities Y5(y) = 0 and {Y5(y) = 0, Y3(y) = 0}, we obtain the following two
Lemmas, respectively.

Lemma 1. The invariant straight line x — 1 = 0 of the system (2) has multiplicity at least
two if and only if one of the following four series of conditions holds:

a=f=0, c=—2; (3)
=f=1l=0,n=2—-b+c¢, s=—-1—g, c# —2; (4)
f=1=0,d=(ala—q)+(c+2)(g+s+1))/a, n=2—-b+g (5)
l=f,¢q={(c+2)(b—2—c+n)+ fla—d))/f, (6)
s=(—2a+ab—ac— f— fg+an)/f.

Lemma 2. The invariant straight line x — 1 = 0 of the system (2) has multiplicity at least
three if and only if one of the following seven series of conditions holds:

a=d=f=1l=q=0b=1,n=c+1,s=—g—1,c# —2; (7)
a=f=1=0b=s=1,d=—q(c+3),g=-2,n=c+1, c# —2; (8)
f=1l=0b=1d=a(c+3)/(c+2),n=c+1,g=alc+1)/(c+2), (9)
s=(a® = (c+2)(g+1))/(c+2),a#0;
f=1=0b=s=1d=(c+3)(a—q),g=a*—aqg—2,n=c+ 1,a # 0; (10)

a=f=1=0,c=-2,n=-b s=—g—1; (11)
a=(1-b)b—c=3)/f,a=((b-1)(2c=b+5)=df)/f.l=F

g=((c=b0+3)((b—1)(b—c—4)+df)—2f*)/f* n=c+1, (12)
s=((c=b+3)((c+3)(b—1) —df) + f)/ f*

d=0b—-1)(c+3)/f,g=—(a—ab+2f)/f,l=f,n=c+1,
g=(af —b+1)/f,s=1
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1.2 Sufficient center conditions in the case m(l;) > 3

Remark 2. If c+ 1 # 0, then each of the systems {(2), (7)} and {(2), (8)} has the parallel
invariant straight lines: x — 1 =0 and (c+ 1)z +1 = 0.

a) Darboux integrability.

Let f1,..., fr (fra1 = exp(gra1/hrs1), -, fs = exp(gs/hs)) be invariant algebraic curves
(exponential factors) of (1) and let Ky, j =1, s, be its cofactors. The system (1) is called
Darbouz integrable if (1) has a non-constant first integral (an integrating factor) of the form
F(z,y) = fit- fo (u(z,y) = fi*- f*), a; € C, j =1, s (on the theory of Darboux,
presented in the context of planar polynomial differential systems on the affine plane, see
[19]). Note that the constants aj,...,as are not all equal to zero. If the system (1) is
Darboux integrable, then the origin (0,0) is a center.

Lemma 3. The following twelve sets of conditions are sufficient for the origin to be a center
for system (2):

(i) a=d=f=l=q=0,b=1,n=14c¢, s=—1—g, c#—2;
(it) f=l=n=q=0,b=1,¢c=~-1,d=2a, s=a*>—g—1;
(i) c=d=f=1=0,b=n=s=1, g=—-2,q=a;
(w) f=1l=0b=s=-n=1,c=-2,d=a—q,g9g=q(q—a),

@ —a*+2=0;
v) a=[f=1=0,b ,e==2n=-1,q=d(g+1),s=-1—g;

b=-n=s=1c=9g=-2l=f q=—d, d— f #0;
1-b0)(b—c—=3)/f,l=fn=c+1,
b—1@B—=b+c)>+(4—-2b+0)f?)/((3=b+c)f),
(b—1)(b—c—=3)(b—c—2)+ (c—2b+2)f*)/f?
(=140 b—c—=3)+(c=2b+4)f3)/((b—c—3)f),
20— c—3)((b—1)(c—b+3)+ f2)/f% b—1#0;

62 L= fq= (et Dot /(). s = /@1 +0),
(c+1)(c+2)+4f*=0;

(b—1)(3a — 3ab+5f + 2a%f — 3bf) +2f3(2 - 1))/B,

L b)(@af — 2+ 202 — (202~ 1)(b— 1))/6.

(- 1at )= N1~ b+af - /s =1
ab—1)=2f)/f,l=f qg=1-b+af)/f FiF>=0,

where
B=alb—=12+(b-2)(b-1)f - f*(a+[),
Fy=a’f—(b—1)2f +a(b—b*+ f?), (14)
Fy=(1—0bP3+2a(b—1)2f —2(b—1)f2 — 2%

(i)  a=(40)/(40* —1), b= (1 — 82 + 8v*) /(1 — 4v?), ¢ = 4v?/(1 — 4v?),
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d=2v(8v* —3)/(4v* — 1), f =2v(1 — 20%) /(40> — 1),
g=2(2v*—1)?/(4? — 1), 1 = 2v(1 — 20?)/(4v* — 1),
n=1/(1—-4v?), ¢ =20(1 —20?)/(4* - 1), s =1;

(wi7) a= (4v3)/(4v? = 1), b= (1 — 8% + 8v') /(1 — 4v?),
c=2(4*+v* = 1)/(1 — 4?), d = 2v(1 — 10v? + 8v*) /(1 — 4v?),
f=2v(20*-1)/(1 — 4?), g =2(20* — 1)?/(40? — 1),
[=2v(20% —1)/(1 — 4v?), n = (20% — 1)(1 + 40v?) /(1 — 4v?),
q=2v(20* —1)/(1 —4?), s=1.

Proof. In all the cases (i)-(xii) the system (2) has in a neighborhood of origin (0,0) an
analytical integrating factor u(x,y):
in the case (i) u(z,y) = 1/((x — 1)3(1 + x + cx));
in the case (ii) p(z,y) =1/(x — 1)
i

in the case (iii) p(z,y) = (:1: — 1) exp[—y(y + 2a(z — 1)) /(x — 1)*];

(
(ii
in the case (iv) u(z,y) = (- 1)2 exXp [(z(qq2 3262513;1(?)1)] )
(
(

in the case (v) p(z,y) = (x — 1) 3(x —dy — 1)~*
d(—d+3dx+6y—6xy) .
6(x—1)3 ] )

in the case (vi) p(z,y) = (x_ll)ﬁ exp [

dd+d3—4f o D ) —d? o2
in the case (vii) ,LL(.CU, y) = (gj—l) f—d exp |:2d< 12>((g——;c)lg(/xf1y))2)d fy )] :

in the case (viii) p(z,y) = I*15213%, where

h=x—11l=ep[(fb+ fy—1))/(x - 1)],
ls = expl(Bo + Brz + Bay + Bsy®) /(b — ¢ — 3)(w — 1)?),
Bo=22b—c—4)f*—(b—1)(3b — 2¢ — 5)(b — c — 3),
Bi=2((c—20+4)f2+ (b—-1)(b—c—3)(2b—c—3)),
Bp=2f(b—1)(b—c—3), fs=(b—c—3)f%
ar=((c=20+42f2+ (b—1)(b—c— 3)(—=52+ 92b — 48b* + 8b*
—44c + 48bc — 12b%c — 12¢* + 6bc? — ) /(b — 1)(b — ¢ — 3)?),
—(2b—c—5)(2b—c—4)/(f(b—c—3)),
—(2b—c—4)?/2( = 1)(b—c = 3));

in the case (ix) u(z,y) = 1/(3v/1y), where I} = x — 1,

I =8(8—1)%(8*+1) = 16(8 — 1)*(1+ f*)z £8(8" — Dy + (3 — 28+ 38%)z £ (1 - 5*)y)*;
in the case (x)

pla,y) = (z = )* expl(b— 1+ fy)(A + Bx + Cy)/(2f (b — 1)(x — 1)?)],

where

(6%)
(0%}

(1-b)((b — 3)(b—=1)2 = 2f(b — 1)(2ab + bf — a) + 2af*(2a + f)),
Db — 1)((b—2)(b— 12 — af(26? —3b+ 1) + f2(1 — b+ 2a2)),
(b—13f+2(0b—1)2f% —2af, ay = -4+ C/(f*B);

in the case (xi) u(z,y) = 15215 /(x — 1), where

A
B
C



CENTER PROBLEM FOR CUBIC DIFFERENTIAL SYSTEMS... 41

Iy = exp —27)((411;2}12))(%31;)} ) (15)
= xp [ a]
ag = (3 —40?) /(20 — 1), az = (1 — 40°)/(40*(20* — 1));
in the case (xii) u(x,y) = (x — 1)*115215%, where [, l3 are given in (15) and
ap =80t — 202 — 4, ay = 4v? — 1, az = (40 — 1)2/(4(1 — 20?)).
[

b) The equation of nonlinear oscillations.
Let a = f = k = p=r = 0. Under these conditions the system (1) defines the following
equation of nonlinear oscillations:

Py(z)yy' = —xPy(x) — 3xPy(z)y — P2(95)92 - P3(~’L’)yga (16)

where
y' = dy/dx, Po(x) = 1+ gz + s2?, Pi(z) = (d + q2)/3,
Py(z) =b+nz, Py(x) =1, Py(z) =1+ cx + mz?

Po(z)Y

=P (Y)

Qu(2)YY' = —2 — Qa(2)Y? — Qs(2)Y?,

The substitution y = [18] reduces the equation (16) to the form

where
Q2(z) = Po(7) Po(w) — 3z PP (x) + Py(x) Py(w),
Q3(x) = 22 P} (z) — Py(z) Py () Po(z) + P () Ps(x)
+Py(x) P (x) Pa(z) — Py(z) Pr(z) Pa(),
Q4(z) = Py(z) Py(z).

By [[1], Theorem 9.4, in the case Qs(z) = 2%+ P(z), P(0) # 0, the origin is a center for
differential equation (16) (system {(1), a = f = k = p = r = 0}) if and only if the system
of algebraic equations

y4R3(m)Q§(y) - :1:4R3(y)@g(x) =0, (17)
2Q(x) R (y) — yQ(y) R*(z) = 0,
where
R(z) = Qu(x) (Qs() — 2Q3(2)) + 32Qa()Qs(2),
Q(x) = Qu(z) (R'(2)Qs(x) — 3R(2)Q4(x)) + 4Qa(2)Qs(2) R(x)

has in some neighborhood of x = 0 a holomorphic solution y = ¢(x), ¢(0) =0, ¢'(0) = —1.

Lemma 4. The following set of conditions are sufficient for the origin to be a center for
system (2):

a=f=1l=s=0,b=-n=1/3,c=-2,9g=—-1,q=—-2d/3. (18)
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Proof. In conditions (18) the system (2) looks as

it =ylr—1)% y=—8z— 32+ 3dvy — 2dz*y + v* — xy?)/3. (19)
For (19) we have:

Pyz)=1—x, Pi(z) =d(3—22)/9, Py(x) = (1 —x)/3, Ps(z) =0,
Pi(z) = (z— 1)?

and the system of equations (17) has the solution

9 —26z +162* + (20 — 3)v/9 — 8z
v 16(z — 1)? '

1.3 Solution of the center problem in the case m(l;) > 3

Theorem 1. The system (2) with invariant straight line x — 1 = 0 of multiplicity three has
a center at origin (0,0) if and only if the first four Lyapunov quantities vanish.

Proof. To prove the theorem, we compute the first four Lyapunov quantities Ly, Lo, L3, L4
for each set of conditions (7)—(13) of Lemma 2. In the expressions for L; we neglect the
denominators and non-zero constant factors.

The conditions (7) are the same as in Lemma 3, (i).

In the case (8) we have ¢ + 2 # 0. Therefore the vanishing of L; = (¢ + 2)q gives ¢ = 0
and we are in the conditions {(i), ¢ = 0} of Lemma 3.

In the case (9) a # 0 and the first Lyapunov quantity is L; = (1+c¢)(g+c+4). If c = —1,
then Lemma 3, (ii). Let a(c+ 1) # 0 and g = —c¢ — 4. The second Lyapunov quantity looks
as Ly = a(c+1)(5+2¢)(a® + (c+2)?). If ¢ = —5/2, then Lz = a(1 +4a?) # 0. Therefore the
origin is a focus.

In the case (10) the first Lyapunov quantity is L; = (a(a — q)* + ¢ — 2a)c+ (a — q)(a* —
3aq — 2). Assume that

ala—q)* +q—2a #0.

Then L; =0 =
¢ = (q—a)(a® - 3ag — 2)/(a(a — q)* + ¢ — 2a), (20)

and Ly = fofs, where fo = a%q(q—a)(a® —¢* —2)((¢ —a)* + 1) and fo = (2 — 11a® + 8aq +
5a%(q—a)?). If ¢ = 0 (respectively, ¢ = a; a*—¢*—2 = 0), then Lemma 3, {(ii), g = a* — 2}
(respectively, (iii); (iv)). Let fy # 0 and fo = 0. The Lyapunov quantities Ly and L, have
the form: L3 = fofs, Ly = fofs, where f3 and fy, reduced by f; in a, look as f3 = 162 —
81a%+948aq —420a3q+ 180¢> +465a%¢* + 745aq> + 300a3¢® +300a%q* and f, = —184941468 +
924707340 —831357432aq+ 354031560aq — 282740220¢> — 324963900aq? — 1781933580aq> +
816459750a%¢®> — 391131900¢* — 872231400a%¢* + 269515275aq> — 11098387875a3¢> +
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2507899500¢°6 — 7129544250a2¢° +10021676125aq” — 8736000000aq” 4+ 6329280000a2¢®. The
system in a and ¢: {fs =0, f3 =0, f4 = 0} is not compatible. Suppose now that

ala —q)* —2a+q=0.

Then L = (a — q)(—2 + a® — 3aq). Taking into account that a # 0 the system {a(a — q)? —
2a+q =0, Ly = 0} gives us ¢ = 0, a*> — 2 = 0. Under these conditions the second and third
Lyapunov quantities are Ly = a(c+ 1)(c + 2)(c 4+ 10), Lz = a(c+ 1)(c + 2)(1394 — 1945¢ +
391¢* + 61c?). If ¢ = —1, then Lemma 3, {(ii),a®* — 2 = 0} and if ¢ = —2, then Lemma 3,
{(iv),a* — 2 = 0}.

In the case (11) Ly = d(b+g9) —q=0 = ¢ = d(b+ g). Putting ¢ = d(b+ g) in the
second quantity we have Ly = d(b+ g+ 1)(b—1)(3b+ 59 +4). Ilf d(b+ g+ 1) = 0, then
the cubic system is degenerate: ged(P,)) = x — 1. Suppose d(b+ g+ 1) #0. If b =1, then
Lemma 3, (v). Let fo=d(b—1)b+g+1)2#0and 3b+5g9+4=0=g=—(3b+4)/5.
The third Lyapunov quantity looks as Ly = fo(b — 2)(3b — 1). If b = 2, then Lemma 3, (vi).
If b=1/3, then Lemma 4.

In the case (12) the first Lyapunov quantity is L1 = f~3¢,gs, where g; = df (c — b+ 3) +
201 = b)(c—=b+3)2+ f2(2b—c—4) and go = df + (b—1)(b—c—4) + f2 Let g1 = 0.
If in g; the coefficient of d is zero, i.e. ¢ = b — 3, then the equality g; = 0 yields b = 1.
In this subcase we are in condition (vii) of Lemma 3. Assume that ¢ — b+ 3 # 0. Then
G1=0=d=20b—-1)(c—b+3)*+ f*(c—20+4))/(f(c—b+3)) = Lemma 3, (viii). Let
now g, = 0, g; # 0. From g, = 0 we express d: d = ((b—1)(c—b+4) — f?)/f. The second
and third Lyapunov quantities being cancelled by non-zero factors (as f, g1, (b — 1)* + f?)
have the form:

Ly = (6b—2c—11)(b—c—3) — 2%

Ly = ((1—b)(2b — 3) — 2f?)(553 — 1872b + 2359b>
—1314b3 + 274b* + 1175 % — 1314bf% + 548b% f2 + 274 f*) + ((b — 1)?(2851
—6240b + 4546b% — 1096b%) + £2(6625 — 136600 + 9636b> — 2192b% — 2898 f2
—1096bf2))y + 2((b — 1)%(193b — 241) + (193b — 157) £2)~?
+2((b — 1)%(548b — 629) + (548b — 1175) f2)7* + 548((b — 1)> + f2)7*,

where 7 = ¢—2b+4. Solving the system {Ly = 0, Ly = 0} we obtain b = (¢+4)/2, (c+1)(c+
2) +4f% = 0. The equation (¢ + 1)(c + 2) + 4f? = 0 admits the following parametrization
c=p6/(B*+1)—3/2, f =+(8*>—1)/(4(B* + 1)). We are in the case (ix) of Lemma 3.

In the case (13) we calculate the first four Lyapunov quantities and in their expressions
we will cancel denominators and non-zero polynomial factors. The first quantity is L; =
(Acc+ B.), where A, = a(b— 1)+ (b—2)(b—1)f — af? — f3 is the coefficient of ¢ in Ly,
and B, = Ly |e—o= 3a(b— 1)+ (b —1)(3b — 2a® — 5)f + 2(b — 2) f3. Two cases are possible:
1) A, # 0 and 1) A, = B, = 0.

I) fA. # 0. We express ¢ from L; =0: ¢ = —B./A. and replacing in L;, j = 2, 3,4, we
obtain Ly = Fi FyF3 (see (14)), where Fy = (a+ f)*(5a+3f)(b—1)> —4f(a+ f)(2a+ f)(b—
1) — f2(3a® — 2a + 11a®f + 13af?* 4+ 5f?), and L; = F1FyF; 1, j = 3,4. The polynomials
Fy, F5 (in a, b, f) are very large and they are not given here. If F};Fy = 0, then Lemma 3,
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(x). Suppose that F} Fy # 0 and F3 = 0. Taking into account that f # 0 the equality F3 =0
implies (b — 1)% + a® # 0.

Later on, for short, instead of Resultant and Polynomial Remainder we will write Res
and PRem respectively.

I) Let b =1, af # 0. Then Fy, = —F3/f% = 3a® — 2a + 11a*f + 13af? + 5f2 and the
remainder from dividing (Fj|p=1)/f® by Fp, treated as polynomials in f, is —144a?Fy,/625,
where Fy, = 250a+242a3+12a°+125 f+430a? f+24a* f+200a f2+12a° f2. The Res|Fyy, Fyy, f]
= 390625a(3a* + 50) # 0, i.e. the system {F3, = 0, Fjy, = 0} has no solution.

Iy) Let a = 0, f(b— 1) # 0. In this case F3, = F3/f3 = (b—1)(3b —7) — 5f% and
Fio = PRem|[(Fyla=0)/f?; Fa, f] = 216(b—1)3(2b— 3)*(3b — 7) /625. If Fy, = 0, then F3 # 0.

We remark that if a = —f, then F3 # 0.

If 7 is a variable of polynomial F, then we denote by LC(F,~) the coefficient of greatest
power of v in F. We have LC(F3,0) = (a + f)*(ba + 3f), LC(Fy,b)
= —2(a + /)(115a% + 1330a2f + 2491af? + 1032f%), LO(Fs) = —2(a + f)%(36365a° —
14825a* f — 1116816a> f? — 3290564a® 3 — 3440437af* — 1109211 f°). Because each of the
systems {LC(F3,b) = 0, LC(Fy,b) = 0}, {LC(F5,b) = 0, LC(F5,b) = 0} and {LC(Fy,b) =
0, LC(F5,b) = 0} is not compatible, we have the right to calculate the following three
resultants:

Res[Fs, Fy,b] = 5184 %(a+ f)*®4(a+ f)* + 1)*((a — f)*(a+ f) — 2a)3Gh,

Res[Fy, F5, b = 20736 % (a + f)*(4(a + f)> + 1)°((a — f)*(a + f) — 2a)°G,

Res|Fy, F5, b] = 80244904034304f%(a + f)*(4(a + f)* + 1)¥
((a—=f)*a+ f) —2a)PGs,

where G, G2, GG3 are polynomials in a and f.

I3) Let af(b—1)(a+ f)F1Fy # 0 and (a — f)*(a + f) — 2a = 0. The transformation
a — u+v, f — u— v reduces this equality to (40> — 1)u — v = 0. Express u from the
last equality: u = v/(4v? — 1) and substitute it in F3, Fy and F5. We have F3 = 8v3(1 —
b — 8v? + 4bv? + 8v*) Fap, /(40? — 1)5, Fy = 3205(1 — b — 8v? + 4bv? + 8v*) 2 Fy, / (40? — 1)15,
Fs = 12807(1 — b — 8v% + 4bv? + 8v*)° Fyy, /(40 — 1)?, where Fyy, = (b(4v* + 3)(40? — 1) +
3208 — 400t — 1202 + 7) and Fyy,, Fip, are polynomials in b, v.

If v(1 —b— 8%+ 4bw? + 8v*) = 0, then F; = 0. The equation Fy, = 0 yields b =
(3208 —40v* —120%47) /((4v? +3) (1 —4v?)). In this condition Fy,, = —576v?(16v* —1)3(2v? —
1)°Fu/(40%+3)3, Fyy, = —23040%((160* — 1)) ((20% — 1)) Fs, /(402 +3)?, where Fy, = —30—
12302 +6v*+1040° — 35208 + 128010, Fy, = —137160—5742894v% —21786777v* +24074466v° +
948985040 — 20611404800 — 194681088v'2 4- 591481856v1* — 31218073606 — 597753856118 +
8654684160 — 409862144v*2 4 66584576v?*. The polynomial v(16v* — 1)(2v* — 1) and the
resultant Res[F},, Fs,, v] are not equal to zero. Therefore, the equality (a— f)?(a+f)—2a =0
does not give any new cases of center for system (2) in conditions (13).

I) Let now af(b—1)(a+ f)((a — f)*(a+ f) — 2a)F1Fy # 0 and G, = Gy = G3 = 0.
The leading coefficients LC(G1,a), LC(G2,a) and LC(Gs,a) are non-zero natural numbers.
We calculate the resultants: Res[G1, Ga,a] = f**(8+4 28524 2880f*)G1ay, Res|G1,Gs,a] =
f30(8+285 1242880 f*)G13y, where Giaf, G135 are polynomials in f and Res[G1af, Gisy, f] #
0.
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From subsections I;) — 1) it follows that in the case of A.F1Fy # 0 the system {(2),
(13)} has a focus at (0,0).

IT) Let now A. = B. = 0. These equalities are equivalent with equalities A, = B, =0,
where B. = (3A. — B.)/f = (2a> = 2f> = 1)b+ f?> — 2a®> — 3af + 1. The system of equations
{2a> —2f? —1 =0, f2 — 24> — 3af + 1 = 0} is not compatible. We express b from B, = 0 :
b= (2a*+3af — f2—1)/(2a®> = 2f* —1). Then A. = —f?(1 +4(a+ f)*)((a — f)*(a+ f) —
2a)/(2a* = 2f* —1)*) =0 = (a — f)*(a + f) — 2a = 0. As for I3), via the transformation
a— u+v, f — u—o the equality (a— f)?(a+ f) —2a = 0 takes the form (4v? —1)u—v = 0.
We substitute u = v/(4v? — 1) in Ly : Lo = vfi fofs, where f; = (402 + c(4v? — 1)), fo =
c(4v? — 1) + 2(4v* + 02 = 1), f3 = 240? =2+ c(4v? = 1). If v = 0, then u = 0, but u = v
= 0 implies f = 0 which cannot be in our case. If fj = 0 (fs = 0), then Lemma 3, (xi)
(Lemma 3, (xii)). Finally, we will examine the subcase f; = 0. The equality f; = 0 yields

= (2402 — 2)/(1 — 4v?) = Lz = 46080° f) fog1/(4v* — 1)°, Ly = 05 f1 f292/(30(1 — 40*)7),
where g1 = 7 + 34v? — 8v%, go = 6013 — 13633802 + 900152v* + 843168005 — 2754304v° +
13409280 — 260096v'2. The system {g; = 0, go = 0} has no solution. O

Example 1. We consider the system (2). If

(3v5—5)/30,b=s=1,c= (v/5—5)/2,d = \/3(5+3\/5)/10,
f=1=0,g=—(15+5)/10,n = (V5 — 3)/2,q = —\/(27v/5 — 35)/30

then m(ll) =3 and L1 = LQ = L3 = 0, L4 7é 0.

Denote C3 = sz* + (k+q)z*y + (m+n)z?y? + (1+p)zy® + ry*. If C3 = 0, then the system
(1) has degenerate infinity, i.e. the infinity consists only of singular points.

2 SOLUTION OF THE CENTER PROBLEM FOR CUBIC SYSTEMS WITH AN AFFINE
REAL INVARIANT STRAIGHT LINE OF MULTIPLICITY TWO AND m(l,) > 2 OR C3 =0

In this section we will solve for (1) the center problem in the cases of configurations b)
and c) from Fig. 1.1, i.e. in the cases m(l1) > 2 and m(l) > 2 or C3 = 0.

We consider [; = x — 1, then system (1) looks as ( ). For (2) we have C3 = 2:C5, where
Cy = s2® + (¢ — a)z*y + (n —c— Day? + (1 — £y’

2.1 Classification of cubic systems (2) in the case m(l;) > 2 and
m(lx) >2o0r C53=0
For (2) we have
Eoo = (fL’ - Z) ’ (63 ' HQ(x7y) + H3(l’7y)2 +eoet H7($,y)2’5),

where H;(z,y), j = 2,...,7, are polynomials in = and y.
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The line at infinity has multiplicity at least j if the system of identities {Hs(z,y) =
0,...,Hj(xz,y) = 0} holds. In particular, the line at infinity has multiplicity at least two if
Hs(x,y) = 0. The polynomial Hs(z,y) looks as:

Hy(z,y) = (aq — s — cs)x* + 2(an — fs)z’y + (3al +n +cn — fq)v*y® + 2(c + Dixy® + fly*.
Solving the identities Hy(x,y) = 0 and C5 = 0 in each of the sets of conditions (3)—(6) we
obtain the following two Lemmas, respectively.

Lemma 5. Both the line at infinity and the invariant straight line x — 1 = 0 of the system
(2) have multiplicity at least two if and only if one of the following four series of conditions
holds:
a=f=l=n=s5=0,c=—2; (22)
a=f=1=0,c=—-1,n=1-0b,s=-1—y; (23)
a=f=l=n=s=0,b=c+2, g=—1,c+2+#0; (24)
f=l=n=0b=ct2, d=(c+2(g+1)+s+a)/a, g=s(c+1)/a  (25)
Lemma 6. Let the invariant straight line x — 1 = 0 of the system (2) have multiplicity at

least two. Then for this system the infinity is degenerate if and only if one of the following
four series of conditions holds:

a=f=l=q=s5s=0,c=-2,n=—1; (26)
a=f=l=q=s5s=0,b=1,9g=—-1,n=c+1,c+2+#0; (27)
b=1,d=(c+2)(g+1)/a, f=l=s=0,n=c+1, q=uq; (28)

d=0b-1)(c+2)/f,g=(ab—a—f)/f,l=f,n=c+1,qg=a,s=0. (29)

2.2 Sufficient center conditions in the cases m(l;) > 2 and m(l,) > 2
or Cg =0

a) Darboux integrability.

Lemma 7. The following twelve sets of conditions are sufficient for system (2) to have at
origin a center:

() a=b=f=1l=n=s=0,c= -2, ¢=dg;

(i) a=d=f=l=n=q=s=0c= 2

(it) a=f=l=n=0,b=—c=1,q=d(g+1),s=—-1—g;

(1v) a=d=f=1l=q=0,c=—-1,n=1—-b,s=—-1—g;

(v) a=f=l=n=s=0,b=c+2,9g=—-1,g=d(c+1),c+2#0;

(vi)  b=c+2,d=(2a*—(c+1)(c+2))/a, f=1l=n=0,
q=(c+1)(a®—(c+2)(ctg+2))/a, s=a"—(c+2)(c+g+2);

(vii) a=d=f=l=q=5=0,c=-2,n=—1;

(viii) a=f=l=q=5=0,c=-2,9g=~bn=—1;
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(iz) a=f=l=q=s5=0,b=1,g=—-1,n=c+1,c+2#0;

() b=ld=(c+2(g+1)fa f=l=s=0rn=c+1l g=a,
a’(c+2g+4) = (c+2)(g+1)*=0;

(i) d=@0—-1)(c+2)/f,g=(@b—a-[f)/f,l=fn=c+]1 qg=aq,

$=0,2(f2= (b= 1+ (- 1)(a— f)f) +c(f* = (b—1)*) =0;
(xit) a=q=—f,d=0b-1)(c+2)/f,9g=—bl=f,n=c+1,s=0.

Proof. In all the cases (i)-(xii) the system (2) has in a neighborhood of origin (0,0) an
analytical integrating factor u(z,y):

in the case (i) pu(z,y) = (x — 1)72(1 + dy)~';

in the case (ii) u(z,y) = (x — 1) exp[20z/(1 — z)];

in the case (iii) p(x,y) = (x — 1)73~C6+29) exp [W — d*(g+ 1)1:];

in the case (iv) u(z,y) = (x — 1) 3 exp[2(b — 1)x];

in the case (v) p(z,y) = (mff;;fd"é(t;s) exp [d(cfz(fﬂ) +d(c+1)(y — dx)] :

in the case (vi) p(z,y) = CEyE C+21(1ax+y+ mEE

in the case (vii) p(z,y) = (x — 1 exp[2(1 — b)/(x - J;

in the case (viii) u(z,y) = 1/((z — 1)¥), where ¥ = (bx — 1)* — d(bx — 1)y — (b — 1)%*y?

(note that W is reducible in R[z, y|, i.e. W = lyl3, where [y and [3 are straight lines with real

coefficients);
2

o d _ d2
in the case (ix) p(z,y) = (zr — 1) 3 22 (14 2z + cx) ez exp[?(d+2y+cy)];

( ) A1)
in the case (X) ( ) — (131)4 exp[((C+2)(g+ig&2a1;(l+g+ay)];
(

in the case (xi) u(z,y) = 11)4 exp[((b_l)(c”)g(%{))(b L)),
in the case (xii) pu(z,y) = 1/((x —1)?®), where ® = f — f(2b—c—2)z+ (22 + (b—1)(c+
2))y+fblb—c—2) = f2)a®+(cf* = (b= 1)(c+2)(b—c=2)zy+ f(f* = (b= 1)(b—c—3))y

(note that ® = lyl,, where Iy and I3 are straight lines with real coefficients). O

b) Reversibility.
The system (1) (in particular, the system (2)) has a center at O(0,0) if there exists a
diffeomorphism

U=V, ®={x=0pX,Y),y=0X,Y)} &0,0) = (0,0)

which brings system (1.1) to a system with the axis of symmetry. In particular, if ¢(X,Y)
and ¢ (X,Y) are rational functions, then we say that (1) is rationally reversible (|31]).
In this subsection we consider the diffeomorphism of the form

{ CL1X + blY CLQX + bQY }
O=<r=

T aaX by -1 YT X by —

(30)

arby —azby # 0. Applying the transformation (30) to (1) we obtain a system of the form X =
R(X,Y)/L(X,Y), Y = S(X, Y)/L(X Y') which is equivalent in a neighborhood of O(0,0)
with the system X = R(X,Y), Y = S(X,Y). If R(X,Y) = Y + M(X2Y), S(X,Y) =
—X (14 N(X2Y)), ie.

X=Y+MX%Y), Y=-X(1+N(X%Y)), (31)
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then for (31) X = 0 is an axis of symmetry and therefore the system (1) has a center at

0(0,0).

Lemma 8. The following set of conditions are sufficient for the origin to be a center for
system (2):

c=-3b=-3/2,d=(a*+3)/a, f=g+1=1=n=0,q=—s/(2a). (32)
Proof. In conditions (32) the system (2) looks as

i=(1—-2)(2y+ 2ax® — zy)/2,

33
v = —(2ax — 2az* + 2(a® + s)zy + ay® + 2asz® — sx?y)/(2a). (33)
In a neighborhood of O(z,y) the transformation
ol _2X o
U x+2 Y T X2
reduces (33) to a system of the form (31):
X =Y + X%4a—Y —aX?)/4,
Y = —X(da+4(a>+s)Y +a(4s — 1) X2 + 2aY? + a®>X2Y)/(4a).
[l

2.3 Solution of the center problem in the cases m(l;) > 2 and
m(le) >2or C3=0

Theorem 2. The system (2) with the line at infinity and the invariant straight line xt—1 = 0
both of multiplicity two has a center at origin (0,0) if and only if the first four Lyapunov
quantities vanish.

Proof. Assume one of the sets of conditions (22)—(25) of Lemma 5 holds. In the case (22)
the first Lyapunov quantity looks as Ly = d(b+¢g) —q. If ¢ = d(b+g), then Ly = bdG,, L3 =
bdGs, Ly = bdGy, where G4, G3, G4 are polynomial in b, d, g. The remainders after dividing
G35 and G4 by Gy = 1+ 6b+ 3b* + 69 + 8bg + 5g* are, respectively, G3, = PRem|G3, Ga, g] =
2+ 4b + 6b* + 14b% — 6b* + 29 + 3bg + 14b%g — 6b%g and G4, = PRem|Gy, Ga, g] = 2(11079 +
40677b+ 67806b% 4 8222203 + 143414b* 4 119560b° — 60168b°) + (22158 + 702750 + 1035000 +
22666007 + 2391206 — 1203365°) g + 3175d2Gay. If b = 0 (d = 0), then Lemma 7, (i) (Lemma
7, (i1)) and if bd # 0, then the system Gy = G, = G4y = 0 has no solution.

Case (23). We have Ly =d(b+g)—qand L1 =0=¢=d(b+g) = L; =d(b—1)F};, j =
2,3,4.1fb=1 (d =0), then Lemma 7, (iii) (Lemma 7, (iv)). Let d(b—1) # 0. The system
in b,d,g: {Fy=F3, = Fy;,=0,b—1%# 0}, where Fy =2 +4b+ 3b? + 69 + 8bg + 5¢*, F3, =
PRem|F3, Fy, g] = 2(3+4b—100*+b63+3b*) 4+ (13— 13b—4b*+60*) g, Fyy, = PRem[Fy, Fy, g] =
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2(887—30520+98954b +20788b% —216554b* +51688b° +-60168b°) + (4977 +4645b+268740b* —
3559800° — 16960b* + 120336b°)g + 3175F3,d?, is incompatible.

In the case (24) the first Lyapunov quantity is L1 = d(c+ 1) — ¢. If ¢ = d(¢ + 1), then
Lemma 7, (v).

Under conditions (25) the first two Lyapunov quantities look as: L = fifs, Ly = fifs,
where f; = (@ — (c+2)(c+g+2)—s), fa=g+1and f3 =8a*(3+2¢c) — 4(a*(33 + 5a® +
30c + 7c? — 4s) + s2) fa — 2(8a® + a’c + 8s + 4cs) f3 — (5a®* + 4(2 + ¢)?) f3. If f = 0, then
Lemma 7, (vi), and if fo = f3 =0, i.e. g = —1, ¢ = —3/2, then Lemma 8. ]

Example 2. We consider the system (2). Ifa = f =1 =n =35 = 0,b = (/10 —
1)/3, c= =2, g = —2v/10/5, ¢ = —(/10 + 5)d/15, then m(l;) = 2, m(l) = 2, C5 # 0 and
L1:L2:L3:O,L47£O.

Theorem 3. The system (2) with degenerate infinity (C3 = 0) and the invariant straight
line x — 1 = 0 of multiplicity two has a center at origin (0, 0) if and only if the first Lyapunov
quantity vanishes.

Proof. In the case (26) the first Lyapunov quantity looks as L; = d(g + b). If d = 0, then
Lemma 7, (vii), and if g = —b, then Lemma 7, (viii).

The conditions (27) are the same as in Lemma 7, (ix).

In the case (28) if L; =0, i.e. a*(4+c+29) — (2+¢)(1+ g)> =0, then Lemma 7, (x).

In the case (29) the quantity L; has the form L; = (a + f)g1, where g, = 2(f* — (b —
D2+ 0b—=1)(a—f)f)+c(f*—(b—1)%).1If g = 0, then Lemma 7, (xi) and if a + f = 0,
then Lemma 7, (xii). O

3 SOLUTION OF THE CENTER PROBLEM FOR CUBIC SYSTEMS WITH AN AFFINE
REAL INVARIANT STRAIGHT LINE AND THE LINE AT INFINITY OF MULTIPLICITY AT
LEAST THREE

In this section we will solve for (1) the center problem in the case of configuration d)
from Fig. 1.1.

Without loss of generality we consider that the real invariant straight line is described
by equation x — 1 = 0, i.e. the system (1) has the form (2).

Theorem 4. The system (2) with the line at infinity of multiplicity at least three has a
center at origin (0,0) if and only if the first four Lyapunov quantities vanish.

Proof. The transformation X = x/(x — 1), Y = y/(z — 1) reduces the system (2) to the
system
X =X -1)(-Y +aX?+ (c+2)XY + fV?),
YV =—(X—(g+2)X2—dXY +(1-0)Y>+ (g4 s+ 1)X3 (34)
+d+q—a)X?Y +(b+n—c—2)XY?+ (I — f)Y3).

The line at infinity for (34) has multiplicity at least three if and only if one of the sets of
conditions (7)—(13) holds. Moreover, the system (34) with the line at infinity of multiplicity
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at least three has at (0,0) a center if and only if at least one of the series of conditions of
Lemma 3 and Lemma 4 is satisfied.

Under the conditions (21) the line at infinity has multiplicity three for system (34) and
Ly =Ly=1L3=0, Ly #0. O

The Main Theorem results from Sections 1-3.
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YV poboTi pO3rIAIAETHCs CUCTEMA ABOX AU(EPEHITIAJTBHUX PIBHIHD 13 KyOIYHUME MHOTOYIIE-
HaMU y TPaBUX YACTHHAX, JJIs KOl 3MiHHI Ta KoedirienTn HabyBaloTh [iiicCHUX 3HadYeHb. Jls
i€l cucremu Touka (0,0) € KpuTraHUM THIOM IeHTPa abo Gokyca. AKTyaJbHOIO € npobiema
pospisHenng nux TUiB (npodsema meaTpa). [lo9aToK KOOPAUHAT € MEHTPOM TOJI 1 TijabKU TO-
Ji, KOJIX BCl JIAMMYHOBCHKI Bewauuu Ly, Lo, ..., L, ... piBHI Hymio. ¥ BUNAKaX, KOJH CHCTEMA
Mmae gorupu (Tpu) pisui adinni npami y npangx O. Ily6e i 1. Kosbmu nokazano, mo Touka
(0,0) € menTp ToOxi i TiNBKM TOMI, KOIM AHYJIIOIOTHCS Ieprui aBi (CiM) JISMyHIBCHKI BeJIMIHHH.



52

SUBA A., VAcAarAs O.

V mux poborax I yac po3riisiLy IpodJeMu IeHTPY He BPAXOBYBaJlacsl KPATHICTH JIHIT Ha He-
ckingennocti (m(lw)) Ta adinnnx inBapianriux) npamux ((m(l;)). VY maniit crarTi ng 3amada
po3B’da3aHa 3a HasgBHOCTI mificHol adimmol iHBapianTHOI mpsaMmol [y, 3mificHeHO Kiacudikario
cucreM, jd akux m(ls) +m(ly) > 4, 1 noBeseno, 10 I0YATOK KOOPAMHAT € IIEHTPOM JIHIIE 38
PIBHOCTI HYyJIIO TEPIUX YOTUPHOX JIAYHOBCHKUX BeJIMdnH. 11pu J10BeIeHHI BUKOPUCTOBYIOTHCS
Meroau iHTerpopHocTi Jlapby, oboporrocti 2Kesonmeka Ta ysarajpHeHO! cuMerpil Yepkaca.
Hageneno nmpukia iy, mo BKa3yOTh Ha CyTTEBicTh Bumoru L = Ly = Ly = Ly = 0.

Karuosi caosa i hpasu: Kybiana qudepeHIiagbaa cucrema, npobseMa eHTpy, iIHBapianTHa
npsiMa.



