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RELATIVE GROWTH OF ENTIRE DIRICHLET SERIES WITH

DIFFERENT GENERALIZED ORDERS

For entire functions F and G defined by Dirichlet series with exponents increasing to +∞

formulas are found for the finding the generalized order ϱα,β [F ]G = lim
σ→=∞

α(M−1
G (MF (σ)))

β(σ)

and the generalized lower order λα,β [F ]G = lim
σ→+∞

α(M−1
G (MF (σ)))

β(σ)
of F with respect to G,

where MF (σ) = sup{|F (σ+ it)| : t ∈ R} and α and β are positive increasing to +∞ functions.
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Introduction

Let f and g be entire transcendental functions and Mf (r) = max{|f(z)| : |z| = r}.
For the study of relative growth of the functions f and g Ch. Roy [1] used the order
ϱg[f ] = lim

r→+∞
ln M−1

g (Mf (r))/ ln r and the lower order λg[f ] = lim
r→+∞

ln M−1
g (Mf (r))/ ln r

of the function f with respect to the function g. Researches of relative growth of entire
functions was continued by S.K. Data, T. Biswas and other mathematicians (see, for example,
[2, 3, 4, 5]) in terms of maximal terms, Nevanlinna characteristic function and k-logarithmic
orders. In [6] it is considered a relative growth of entire functions of two complex variables
and in [7] the relative growth of entire Dirichlet series is studied in terms of R-orders.

Suppose that Λ = (λn) is an increasing to +∞ sequence of non-negative numbers, and
by S(Λ) we denote a class of entire Dirichlet series

F (s) =
∞∑
n=1

fn exp{sλn}, s = σ + it. (1)

For σ < +∞ we put MF (σ) = sup{|F (σ+ it)| : t ∈ R}. We remark that the function MF (σ)

is continuous and increasing to +∞ on (−∞, +∞) and, therefore, there exists the function
M−1

F (x) inverse to MF (σ), which increase to +∞ on (x0, +∞).
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By L we denote a class of continuous non-negative on (−∞, +∞) functions α such that
α(x) = α(x0) ≥ 0 for x ≤ x0 and α(x) ↑ +∞ as x0 ≤ x → +∞. We say that α ∈ L0, if
α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞. Finally, α ∈ Lsi, if α ∈ L and
α(cx) = (1 + o(1))α(x) as x → +∞ for each c ∈ (0, +∞), i. e. α is a slowly increasing
function. Clearly, Lsi ⊂ L0.

If α ∈ L, β ∈ L and F ∈ S(Λ, +∞) then the quantities

ϱα,β[F ] = lim
σ→+∞

α(ln MF (σ))/β(σ), λα,β[F ] = lim
σ→+∞

α(ln MF (σ))/β(σ)

are called [8] the generalized (α, β)-order and the generalized lower (α, β)-order of F accord-
ingly. We say that F has the generalized regular (α, β)-growth, if 0 < λα,β[F ] = ϱα,β[F ] <

+∞.
We define the generalized (α, β)-order ϱα,β[F ]G and the generalized lower (α, β)-order

λα,β[F ]G of the function F ∈ S(Λ) with respect to a function G ∈ S(Λ), given by Dirichlet

series G(s) =
∞∑
n=1

gn exp{sλn}, as follows

ϱα,β[F ]G = lim
σ→+∞

α(M−1
G (MF (σ)))/β(σ), λα,β[F ]G = lim

σ→+∞
α(M−1

G (MF (σ)))/β(σ).

The following theorems are proved in [9].

Theorem (A). Let β ∈ L and γ ∈ L. Except for the cases, when ϱγ,β[F ] = ϱγ,β[G] = 0

or ϱγ,β[F ] = ϱγ,β[G] = +∞, the inequality ϱβ,β[F ]G ≥ ϱγ,β[F ]/ϱγ,β[G] is true and subject to
the condition of the generalized regular (γ, β)-growth of G this inequality converts into an
equality.

Except for the cases, when λγ,β[F ] = λγ,β[G] = 0 or λγ,β[F ] = λγ,β[G] = +∞, the
inequality λβ,β[F ]G ≤ λγ,β[F ]/λγ,β[G] is true and subject to the condition of the generalized
regular (γ, β)-growth of G this inequality converts into an equality.

Theorem (B). Let 0 < p < +∞ and one of conditions is executed:

а) γ ∈ L0, β(ln x) ∈ L0,
dβ−1(cγ(x))

d ln x
→ 1

p
(x → +∞) for each c ∈ (0,+∞) and

ln n = o(λn) (n → ∞);

b) γ ∈ Lsi, β ∈ L0, ϱγ,β[F ] < +∞,
dβ−1(cγ(x))

d ln x
= O(1) (x → +∞) and ln n =

= o(λnβ
−1(cγ(λn))) (n → ∞) for each c ∈ (0,+∞).

Suppose that γ(λn+1/p) = (1 + o(1))γ(λn/p) as n → ∞.

If the function G has generalized regular (γ, β)-growth and κn[G] :=
ln |gn| − ln |gn+1|

λn+1 − λn

↗
+∞ as n0 ≤ n → ∞ then

ϱβ,β[F ]G = lim
n→∞

β

(
1

p
+

1

λn

ln
1

|gn|

)
/β

(
1

p
+

1

λn

ln
1

|fn|

)
except for the cases, when ϱγ,β[F ] = ϱγ,β[G] = 0 or ϱγ,β[F ] = ϱγ,β[G] = +∞.

If, moreover, κn[F ] ↗ +∞ as n0 ≤ n → ∞ then

λβ,β[F ]G = lim
n→∞

β

(
1

p
+

1

λn

ln
1

|gn|

)
/β

(
1

p
+

1

λn

ln
1

|fn|

)
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except for the cases, when λγ,β[F ] = λγ,β[G] = 0 or λγ,β[F ] = λγ,β[G] = +∞.

Similar results in terms of R-types are obtained in [10].
Here we consider the general case when α ̸= β.

1 Analogues of Theorem (A)

We begin from the following general theorem.

Theorem 1. If α ∈ L and β ∈ L then:
1) the inequalities

ϱγ,β[F ]

ϱγ,α[G]
≤ ϱα,β[F ]G ≤ ϱγ,β[F ]

λγ,α[G]
(2)

are true for each function γ ∈ L except for the cases ϱγ,β[F ] = ϱγ,α[G] = 0,
ϱγ,β[F ] = λγ,α[G] = 0, ϱγ,β[F ] = ϱγ,α[G] = +∞, ϱγ,β[F ] = λγ,α[G] = +∞;

2) the inequalities
λγ,β[F ]

ϱγ,α[G]
≤ λα,β[F ]G ≤ λγ,β[F ]

λγ,α[G]
(3)

are true for each function γ ∈ L except for the cases λγ,β[F ] = λγ,α[G] = 0,
λγ,β[F ] = ϱγ,α[G] = 0, λγ,β[F ] = λγ,α[G] = +∞, λγ,β[F ] = ϱγ,α[G] = +∞.

Proof. Indeed,

ϱα,β[F ]G = lim
x→+∞

α(M−1
G (x))

β(M−1
F (x))

= lim
x→+∞

γ(ln x)

β(M−1
F (x))

α(M−1
G (x))

γ(ln x)
≥

≥ lim
x→+∞

γ(ln x)

β(M−1
F (x))

lim
x→+∞

α(M−1
G (x))

γ(ln x)
= lim

σ→+∞

γ(ln MF (σ)))

β(σ)
lim

σ→+∞

α(σ)

γ(ln MG(σ))
=

ϱγ,β[F ]

ϱγ,α[G]

and

ϱα,β[F ]G ≤ lim
x→+∞

γ(ln x)

β(M−1
F (x))

lim
x→+∞

α(M−1
G (x))

γ(ln x)
= lim

σ→+∞

γ(ln MF (σ)))

β(σ)
lim

σ→+∞

α(σ)

γ(ln MG(σ))
=

=
ϱγ,β[F ]

λγ,α[G]
,

i. e. inequalities (2) are proved.
The proof of (3) is similar. Indeed,

λα,β[F ]G = lim
x→+∞

γ(ln x)

β(M−1
F (x))

α(M−1
G (x))

γ(ln x)
≤ lim

x→+∞

γ(ln x)

β(M−1
F (x))

lim
x→+∞

α(M−1
G (x))

γ(ln x)
=

λγ,β[F ]

λγ,α[G]

and

λα,β[F ]G ≥ lim
x→+∞

γ(ln x)

β(M−1
F (x))

lim
x→+∞

α(M−1
G (x))

γ(ln x)
=

λγ,β[F ]

ϱγ,α[G]
,

whence (3) follows. Theorem 1 is proved.
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Remark 1. In the statements 1) and 2) of Theorem 1 the conditions for the function γ hold
if 0 < λγ,α[G] ≤ ϱγ,α[G] < +∞. From (2) and (3) it follows that if G has the generalized
regular (γ, α)-growth then ϱα,β[F ]G = ϱγ,β[F ]/ϱγ,α[G].

If we choose α(x) = ln x and β(x) = x for x ≥ 3 then from the definition of ϱγ,β[F ] and
λγ,β[F ] we obtain the definition of the R-order ϱR[G] and the lower R-order λR[G] introduced
by J. Ritt [11], and if we choose α(x) = β(x) = ln x for x ≥ 3 then we obtain the definition
of the logarithmic order ϱl[G] and the lower logarithmic order λl[G].

For the characteristic of the relative growth of the function F with respect to a function
G in Ritt’s scale we use

ϱR,R[F ]G = lim
σ→+∞

M−1
G (MF (σ))/σ, λR,R[F ]G = lim

σ→+∞
M−1

G (MF (σ))/σ,

in the logarithmic scale we use

ϱl,l[F ]G = lim
σ→+∞

ln M−1
G (MF (σ))/ ln σ, λl,l[F ]G = lim

σ→+∞
ln M−1

G (MF (σ))/ ln σ

and in the mixed scale we use

ϱR,l[F ]G = lim
σ→+∞

ln M−1
G (MF (σ))/σ, λR,l[F ]G = lim

σ→+∞
ln M−1

G (MF (σ))/σ.

Then Theorem 1 implies the following statement.

Corollary 1. If 0 < λR[G] ≤ ϱR[G] < +∞ then

ϱR[F ]

ϱR[G]
≤ ϱR,R[F ]G ≤ ϱR[F ]

λR[G]
and

λR[F ]

ϱR[G]
≤ λR,R[F ]G ≤ λR[F ]

λR[G]
.

If 0 < λl[G] ≤ ϱl[G] < +∞ then

ϱl[F ]

ϱl[G]
≤ ϱl,l[F ]G ≤ ϱl[F ]

λl[G]
and

λl[F ]

ϱl[G]
≤ λl,l[F ]G ≤ λl[F ]

λl[G]
.

If 0 < λl[G] ≤ ϱl[G] < +∞ then

ϱR[F ]

ϱl[G]
≤ ϱR,l[F ]G ≤ ϱR[F ]

λl[G]
and

λR[F ]

ϱl[G]
≤ λR,l[F ]G ≤ λR[F ]

λl[G]
.

For a more detailed description of the growth of Dirichlet series of finite nonzero order
use the type. If 0 < ϱR[F ] < +∞ then the quantities

TR[F ] = lim
σ→+∞

ln MF (σ)

exp{σϱR[F ]}
and tR[F ] = lim

σ→+∞

ln MF (σ)

exp{σϱR[F ]}

are called the R-type and the lower R-type of function F . Similarly, the quantities

Tl[F ] = lim
σ→+∞

ln MF (σ)

σϱl[F ]
and tl[F ] = lim

σ→+∞

ln MF (σ)

σϱl[F ]
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are called the logarithmic type and the lower logarithmic type of function F . Therefore,
by analogy, if 0 < ϱα,β[F ] < +∞ then we define the generalized (α, β)-type and the lower
generalized (α, β)-type of F as follows

Tα,β[F ] = lim
σ→+∞

exp{α(ln MF (σ))}
exp{β(σ)ϱα,β[F ]}

, tα,β[F ] = lim
σ→+∞

exp{α(ln MF (σ))}
exp{β(σ)ϱα,β[F ]}

.

Similarly, if 0 < ϱα,β[F ]G < +∞ then we define the generalized (α, β)-type and the lower
generalized (α, β)-type of the function F with respect to the function G as follows

Tα,β[F ]G = lim
σ→+∞

exp{α(M−1
G (MF (σ)))}

exp{β(σ)ϱα,β[F ]G}
, tα,β[F ]G = lim

σ→+∞

exp{α(M−1
G (MF (σ)))}

exp{β(σ)ϱα,β[F ]G}
.

Theorem 2. Let α ∈ L, β ∈ L and γ ∈ L. If the function G has the regular generalized
(γ, α)-growth and 0 < tγ,α[G] ≤ Tγ,α[G] < +∞ then

Tγ,β[F ]

Tγ,α[G]
≤ (Tα,β[F ]G)

ϱγ,α[G] ≤ Tγ,β[F ]

tγ,α[G]
(4)

and
tγ,β[F ]

Tγ,α[G]
≤ (tα,β[F ]G)

ϱγ,α[G] ≤ tγ,β[F ]

tγ,α[G]
. (5)

Proof. Since G has the regular generalized (γ, α)-growth, by Theorem 1 (see Remark 1) we

have ϱα,β[F ]G =
ϱγ,β[F ]

ϱγ,α[G]
. Therefore,

(Tα,β[F ]G)
ϱγ,α[G] = lim

σ→+∞

exp{ϱγ,α[G]α(M−1
G (MF (σ)))}

exp{β(σ)ϱγ,β[F ]}
= lim

x→+∞

exp{ϱγ,α[G]α(M−1
G (x))}

exp{ϱγ,β[F ]β(M−1
F (x))}

=

= lim
x→+∞

exp{γ(ln x)}
exp{ϱγ,β[F ]β(M−1

F (x))}
exp{ϱγ,α[G]α(M−1

G (x))}
exp{γ(ln x)}

≥

≥ lim
x→+∞

exp{γ(ln x)}
exp{ϱγ,β[F ]β(M−1

F (x))}
lim

x→+∞

exp{ϱγ,α[G]α(M−1
G (x))}

exp{γ(ln x)}
=

= lim
σ→+∞

exp{γ(ln MF (σ))}
exp{ϱγ,β[F ]β(σ)}

lim
σ→+∞

exp{ϱγ,α[G]α(σ)}
exp{γ(ln MG(σ))}

=
Tγ,β[F ]

Tγ,α[G]

and

(Tα,β[F ]G)
ϱγ,α[G] ≤ lim

x→+∞

exp{γ(ln x)}
exp{ϱγ,β[F ]β(M−1

F (x))}
lim

x→+∞

exp{ϱγ,α[G]α(M−1
G (x))}

exp{γ(ln x)}
=

= lim
σ→+∞

exp{γ(ln MF (σ))}
exp{ϱγ,β[F ]β(σ)}

lim
σ→+∞

exp{ϱγ,α[G]α(σ)}
exp{γ(ln MG(σ))}

=
Tγ,β[F ]

tγ,α[G]
.

Estimates (4) are proved. The proof of (5) is similar and we will omit it.

Theorem 2 implies the following statement.
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Corollary 2. If the function G has the regular growth and 0 < tR[G] ≤ TR[G] < +∞ then

TR[F ]

TR[G]
≤ (TR,R[F ]G)

ϱR[G] ≤ TR[F ]

tR[G]
,

tR[F ]

TR[G]
≤ (tR,R[F ]G)

ϱR[G] ≤ tR[F ]

tR[G]
,

where

TR,R[F ]G = lim
σ→+∞

exp{M−1
G (MF (σ))}

exp{σϱR,R[F ]G}
, tR,R[F ]G = lim

σ→+∞

exp{M−1
G (MF (σ))}

exp{σϱR,R[F ]G}
.

If the function G has the regular logarithmic growth and 0 < tl[G] ≤ Tl[G] < +∞ then

Tl[F ]

Tl[G]
≤ (Tl,l[F ]G)

ϱl[G] ≤ Tl[F ]

tl[G]
,

tl[F ]

Tl[G]
≤ (tl,l[F ]G)

ϱl[G] ≤ tl[F ]

tl[G]
,

where

Tl,l[F ]G = lim
σ→+∞

σ−ϱl,l[F ]GM−1
G (MF (σ)), tl,l[F ]G = lim

σ→+∞
σ−ϱl,l[F ]GM−1

G (MF (σ)).

If the function G has the regular logarithmic growth and 0 < tl[G] ≤ Tl[G] < +∞ then

TR[F ]

Tl[G]
≤ (TR,l[F ]G)

ϱl[G] ≤ TR[F ]

tl[G]
,

tR[F ]

Tl[G]
≤ (tR,l[F ]G)

ϱl[G] ≤ tR[F ]

tl[G]
,

where

TR,l[F ]G := lim
σ→+∞

M−1
G (MF (σ))

exp{σϱR,l[F ]G}
, tR,l[F ]G := lim

σ→+∞

M−1
G (MF (σ))

exp{σϱR,l[F ]G}
.

2 Analogues of Theorem (B)

We need the following lemma.

Lemma 1 ([8]). Let α ∈ Lsi, β ∈ L0 and
dβ−1(cα(x))

d ln x
= O(1) as x → +∞ for each

c ∈ (0,+∞). If ln n = o(λnβ
−1(cα(λn))) as n → ∞ for each c ∈ (0,+∞) and G ∈ S(Λ)

then

ϱα,β[G] = lim
n→∞

α(λn)/β

(
1

λn

ln
1

|gn|

)
. (6)

If, moreover, α(λn+1) ∼ α(λn) and κn[G] ↗ +∞ as n0 ≤ n → ∞ then

λα,β[G] = lim
n→∞

α(λn)/β

(
1

λn

ln
1

|gn|

)
. (7)

Now we prove the following theorem.

Theorem 3. Let α ∈ L0, β ∈ L0, γ ∈ Lsi,
dα−1(cγ(x))

d ln x
= O(1) and

dβ−1(cγ(x))

d ln x
= O(1)

as x → +∞ for each c ∈ (0,+∞). Suppose that ln n = o(λnα
−1(cγ(λn))) and ln n =

= o(λnβ
−1(cγ(λn))) as n → ∞ for each c ∈ (0,+∞).
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If the function G has generalized regular (γ, α)-growth, γ(λn+1) ∼ γ(λn) and
κn[G] ↗ +∞ as n0 ≤ n → ∞ then

ϱα,β[F ]G = Pα,β := lim
n→∞

α

(
1

λn

ln
1

|gn|

)
/β

(
1

λn

ln
1

|fn|

)
. (8)

If, moreover, κn[F ] ↗ +∞ as n0 ≤ n → ∞ then

λα,β[F ]G = pα,β := lim
n→∞

α

(
1

λn

ln
1

|gn|

)
/β

(
1

λn

ln
1

|fn|

)
. (9)

Proof. Since G has generalized regular (γ, α)-growth, by Theorem 1 ϱα,β[F ]G =
ϱγ,β[F ]

ϱγ,α[G]
,

λα,β[F ]G =
λγ,β[F ]

λγ,α[G]
and by Lemma 1

ϱγ,β[F ] = lim
n→∞

γ(λn)/β

(
1

λn

ln
1

|fn|

)
, ϱγ,α[G] = lim

n→∞
γ(λn)/α

(
1

λn

ln
1

|gn|

)
.

Therefore,

ϱα,β[F ]G = lim
n→∞

γ(λn)/β

(
1

λn

ln
1

|fn|

)
lim
n→∞

α

(
1

λn

ln
1

|gn|

)
/γ(λn) ≤

≤ lim
n→∞

(
γ(λn)/β

(
1

λn

ln
1

|fn|

))(
α

(
1

λn

ln
1

|gn|

)
/γ(λn)

)
= Pα,β.

On the other hand, let Pα,β > 0. Then for every ε ∈ (0, Pα,β) there exists an increasing
to +∞ sequence (nk) of integers such that

α

(
1

λnk

ln
1

|gnk
|

)
> (Pα,β − ε)β

(
1

λnk

ln
1

|fnk
|

)
i. e.

γ(λnk
)/β

(
1

λnk

ln
1

|fnk
|

)
> (Pα,β − ε)γ(λnk

)/α

(
1

λnk

ln
1

|gnk
|

)
and, thus,

ϱγ,β[F ] = lim
n→∞

γ(λn)/β

(
1

λn

ln
1

|fn|

)
≥ (Pα,β − ε) lim

n→∞
γ(λn)/α

(
1

λn

ln
1

|gn|

)
=

= (Pα,β − ε)λγ,α[G] = (Pα,β − ε)ϱγ,α[G],

whence in view of the arbitrariness of ε we get ϱα,β[F ]G ≥ Pα,β. For Pα,β = 0 the last
inequality is obvious. Equality (8) is proved.

For the proof of (9) we remark that since G has generalized regular (α, β)-growth, by
Theorem 1 and Lemma 1

λα,β[F ]G = lim
n→∞

γ(λn)/β

(
1

λn

ln
1

|fn|

)
lim
n→∞

α

(
1

λn

ln
1

|gn|

)
/γ(λn) ≥
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≥ lim
n→∞

(
γ(λn)/β

(
1

λn

ln
1

|fn|

))(
α

(
1

λn

ln
1

|gn|

)
/γ(λn)

)
= pα,β.

On the other hand, let pα,β < +∞. Then for every ε > 0 there exists an increasing to
+∞ sequence (nk) of integers such that

α

(
1

λnk

ln
1

|gnk
|

)
< (pα,β + ε)β

(
1

λnk

ln
1

|fnk
|

)
and, as above,

λγ,β[F ] = lim
n→∞

γ(λn)/β

(
1

λn

ln
1

|fn|

)
≤ (pα,β + ε) lim

n→∞
γ(λn)/α

(
1

λn

ln
1

|gn|

)
=

= (pα,β + ε)ϱγ,α[G] = (pα,β + ε)λγ,α[G],

whence in view of the arbitrariness of ε we get λα,β[F ]G ≤ pα,β. For pα,β = +∞ the last
inequality is obvious. Equality (9) is proved, and the proof of Theorem 3 is complete.

For the study of the relative growth in classical scales we need the following lemmas.

Lemma 2 ([11], [12], [13], [14]). If ln n = o(λn ln λn) as n → ∞ then

ϱR[F ] = lim
n→∞

λn ln λn/(− ln |fn|)

and if, moreover, ln λn+1 ∼ ln λn and κn[G] ↗ +∞ as n0 ≤ n → ∞ then

λR[F ] = lim
n→∞

λn ln λn/(− ln |fn|).

If ln n = o(λn) as n → ∞ then

TR[F ] = (1/(eϱR[F ])) lim
n→∞

λn|fn|ϱR[F ]/λn

and if, moreover, λn+1 ∼ λn and κn[G] ↗ +∞ as n0 ≤ n → ∞ then

tR[F ] = (1/(eϱR[F ])) lim
n→∞

λn|fn|ϱR[F ]/λn .

Lemma 3 ([8]). If lim
n→∞

ln ln n/ ln λn ≤ 1 then

ϱl[F ] = 1 + lim
n→∞

ln λn/ ln

(
1

λn

ln
1

|fn|

)
and if, moreover, ln λn+1 ∼ ln λn and κn[G] ↗ +∞ as n0 ≤ n → ∞ then

λl[F ] = 1 + lim
n→∞

ln λn/ ln

(
1

λn

ln
1

|fn|

)
.

If 1 < ϱl[F ] < +∞ and ln n = o(λ
ϱl[F ]/(ϱl[F ]−1)
n ) as n → ∞ then

Tl[F ] = A(ϱl[F ]) lim
n→∞

λϱl[F ]
n

(
ln

1

|fn|

)1−ϱl[F ]

, A(ϱ) = (ϱ− 1)ϱ−1ϱϱ,

and if, moreover, λn+1 ∼ λn and κn[G] ↗ +∞ as n0 ≤ n → ∞ then

tl[F ] = A(ϱl[F ]) lim
n→∞

λϱl[F ]
n

(
ln

1

|fn|

)1−ϱl[F ]

,
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Choosing α(x) = β(x) = x and γ(x) = ln x, from Theorem 3 we obtain the following
statement.

Proposition 1. If the function G has regular growth, κn[G] ↗ +∞, ln n = o(λn ln λn) and
ln λn+1 ∼ ln λn as n0 ≤ n → ∞ then ϱR,R[F ]G = lim

n→∞
ln |gn|/ ln |fn|.

If, moreover, κn[F ] ↗ +∞ then λR,R[F ]G = lim
n→∞

ln |gn|/ ln |fn|.

This result can be directly obtained using Lemma 2. It is easy to see also that the
functions α(x) = β(x) = γ(x) = ln x do not satisfy the conditions of Theorem 3. However,
the following statement is correct.

Proposition 2. If the function G has regular logarithmic growth, lim
n→∞

ln ln n/ ln λn ≤ 1,
ln λn+1 ∼ ln λn and κn[G] ↗ +∞ as n0 ≤ n → ∞ then

ϱl,l[F ]G = Pl := lim
n→∞

ln ln
1

|fn|
ln

(
1

λn

ln
1

|gn|

)
ln ln

1

|gn|
ln

(
1

λn

ln
1

|fn|

) . (10)

If, moreover, κn[F ] ↗ +∞ as n0 ≤ n → ∞ then

λl,l[F ]G = pl := lim
n→∞

ln ln
1

|fn|
ln

(
1

λn

ln
1

|gn|

)
ln ln

1

|gn|
ln

(
1

λn

ln
1

|fn|

) . (11)

Proof. Since G has generalized regular logarithmic growth, by Corollary 2 ϱl,l[F ]G =
ϱl[F ]

ϱl[G]
,

λl,l[F ]G =
λl[F ]

λl[G]
and by Lemma 3

ϱl,l[F ]G = lim
n→∞

ln ln
1

|fn|
/ ln

(
1

λn

ln
1

|fn|

)
lim
n→∞

ln

(
1

λn

ln
1

|gn|

)
/ ln ln

1

|gn|
≤ Pl.

On the other hand, if Pl > 0 then for every ε ∈ (0, Pl) there exists an increasing to +∞
sequence (nk) of integers such that

ln ln
1

|fnk
|

ln

(
1

λnk

ln
1

|fnk
|

) ≥ (Pl − ε)

ln ln
1

|gnk
|

ln

(
1

λnk

ln
1

|gnk
|

) ,

i. e. by Lemma 3

ϱl[F ] = lim
n→∞

ln ln
1

|fn|
/ ln

(
1

λn

ln
1

|fn|

)
≥ (Pl − ε) lim

n→∞
ln ln

1

|gn|
/ ln

(
1

λn

ln
1

|gn|

)
=

= (Pl − ε)λl[G] = (Pl − ε)ϱl[G],

whence in view of the arbitrariness of ε we get ϱl[F ]G ≥ Pl. For Pl = 0 the last inequality is
obvious. Equality (10) is proved.

The proof of (11) is similar.
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The condition ln n = o(λn ln λn) as n → ∞ implies the condition lim
n→∞

ln ln n/ ln λn ≤ 1.
Therefore, using Lemmas 2 and 3 it is easy to prove the following statement.

Proposition 3. If the function G has regular logarithmic growth, ln n = o(λn ln λn),
ln λn+1 ∼ ln λn and κn[G] ↗ +∞ as n0 ≤ n → ∞ then

ϱR,l[F ]G = lim
n→∞

λn ln λn ln (1/|gn|)
ln (1/|fn|) ln ln (1/|gn|)

.

If, moreover, κn[F ] ↗ +∞ as n0 ≤ n → ∞ then

λR,l[F ]G = lim
n→∞

λn ln λn ln (1/|gn|)
ln (1/|fn|) ln ln (1/|gn|)

.

Let us turn to the results about the relative growth of functions in terms of their types.
For classic growth scales, we can use Lemmas 2 and 3, and for generalized orders we need
such lemma.

Lemma 4. Let α ∈ L, β ∈ L, xα′(x) = o(1), xβ′(x) = O(1) and
dβ−1(c1 + c2α(x))

d ln x
= O(1)

as x → +∞ for each 0 < c1, c2 < +∞). If ln n = o(λnβ
−1(cα(λn))) as n → ∞ for each

c ∈ (0,+∞) and G ∈ S(Λ) then

lim
n→∞

exp

{
α(λn)− ϱα,β[G]β

(
1

λn

ln
1

|gn|

)}
= Tα,β[G]. (12)

If, moreover, α(λn+1)− α(λn) → 0 and κn[G] ↗ +∞ as n0 ≤ n → ∞ then

lim
n→∞

exp

{
α(λn)− ϱα,β[G]β

(
1

λn

ln
1

|gn|

)}
= tα,β[G]. (13)

Proof. Put α1(x) = exp{α(x)} and β1(x) = exp{ϱα,β[G]β(x)}. Then

Tα,β[G] = lim
σ→+∞

α1(ln MG(σ))

β1(σ)
= ϱα1,β1 [G].

If, for example, c > 1 then

α(cx)− α(x) = α′(ξ)(c− 1)x ≤ (c− 1)ξα′(ξ)

for some ξ ∈ [x, cx] and, since xα′(x) = o(1) as x → +∞, we have α(cx) − α(x) → 0 as
x → +∞, i. e. α1 ∈ Lsi. Similarly, in view of condition xβ′(x) = O(1) as x → +∞, we have
β((1 + o(1))x)− β(x) = β′(ξ)o(ξ) → 0 as x → +∞, whence it follows that β1 ∈ L0.

Since β−1
1 (x) = β−1((ln x)/ϱα,β[G]), we have

dβ−1
1 (cα1(x))

d ln x
=

dβ−1((ln c+ α(x))/ϱα,β[G])

d ln x
=

dβ−1(c1 + c2α(x))

d ln x
= O(1), x → +∞.

Finally, the condition ln n = o(λnβ
−1
1 (cα1(λn))) as n → ∞ holds if ln n =

= o(λnβ
−1((ln c+α(λn))/ϱα,β[G])) as n → ∞. But (ln c+α(λn))/ϱα,β[G] ≥ α(λn)/(2ϱα,β[G])

for n ≥ n0. Therefore, the last condition holds if ln n = o(λnβ
−1(cα(λn))) as n → ∞ for

c = 1/(2ϱα,β[G]). Thus, the functions α1 and β1 satisfy the conditions of Lemma 1 and in

view of (8) formula (12) is proved. Also
α1(λn+1)

α1(λn)
= exp{α(λn+1)− α(λn)} → 1 as n → ∞

and, therefore, by Lemma 1 formulas (13) is correct.
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Using Lemma 4, we prove the following theorem.

Theorem 4. Let α ∈ L, β ∈ L, γ ∈ L, xα′(x) = O(1), xβ′(x) = O(1), xγ′(x) = o(1),
dα−1(c1 + c2γ(x))

d ln x
= O(1) and

dβ−1(c1 + c2γ(x))

d ln x
= O(1) as x → +∞ for each 0 < c1, c2 <

+∞. Suppose that ln n = o(λnα
−1(cγ(λn))) and ln n = o(λnβ

−1(cγ(λn))) as n → ∞ for
each c ∈ (0,+∞).

If the function G has strongly regular generalized (γ, α)-growth (i. e. 0 < tγ,α[G] =

Tγ,α[G] < +∞), γ(λn+1)− γ(λn) → 0 and κn[G] ↗ +∞ as n0 ≤ n → ∞ then

(Tα,β[F ]G)
ϱγ,α[G] = Q := exp{ lim

n→∞
Qn(F, G)},

where
Qn(F, G) = ϱγ,α[G]α

(
1

λn

ln
1

|gn|

)
− ϱγ,β[F ]β

(
1

λn

ln
1

|fn|

)
.

If, moreover, κn[F ] ↗ ∞ as n0 ≤ n → ∞ then

(tα,β[F ]G)
ϱγ,α[G] = q := exp{ lim

n→∞
Qn(F, G)}.

Proof. Since the function G has strongly regular generalized (γ, α)-growth, by Theorem
2 (Tα,β[F ]G)

ϱγ,α[G] = Tγ,β[F ]/Tγ,α[G] and (tα,β[F ]G)
ϱγ,α[G] = tγ,β[F ]/tγ,α[G]. Therefore, by

Lemma 4
(Tα,β[F ]G)

ϱγ,α[G] =

= lim
n→∞

exp

{
γ(λn)− ϱγ,β[F ]β

(
1

λn

ln
1

|fn|

)}
lim
n→∞

exp

{
ϱγ,α[G]α

(
1

λn

ln
1

|gn|

)
− γ(λn)

}
≤

≤ lim
n→∞

exp {Qn(F, G)} = Q

and
(tα,β[F ]G)

ϱγ,α[G] =

= lim
n→∞

exp

{
γ(λn)− ϱγ,β[F ]β

(
1

λn

ln
1

|fn|

)}
lim
n→∞

exp

{
ϱγ,α[G]α

(
1

λn

ln
1

|gn|

)
− γ(λn)

}
≥

≥ lim
n→∞

exp {Qn(F, G)} = q.

On the other hand, let Q > 0. Then for every Q1 ∈ (0, Q) there exists an increasing to
∞ sequence (nk) of integers such that exp {Qnk

(F, G)} ≥ Q1, i. e.

exp

{
γ(λnk

)− ϱγ,β[F ]β

(
1

λnk

ln
1

|fnk
|

)}
> Q1 exp

{
γ(λnk

)− ϱγ,α[F ]α

(
1

λnk

ln
1

|gnk
|

)}
and, thus,

Tγ,β[F ] = lim
n→∞

exp

{
γ(λn)− ϱγ,β[F ]β

(
1

λn

ln
1

|fn|

)}
≥

≥ Q1 lim
n→∞

exp

{
γ(λn)− ϱγ,α[F ]α

(
1

λn

ln
1

|gn|

)}
Q1tγ,α[G] = Q1Tγ,α[G],

whence in view of the arbitrariness of Q1 we get Tα,β[F ]G ≥ Q. For Q = 0 the last inequality
is obvious. The equality (Tα,β[F ]G)

ϱγ,α[G] = Q is proved.
Similar we prove the inequality tα,β[F ]G ≤ q, i. e. we get the equality (tα,β[F ]G)

ϱγ,α[G] = q.
The proof of Theorem 4 is complete.
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Next three statements are proved in general a way and we will drop their proofs. Using
Corollary 2 and Lemma 2, we get the following statement.

Proposition 4. If the function G has the strongly regular growth (i. e. 0 < tR[G] =

= TR[G] < +∞), ln n = o(λn), λn+1 ∼ λn and κn[G] ↗ +∞ as n0 ≤ n → ∞ then

(TR,R[F ]G)
ϱR[G] = lim

n→+∞

ϱR[G]

ϱR[F ]
|fn|ϱR[F ]/λn |gn|−ϱR[G]/λn .

If, moreover, κn[F ] ↗ +∞ as n0 ≤ n → ∞ then

(tR,R[F ]G)
ϱR[G] = lim

n→+∞

ϱR[G]

ϱR[F ]
|fn|ϱR[F ]/λn |gn|−ϱR[G]/λn .

Since the condition ln ln n = o(ln λn) as n → ∞ implies the condition ln n =

= o(λ
ϱ/(ϱ−1)
n ) as n → ∞ for every ϱ > 1, using Corollary 2 and Lemma 3, we get the

next statement.

Proposition 5. Let 1 < ϱl[F ], ϱl[G] < +∞. If the function G has the strongly regular
logarithmic growth (i. e. 0 < tl[G] = Tl[G] < +∞), ln ln n = o(ln λn), λn+1 ∼ λn and
κn[G] ↗ +∞ as n0 ≤ n → ∞ then

A(ϱl[G])

A(ϱl[F ])
(Tl,l[F ]G)

ϱR[G] = lim
n→∞

λϱl[F ]−ϱl[G]
n

(
ln

1

|fn|

)1−ϱl[F ](
ln

1

|gn|

)ϱl[G]−1

.

If, moreover, κn[F ] ↗ +∞ as n0 ≤ n → ∞ then

A(ϱl[G])

A(ϱl[F ])
(tR,R[F ]G)

ϱR[G] = lim
n→∞

λϱl[F ]−ϱl[G]
n

(
ln

1

|fn|

)1−ϱl[F ](
ln

1

|gn|

)ϱl[G]−1

.

Finally, since the condition ln ln n = o(ln λn) as n → ∞ implies the condition
ln n = o(λn) as n → ∞, using Corollary 2 and Lemmas 2 and 3, we get the next state-
ment.

Proposition 6. Let 1 < ϱl[G] < +∞. If the function G has the strongly regular logarithmic
growth, ln ln n = o(ln λn), λn+1 ∼ λn and κn[G] ↗ +∞ as n0 ≤ n → ∞ then

eϱR[F ]A(ϱl[G])(TR,l[F ]G)
ϱR[G] = lim

n→∞
λ1−ϱl[G]
n |fn|ϱl[F ]/λn

(
ln

1

|gn|

)ϱl[G]−1

.

If, moreover, κn[F ] ↗ +∞ as n0 ≤ n → ∞ then

eϱR[F ]A(ϱl[G])(tR,l[F ]G)
ϱR[G] = lim

n→∞
λ1−ϱl[G]
n |fn|ϱl[F ]/λn

(
ln

1

|gn|

)ϱl[G]−1

.
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Мулява О. М., Шеремета М. М. Вiдносне зростання цiлих рядiв Дiрiхле з рiзними
узагальненими порядками // Буковинський матем. журнал — 2021. — Т.9, №2. — C. 22–34.

Для цiлих функцiї F i G, зображених рядами Дiрiхле зi зростаючими до +∞ показни-
ками, знайдено формули для знаходження узагальненого порядку

ϱα,β [F ]G = lim
σ→+∞

α(M−1
G (MF (σ)))

β(σ)

i узагальненого нижнього порядку

λα,β [F ]G = lim
σ→+∞

α(M−1
G (MF (σ)))

β(σ)

функцiї F вiдносно функцiї G, де MF (σ) = sup{|F (σ + it)| : t ∈ R}, а α i β - додатнi
зростаючi до +∞ функцiї.

Ключовi слова i фрази: ряд Дiрiхле, узагальнений порядок, вiдносне зростання.


