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PROPERTIES OF INTEGRALS WHICH HAVE THE TYPE OF
DERIVATIVES OF VOLUME POTENTIALS FOR DEGENERATED
%-PARABOLIC EQUATION OF KOLMOGOROV TYPE

In weighted Holder spaces it is studied the smoothness of integrals, which have the structure
and properties of derivatives of volume potentials which generated by fundamental solution of
the Cauchy problem for degenerated %—parabolic equation of Kolmogorov type. The coefficients
in this equation depend only on the time variable. Special distances and norms are used for
constructing of the weighted Holder spaces.

The results of the paper can be used for establishing of the correct solvability of the Cauchy
problem and estimates of solutions of the given non-homogeneous equation in corresponding
weighted Holder spaces.
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INTRODUCTION

While the fundamental solution is being constructed and investigated, correct solvability
of the Cauchy problem is being established and estimates of solutions for parabolic equations
are being obtained, properties of the corresponding volume potentials are very important.
These properties have been established for parabolic equations in the sense of Petrovsky and
for 2b-parabolic equations in the sense of Eidelman without any degenerations in [1, 2, 10|
and for equations with degenerations on the initial hyperplane in works [2, 9, 11, 13, 14].
Volume potentials for the degenerated arbitrary order parabolic equations of the Kolmogorov
type (ultraparabolic equations of the Kolmogorov type) were studied in |2, 5, 6, 7, §|.

It is convenient to obtain such properties if the statements about properties of integrals
which have the type of derivatives of volume potentials are proved before. These properties
VK 517.956.4
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are described by belonging such integrals to corresponding functional spaces according to
the type of spaces which density and kernel of the integral belong to. The densities of
these volume potentials belong to Holder spaces of bounded functions or of functions which
increasing as |r| — oo. Statements of such type are proved in works [2, 3, 4, 10, 12]
for parabolic equations in the sense of Petrovsky, for parabolic equations in the sense of
Eidelman and for degenerated arbitrary order parabolic equations of the Kolmogorov type.

In this paper we proved some corresponding statements in case of the Kolmogorov type
equations, where the major part of equations are parabolic in the sense of Eidelman (2b-
parabolic) with respect to basic independent variables.

1 NOTATIONS AND ASSUMPTIONS

Let ny, no, ng be given positive integer numbers such that 0 < ng < ny < ny, n:=n; +

ng + ng; by, ..., by, are some numbers in N; z := (21,29, 23) € R", 27 := (21, ..., 21;) € R™,
le L :={1,2,3}; Tis a posiktive number; if ky = (k11, ..., k1p,) € Z' is a ny-dimensional
index, than OF := f11 . . 9yt

Denote by 2b the vector (2by, ..., 2b,,), by b the least common multiple of the numbers
b1, ..., bny, by m; a number b/b;, j € {1,...,n1}.
The paper is concerned with the study of properties of integrals of the type

u(t,x) = /dT/M(t,x;T, f(r,8)dE, (t,x) € lpm = (0,T] x R". (1)
0 Rn

The kernel M is a complex-valued function which has properties of the derivatives of the
fundamental solution G of the Cauchy problem for the equation

no ns
(O — Z%;@m - Z$2jaac3j - Z akl(t)al;i)u(t7x) = f(t,z), (t,z)€ o017, (2)
j=1 7=1

lkr (<26
ny
where ||k1|| :== Y m;ky; for ky € Z7'. In the equation (2) coefficients ay, are continuous on
j=1
[0, 7] functions and differential expression &, — >  ay, (£)0F is uniformly 2b-parabolic on
[k1ll<2b

[0,7] x R™, that there exists a constant 6 > 0 such that for all ¢ € [0,7] and o1 € R™ the
inequality
ny
Re > a,()(io)™ <=8 iy
ll51 /=20 Jj=1
is valid. In the expression ¢ is an imaginary unit.

If ng > 1 then the equation (2) degenerates with respect to two groups of variables
and x3. When ng = 0 and ny > 1 then in the equations (2) the second sum is missing and
degeneration is present with respect to one group of variables x5. In the case ny = ng =0
the equation (2) doesn’t have the first two sums and it isn’t degenerated.
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The equation (2) with ny > 0 is degenerated equation of Kolmogorov type with 2b-
parabolic part with respect to main variables. It generalizes the known equation of A.N.Kol-
mogorov of diffusion with inertia. There is a fundamental solution of Cauchy problem
(FSCP) G for it, detail properties of which is given in [2].

In [2] it was established a structure and properties of the function G and its derivatives.

Let us describe properties of the kernel M of the integral (1). For this purpose we denote:
q; = 2b;/(2b; — 1), j € {1 nl} m’ and m” are the most and the least of the numbers

mj, j € {1,...,n1}; Ny : Z Z(?b(l —1)4+m;)/(2b), s € L, N := Ns. For any {z,2/,{} C

R™: A f(t,z) = f(t,x) —]J;(t,x); T1;(t) = 21y, § € {1,...,m}; Toi(t) = we; + tzyy,
J € {1, ..yna}; Tai(t) = a3 + tag; + (t2/2)z15, § € {1,...,n3}; T(t) = (T (t), ..., Tun, (1)),
L e M; Xi(t) == (71(1), 72(t), T3(0)); Xo(t) = (&, 72(1), T3(t)); Xs(t) = (&1, &2, T3(t));

3 my 3
p(t,z,&) = Z Z [T (t) — €519 d(25 65 X) = Z Z |y — &V PUDAMD) g (256 0) =

’ " ) 22
Z 215 — &;I”m%z Z |y — & | AT/ U=DHm) o (3, €5 ) = Zl|$1j—fljwm"+zl|$2j—
= ‘]:

13
52»|<A+m )/ (@b+m;) +Z\xsj Egy| P20/ ma) i X € (0,1]; d(;€) = d(x;; 1).

Note, that if d(x 2') < 1, then with some ¢ > 0 the next inequalities
do(z;2"; N\) < dy(z;2"; X)) < d(x; 2’3 \) < cd(z;2'), {z, 2’} C R, \ € (0,1]

are hold.
As the kernel of the integral (1), let us take the function M, which can be represented
in the form

M(t,z;7,8) = (t —7)"" Nt z;7,6), 0<7<t<T, {r,& CR, (3)

where v € (0,2 + m//(2b)], and the function €, with the values in C, is continuous and it
satisfies the conditions below with some numbers ¢ > 0 and ~ € (0, 1]
Ay Y{t, 7} C (0,T], T <t, Vo € R":

/Q(t,m;7,§)d§ =0 forve (1-1/(2b),1],

R

/ Qt, z;7,8)déydés = 0 for v e (1,1 +m'/(2b)], (4)

Rn2+n3

/ Qt,z;7,8)dés =0 for v e (1+m'/(20),2+m'/(2b)];
R"3

Ay 3C >0 V{t, 7} C (0,T], 7 <t, V{x,&} CR™:
|Q(t,2;7,8)| < Cexp{—cp(t —T,2,&}; (5)
As. 3C > 0V{t, 7} C (0,T], T < t, V{z, 2", &} C R, d(z;2) < (t — 7)Y/ ),

AT Qt ;7€) < C(d(w;2')) (¢ — )7 exp{—cp(t — 7.2, €)} (6)
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are true. In the conditions A, A3 and below, we denote by the letter C' all positive constants
the values of which are unimportant.

The definition of the function M contains the number v, ¢ and 7, which assume are
considered to be given. By M(v,¢,v) we denote a set of all functions M determined by
the formula (3), in which the function Q satisfies conditions A; — Az with given v € (0, 1],
ve (0,2+m'/(2b)], c € Ry.

It should be noted that for v € [1,2 + m//(2b)] integral (1) with the function M €
M(v,c,7) is treated as the limit

t—h
lim dT/M(t,{E;T,f)f(T,f)df,
R

h—0
0

which exists for suitable f, because of condition A;.

Let us define spaces to which the functions f and u belong. They are the spaces of
functions which are continuous or satisfy Holder condition and which have certain restrictions
as |x| — oo. Their behavior as |x| — oo will be described by the functions

3 m
p(t,x) = exp Yy > ki(t, ay)|wy|®

=1 j=1

or
ng

Y(t,x) = expz s1;(O)|xi|%, t € [0,T], v € R™.

=1 j=1
Here for a fixed number ¢, from the interval (0, ¢), where ¢ is the constant from the conditions
Ay and As, and for a set a = (a1, a9,a3) € R", a; :== (aj1, ..., am,), | € M, of non-negative
numbers a;;, j € {1,...,m}, Il € M, such that T' < min  (co/ay;) D/ (=D,

klj(t,alj) = Coalj(Cgbjil — a?;jilt%j(l_l)—‘rl)l_q]', j < {1, ...,nl}, l < L;

Slj(t) = k’lj(t, Cllj) + 2‘“*19(712 — j)tqjk2j<t, sz) + 2qﬂ‘*29(n3 —j)tijkgj(t, agj),j € {1, ceey nl},
ng(t) = qu_ll{?gj(t7(l2j) + 4q'7_19(n3 —j)tqjk’gj(t,agj), ] S {]_, ...,TLQ};
s3;(t) == 4% ky;(t, as5), j € {1,....n3}; t € (0,7,

where §(7) =1 for 7 > 0 and 6(7) = 0 for 7 < 0.

The functions k(t) := (ki(t, a1), ka(t, az), ks(t, as)), ki(t,ar) == (kn(t, an), ., ki, (¢, am,)),
l € L, and s(t) := (s1(t), sa(t), s3(t)), where s;(t) := (sp1(t), ..., s, (t)), l € L, t € [0,T], have
the following properties |2, §]:

k?(()) = a,q < kilj(T, alj) < k’lj(t, CLU) < Slj(t), 0<r<t< T,j c {1, ...,nl},l c L; (7)

kl]’(t -7, kl]’(T, Cllj)) < klj(t,alj),() <7<t< T,] S {1, ...,nl},l e L; (8)

3 ny 3 ny
—cop(t =72, 8) + Y Y ala|P <Y Y ki(t a) |z ()] Y <

=1 j=1 =1 j=1
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J
<Y syl 0<T<t<T fa. g} CR, (9)
=1 j=1
3 ny 3 Ny
—cop(t = 7,2, ) D Y k()19 <Y O (ka9 <
I=1 j=1 =1 j=1
3
Zzsl] B)|z|%, 0<7<t<T, {x,£} CR" (10)
=1 j=1
From these properties it is follows that
QO(T’ Xl(t - T)) < 90<t’X1(t)) < ¢(t,:)ﬁ),
exp{—cop(t — 7. 2,8)}p(1.§) <WY(t,x), 0<7<t<T, {x& CR" (11)

For a given number A € (0, 1] we denote by C°, C2, C}} » and C’Q ,, the spaces of continuous
functions u : IIjpz) — C, for which the corresponding norms |[ul2, [[ull} := [Jul| + [u]}

(,07
||u||i\<P = [|ul] + [U]i\,¢ and ||u||§‘¢ = [|ul| + [u]3,, are finite, where

u(t,x
= sup 02
(t,@)ellp 1) o(t,x)

)

|AZ u(t, x)|
[u] sup —— —,
(arneanyeng o (@ 2) (et x) + ¢(t, 7))
(t2)(t,a!)
[U]A L sup |A§lu(tv l’)’
l,p "™ )
P wanteneng A1 N) (et ) + ot 7))
(t.a)#(t.a')
[u])\ - sup |Ailu(t7 l‘>|
2O ey g da(T; 2 N) (@(t, ) + @t 2))
(t,2)#(t,z")

Except these spaces we will use the space Cﬁ. The definition of this space is obtained if
in the definition of the space C’;’\ the function ¢ replace by the function ¥

2  MAIN THEOREM

Let us formulate the main results of this paper.

Theorem. Let M € M(v,c,~) and function u is determined by the formula (1). Then the
following statements are valid:

a) if v <1—1/(2b) and f € C°, then u € C}, and

lully, < ClIfI: (12)

b) if v € (1 —1/(2b),1] and f € C}, A € (0,1], then with v + (y — A)/(2b) < 1 we have
u € C), and

lully, < CIIAI, (13)
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and with v + (y — X)/(2b) > 1 we have u € C}) and
[lull3 < CIIFII: (14)

c) ifve (1,14 m'/(2b)] and f € C?,, X € (0,1], then with v+ (y —m' — \)/(2b) < 1
we have u € C and
lul[ < ClIfII, (15)

and with v + (y —m’ — X)/(2b) > 1 we have u € C}) and
[lully, < ClIAIR (16)

d) ifv e (14+m'/(20),2+m'/(2b)] and f € C3,, A € (0,1], then with v — 1+ (y —m/ —
A)/(2b) < 1 we have u € Cj, and
lul[}, < CllflI2, (17)

and with v — 14 (y —m' — X)/(2b) > 1 we have u € C}) and
lully < ClIf115- (18)

The constants C' in the inequalities (12)—(18) depend only on the constant C' from the
conditions Ay and As, and also they depend on the numbers ny, ns, n3, b, v, ¢, v and .

Proof. We will denote by the same letters the below various constants if we have no interest
in constant’s values.
a) Using the equality [2]

/(t — 1) Nexp{—cp(t —7,2,)}dE=C, 0<T7<t<T, z€R" ¢ >0, (19)
Rn
with the help of (3), (5), (11) and of the definition of the norm || f||?, we have

t

ju(t, z)| < C/(t - T)‘”‘NdT/exp{—cp(t =72, (7, §)ldg

= | —) " Ndr | exp{—cop(t—T,x T |f<77§>|ex —(c—c —T, T
- / (t=m) N / p{—con(t = 7.2, b ) L expi{—(e—calplt =, )b
< Cl/)(tw)/(t—T)_”dTHflliZC@D(tax)tl_”Hng? (t, z) € o7 (20)

0

Let x and 2’/ be arbitrary fixed points from R" and d := d(z;2’). Let us estimate the
difference A u.
When d? > ¢, with the help of estimate (20) we obtain

AL ult, )| < Jult,@)] + u(t, )| < Ot x) + (2t FIIS
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< C((t,2) + vt a"))(d(zs ') e @V F1 ¢ e (0,T], {z,2'} CR", v € (0,1]. (21)

Let us consider the case when d?® < t. We have
t
Auto) < [ar [187ME s OO te O.T], {na} cRY (@22
0 R®

Let us prove for the difference AM := A¥ M(t, x; 7€) the inequality
AM] < Cd (¢ — 7)) N exp—ep(t — 7,2, )}, (23)

We shall distinguish the following cases: 1) d® >t —7,2) d® <t — 7.
In the first case, we obtain estimate (23) immediately from (3), (5) and from the inequality
IAM| < |M(t,z;7,&)| + |M(t,2';7,€)|. In the case 2) note that

AM = (t — T)_”_NAfQ(t, 7, §).

Because of (6) we have estimate (23) in case 2).
With the help of (11), (19), (22) and (23) we get

|AZu(t,x)| < C((t, ) + bt a'))d e =@ | ]9,

€ (0,71, {z, 2"} CR", 7y € (0,1]. (24)
From (21) and (24) the estimate

[uly, < CIIIG

follows and by this result and (20) the estimate (12) holds.
b) Let v € (1—1/(2b), 1]. Because of the first condition from (4) we represent the integral
(1) in the form

t

u(t,z) = /dT/M(t,x;T, f)A?l(t_T)f(T, §)dg, (t,x) € Ilomn. (25)
0 Rn
With the help of (3), (5) and (7)—(11) we get

Ju(t, )| < C / (t— ) Ndr / exp{—(c — co)plt — ., )} exp{—coplt — 7,2, £)}

0 R

AT f (7€)
(1,8) +o(r, Xq(t—7

< (o7, €) ol Xalt = 7)) < / (t— 1) Nar

x /eXp{—(c — co)p(t — 7,2, &) }(d(&, Xu(t — 7)) dE(t, ) [f]3.

Rn
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Now let us use the inequality [2]

(d(&, X (t — 7)) exp{—ep(t — 72,8} < Ot — 7)Y exp{—cip(t — 7,2,)},
0<7<t<T, {z,§} CR", 0<¢c <e Ae(0,1]. (26)
For ¢ = ¢ — ¢o with the help of (19) we have

t

u(t,z)| < C / (t — )" NN @) gr / exp{—cip(t — 7,x,&)}dE(t, 2)[f1

0 R
= C(t, 2) 1} /(t — )N = Cup(t, )[RV (1 x) € o . (27)
0
Then
[|ull, < CLfI (28)

Let us estimate the difference A%u. If d%* > ¢, where d := d(x;2'), then under condition
(27) we have the estimate

AT u(t, 2)| < C((t, @) + bt )15t e (0,T], {x,¢} CR™
We obtain
AT u(t, @) < C(t ) + vt 2))[fIpd
< C(y(t,2) +y(t,2)d[fI, t € (0,T], {z,&} CR", (29)
for any {v, A} C (0, 1], including where v + (v — A)/(2b) > 1; and with v + (y — A)/(2b) < 1
we receive from (27)

AT u(t, z)| < C(i(t, ) + (¢, ) [t O/ o)

< C((tx) + p(t ) [flpt 07V @
< C((t,2) +(t,a)d[f]5. t € (0,T], {z,&} CR™ (30)
It is sufficient to consider case, where d® < t. By the first condition from (4) like (25)

we write
t_de

AT u(t,x) = / dr / ANt m, €) AV f(r, €)de

TL

/dT/Mt:L'T§ AT f (7€) de

t—d2b

3
/ dT/M (t,2';7,€)A )f(T,g)dg ::ZKZ, (31)
=1

t—d2b

where X (t) := X1 (t)]p=u-
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Using (3), (6), the second inequality from (9), (11), we get

t—d?®
K| <C / (t—7)"Ndr / (d(w;2))(t—7) " exp{—cp(t — 7,2, ) AL f(7,€)]de
0 Rn
t—d??
< [ t-ryNar [ @)y n) B ep—eplt - 0.€))

0 R™
t—d?®
¢ <C / (t— 7)™ Ny

0

X /i/f(t, x) exp{—(c — co)p(t — 7.2, &) }(d(& X (t — 7)) dEd[f1.

AT (9
(7,€) + (7, Xa(t = 7))

X(p(7,€) + (7, Xat - T)))(p

Now let us use the inequality (26) and equality (19). We get

t—d2b

Kl ca [ (@ ry 0 Barg o)1 32
0

If v+ (v —A)/(2b) < 1, then from (32) we obtain
(K| < Ca ot ) [l = 1) =O7VEE

= Cdp(t, ) [ fI5 (¢~ — @2 U=)=300) < Cdvap(t, ) [ f])-

©
If v+ (y—A)/(2b) > 1, then from (32) we obtain

K| < Cdp(t,2)[f1(E — 7)== — oqr(t, )£ (a0~

_tl—y—(y—k)/(%)) < Cdzb(l_y)+/\77/)(t, x)[f]g _ Cd%b(t,x)[f]j;.
Let us estimate K5. With the help of (3), (9), (11) and (26) we obtain

t

[Ko| < © /(t—T)”NdT/(d(S;Xl(t—T)))Aexp{—cp(t—ﬂx,ﬁ)}

t—d?b R

t

X (p(7,€) + (7, Xa(t — 7)))d[ ) < © / (t— )N

t—d?b

x / (d(€ Xy (t — 7)) exp{—(c — eo)plt — 2, ) }(t, 2)dE 1

<C / (t— )N gy / exp{—cip(t — 7,7, )} (t, x)dE[ 1.

t—d2b R™
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Using (19) with ¢ = ¢, we have

t

Ky <C / (t— 7)) eyt 2)[f12.

t—d?b
Since —v + A/(2b) > —1, we obtain

Kol < Ot = 7)Yyt 2) [} = O (1, @) [ ] (33)

)

and thus, we have
K| < CP a4 (t,2)[f]) < Cao(t, 2)[f]3,

if v+ (y—A)/(20) > 1. In case, where v+ (y—\)/(2b) < 1, we receive from (33) the following
inequality
o] < Ca =0 (t, ) [f]; < Cd(t, )[f]3.

By the similar way we obtain

| Ks| < Cdy(t,2')[f];

P

in case, where v € (1 —1/(2b), 1], and

K| < Cdvy(t,2)|[f]3

¥

in case, where v € (1 —1/(2b),1] and v — (v — A)/(2b) < 1.

From (28), (29), (30) and from the estimates for K, [ € L, the estimates (13) and (14)
follow with v € (1 —1/(2b), 1].

c) Let v € (1,14 m//(2b)]. Because of the second condition from (4) we represent the
integral (1) in the form

ult, ) = / dr / ( / (t—7) " NQt, 7, AT f(T7§)d§2d§3)d§1,
0 R

"1 Rne2tng
(t, {L‘) S H(O,T]~ (34)
With the help of (3), (5) and (7)—(11) we get

t

lu(t, )| < C’/(t — T)_”_NdT/eXp{—(c— co)p(t —7,2,8)}

0 R™

AT (7, 9))
7,&) + @(7, Xa(t — 7))

X eXp{—CQp(t - T, T, {)}(90(7, f) + @(7—7 XQ(t - 7—)) ‘,0( d§

<C /(t — )" Ndr / exp{—(c — co)p(t — 7,2, }d1(& Xo(t — 7); \)dsp(t, )] -

]Rn
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The inequality below follows from definitions of d, d; and X:

di(& Xo(t — 1) Z 1€ — @y(t — 7)|OFm)/ @D+
1=2

A+m/
¢ (Z & — @t — )|/ 0 ”“) = C(d(& Xa(t =)™,

0<7<t<T, {z,§} CR", Xe(0,1].

Here C' > 0 is some constant. Then take to account inequality (26) we have

di(& Xa(t — 7); A) exp{—ep(t —7,2,€)} < Cd(& Xa(t — 7)) exp{—cp(t — 7,2,€)}
< C(t =)V exp{—eip(t — 7, 2,6)},
0<7<t<T, {z,§} CR", 0<c<e Ae(0,1]. (35)
For ¢ = ¢ — ¢y with the help of (19) we have

tx|<<<;/’ v Nl )/ 2®dr/¥mp{—aumt—7yas>hﬁ¢maxnfnw

R™
t

= Cy(t, 2)[fl / (t = 7) 7O dr = Cyp(t, ) [fI7 7V (1 w) € To .

L
0

(36)
Then
ully, < CIfR - (37)

Let us estimate the difference A% u. If d®® > ¢, where d := d(x;2'), then under estimate

(36) we have the inequality
AT u(t,x)| < C((Ex) + (t,2))[f]] d e

< C(U(t,2) +u(t,2))d[fl,, t € (0,T], {z,} CR", (38)
and with v + (v —m/ — X)/(2b) < 1 we receive

AT uft, )| < CUb(E2) + it ) [f 10—
< C(Y(t,x) +(t, x’))[f]i\wtl—v—(v—m’—/\)/(?b)dv
< C(tz) +o(t,2))d[fl1,, t € (0,T], {x,£} CR™ (39)

It is sufficient to consider case, where d* < t. By the second condition from (4) like (34)
we write

t— d2b

u(t, ) / ar [ (] MG n AT p . deadss) de

R"1 Rnr2tn3
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/ dT/ / Mt 257, 6)AX ) f(r, §)d§2d§3>d§1

t—d2b R"1 Rn2tn3
/ dT/ / M(t, 2’7, ) A f(r, §)d§2d§3)d§1 = ZKZ,
t—d2b R™1 Rn2+n3

where X)(t) := Xo(t)] =0
Using (3), (6), the second inequality from (9), (11), we get

t—d?®

Kl <0 [ = Nar [y -

0 Rn

xexp{—cp(t —7,2,8)}(p(7, &) + @(7, Xo(t — 7)))

t—d2b

jae=c / (t—7) NPy

0

X /@Z)(T, z) exp{—(c—co)p(t — 7,2,)}da (& Xa(t — 7); ) dEd [f]1 .-

AT f(r €
o(1,6) + (1, Xo(t — 7

Now let us use the inequalities (35) and equality (19). We get

t—d?®

K| < Od / (t — 1) N/ @O/ g / (1, x) exp{—crp(t — 7, x, &) }dE

0

t—d?®

xd'[f]}, = Cd / (t — 1) O =Ny (8, 2)[ 17,
0
If v+ (y—m'—X)/(20) > 1, then

(40)

Ky < CdV(t, )[f1} ,(t — 7)==/ @A = Ot z) [ f]3 (a2

_tlfuf(’yfm’f)\)/(%)) < Cd?b(lfu)er’Jr/\w(t’x)[f]i\so < CdA?ﬂ(t .73)[f]
If v+ (y—m'—X)/(2b) < 1, then

G| < Cdot,a)[fl (t = 7) 707 NP = Cdy(t2)[f]R,

(e NIEH ) < O (e, ) (1),

Let us estimate Kj. With the help of (3), (9), (11) and (35) we obtain

t

K3l < C / (t—T)‘”‘NdT/dl(é;Xz(t—T);A)exp{—cp(t—ﬂx,f)}

t—d2b R™
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X ((7,€) + (1, Xt — 7)))dE[f]}, < C / (t — )"Ndr

x / 0y Xt — 7); A) exp{—(c — co)p(t — 7.2, €) (L, )€ [,

R
t

<c / (t — ) NHN @ g / exp{—aplt — 7.2,)y(t, 2)dELf1,
t—d2b R"

Using (19) with ¢ = ¢;, we have

Kyl <C / O Oy, 2) [
—g2b
Since v — (m’ + X)/(2b) < 1, we obtain
’Ké’ < O(t )1 v+(m’+X)/(2b) ‘t dzt (If, x)[f]i(p _ Cde(l—l/)+m’+)\¢(t’ x)[f]i\,gp (41)

The estimate

Ky < Cd a0 0yt 2)[f]), < CdY(t @) [f]7,

L
follow from (41) if v + (y —m' — X)/(2b) < 1, and the estimate
K| < Crd®TH (4, 2) [}, < C(t, @) [f1h,
if v+ (y—m'—X)/(2b) > 1
By the similar way we obtain
K| < Cdy(t,2)[f]3,
in case, where v + (y —m/ — \)/(2b) < 1, and
K| < Cdy(t, ') [f]i

Le
in the case, where v + (y —m/ — \)/(2b) > 1
From (37), (39), (40) and from estimates for K7, [ € L, the estimates (15) and (16) follow.
d) This case can be proved by the similar way as the case ¢). We must use the third
equality from (4); representation of the integral (1) in the form

u(t, ) /dT / / — )Nt @ §)A; AT f(T,S)dfz)))dflde, (t,r) € o7,

Rn1+n2 R"3
and estimates
do(&; X5(t — 7); A) exp{—cp(t — 7,2,8)}
< C(d(& Xs(t =)™ " P exp{—ep(t — 7,2,€)}
< Ot — 1) F2AN/ @) oxp & p(t — 7,2, €)Y,
0<7<t<T, {z,£} CR", 0<e¢ <e, A€ (0,1].

These estimates are obtained in the same way as estimates (35). ]
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Ipous B.C., Memuncekuii 1.II. Baacmusocmi iwmezpasie muny norionux 6id 0b’emHozo no-
MEHYIANY OASL BUPOIAHCEHO20 %—napa@m“moao pienarnna muny Koamoeoposa // BykoBuncbKuii
mareM. )xypHaia — 2021. — T.9, Ne2. — C. 7-21.

IIpu mobymosi i gocimkerHi OYHIAMEHTAJIHLHOTO PO3B’ 3Ky, BCTAHOBJIEHHI KOPEKTHOI PO3-
B’st3r0CTi 337241 Kot Ta ofepKkanHi OMiHOK PO3B’sA3KiB MapaboiYHIX PIBHAHD BaXKJINBE 3HA-
YeHHs MalOTh BJIACTUBOCTI BIANOBLIHMX 00’eMHUX IoTeHmiaJis. Taki BIacTUBOCTI BCTAHOBJIE-
Ho jjis mapabosiunux 3a IlerpoBchkum i 2b-mapabostiuaumx 3a EffgenrbmanoM piBHSHL sk 6e3
YCAKUX BUPOJKEHBb, TaK 1 3 BUPOJZKEHHSIMHU HA IMOYATKOBI rimepriomuni. TakoxK BUBYAINAC
00’eMHl moTeHmia M Jjisi BUPOJzKeHUX napabosiuaux tuny Kosmoroposa (yiabrpanapabosiaaux
tuny Kosimoroposa) piBHgHB J0BlabHOrO mOpsiaky. [IpoTe snine jyis piBHSAHD APYroro Hopsiji-
Ky Oy/m BCTAHOBJIEHI BJIACTHUBOCTI 00’€MHHMX ITOTEHINAJIB i3 I'yCcTHHOIO 3 mpocTtopiB Lemabmepa
06MesKeHnX 1 3pocTaunx npu |x| — 0o dyHKIi.

Taxki BIacTUBOCTI 3pYyYHO OTPUMYBATH, SIKINO TMTOMEPEIHBO JOBECTU TBEP/KEHHSI PO BJIa-
CTMBOCTI iHTErpaJiB THUIly MOXiTHUX BiJ 00’emHmx morenmiasiB. Lli BiracTuBOCTI OMUCYIOTHCS
HAJIEXKHICTIO TAKUX 1HTErPAJIiB 0 BiAMOBIIHIX (DYHKIIOHAJIBHUX IPOCTOPIB 3aJI€2KHO BiJI TOTO,
JI0 SIKUX IPOCTOPIB HAJIE’KUTH T'YCTUHA Ta SAJIPO iHTerpaJa.

VY cTarTi pO3ISIAI0OTHCSA iIHTErpain, IKi MalOTh CTPYKTYPY Ta BJIACTUBOCTI, TO/II0HI 10 TT0-
XiHUX Bij, 00’€MHUMX MOTEHINAJIIB, MOPO/KEHNX (DyHIaMeHTaJIbHUM PO3B’si3KoM 3ajadi Korri
JIJIsT BUPOJIZKEHOro 2b-mapabosiunoro piBasinast Tuny Kommoroposa. Koeditientu 1iboro pie-
HSHHS 3aJ1€KaTh TiJIbKK BiJl 9acoBOl 3MiHHOI. 3aJIe?KHO Bif[ pO3MIPHOCTI Py MPOCTOPOBUX
3MIHHUX PIBHSIHHS MOYKE BUPOJZKYBATHCS 3a IBOMa 200 OIHIE€I0 TPYTIOI0 TPOCTOPOBUX 3MIHHUX,
abo HaBiTh MOXKe OyTH HEBUPOJKEHHUM 2b-niapabosivnum 3a EiiepMaHOM PIBHAHHAM.

st moGytoBu mpocTopis 'ejibiepa BUKOPUCTOBYIOTHCS CIIEIAJIBHI BiJICTaHI Ta BAroBi HOP-
mu. Bincrani BpaxoBYIOTh aHI30TPOIHICTH 3a MPOCTOPOBUMHE 3MIHHUMU PiBHSHHS, SKE MOPO-
KY€ iHTerpasm, mo po3IVISIaloThCA. BaroBumu (GyHKINSIMA € €KCIOHEHTH, SKi HeOOMEXKEHO
3POCTAIOTh LU || — 00 1 THH IX 3POCTAaHHS CHeIaJlbHUM CIIOCOOOM 3aJIe2KUTh BiJl 3MIHHOI .

Pezynbratnn poboTn MOXKYTH OYTH BUKOPUCTAHI JJIsT BCTAHOBJIEHHS KOPEKTHOI PO3B’SI3HOCTI
zajiadi Ko Ta OmiHOK pO3B’si3KiB JAHOI'O HEOIHOPIIHOTO PIBHSIHHS Y BiJIIIOBIJIHUX BaroOBUX
npocropax ['enpaepa.
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