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RELATIVE GROWTH OF ENTIRE DIRICHLET SERIES WITH
DIFFERENT GENERALIZED ORDERS

For entire functions F' and G defined by Dirichlet series with exponents increasing to +oo

— a(M;' (M
formulas are found for the finding the generalized order g, g[Fl¢ = lim (Mg 5(( )F(U)>)
o—=00 o
MG (M
and the generalized lower order A\, g[F|¢ = lim a(Mg (Mp(0))) of F' with respect to G,

o—+oo B(U)
where Mg (o) = sup{|F (o +it)| : t € R} and « and § are positive increasing to +o0o functions.
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INTRODUCTION

Let f and g be entire transcendental functions and M(r) = max{|f(2)| : |z] = r}.
For the study of relative growth of the functions f and g Ch. Roy [1] used the order
0lf] = @ In M, (My(r))/In 7 and the lower order Ag[f] = lim In M, *(M(r))/In r

r—4-00

r—+00
of the function f with respect to the function g. Researches of relative growth of entire

functions was continued by S.K. Data, T. Biswas and other mathematicians (see, for example,
[2, 3, 4, 5]) in terms of maximal terms, Nevanlinna characteristic function and k-logarithmic
orders. In [6] it is considered a relative growth of entire functions of two complex variables
and in [7] the relative growth of entire Dirichlet series is studied in terms of R-orders.

Suppose that A = (),,) is an increasing to +o0o sequence of non-negative numbers, and
by S(A) we denote a class of entire Dirichlet series

F(s) = Z foexp{sA,}, s=o+it. (1)

For 0 < 400 we put Mp(c) = sup{|F (o +it)| : t € R}. We remark that the function Mp(0)
is continuous and increasing to +o0o on (—oo, +00) and, therefore, there exists the function
M*(z) inverse to My (o), which increase to +oo on (7, +00).
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By L we denote a class of continuous non-negative on (—oo, +00) functions a such that
a(z) = a(zg) > 0 for z < z and a(x) T +oco as rg < x — +oo. We say that a € L) if
a € Land a((1+o(1))x) = (1 4+ 0(1))a(x) as © — +oo. Finally, « € Ly, if « € L and
alcz) = (1 +o(l))a(z) as ¢ — +oo for each ¢ € (0, +00), i. e. « is a slowly increasing
function. Clearly, Ly C L°.

lfae L, e L and F € S(A, 4+00) then the quantities

0aslF] = lim a(ln Mp(0))/B(0), AaslF] = lim a(ln Mp(0))/B(0)

o—+00 o—+400

are called [8] the generalized (o, §)-order and the generalized lower («, §)-order of F' accord-
ingly. We say that F' has the generalized regular (o, §)-growth, if 0 < Ay g[F] = 0as[F] <
+00.

We define the generalized (a, §)-order g, s[F|c and the generalized lower (a, )-order
Ao Fle of the function F' € S(A) with respect to a function G € S(A), given by Dirichlet

series G(s) = Y gnexp{s\,}, as follows
n=1

0aplFla = lim a(Mg'(Mp(0)))/B(0), AaplFle= lim a(Mg'(Mp(0)))/B(0).

g—+00 o—+o00
The following theorems are proved in [9].

Theorem (A). Let € L and v € L. Except for the cases, when o, g[F] = 0,4[G] = 0
or 0,5[F] = 0,4|G] = 400, the inequality oz 5[F|c > 044[F]/0,5]G] is true and subject to
the condition of the generalized regular (v, )-growth of G this inequality converts into an
equality.

Except for the cases, when A\, g[F| = A\, 3[G] = 0 or A\, 3[F] = A\, g[G] = 400, the
inequality Ag g[Fla < A g[F]/ A, ]G] is true and subject to the condition of the generalized
regular (v, 8)-growth of G this inequality converts into an equality.

Theorem (B). Let 0 < p < 400 and one of conditions is executed:

gt 1
a)y e LY B(lnz) € L° % — — (z = +o0) for each ¢ € (0,+00) and
p

In n=o0(\,) (n = 00);
-1
b) AN Lsi, B € LO, Q%g[F} < 400, W
= oMy (M) (n— 00) for each ¢ € (0, +00).
Suppose that y(An+1/p) = (1 4+ o(1))y(\./p) as n — oo.

= O(1) (x+ = +o00) and Inn =

I [gn] =10 [gnia]

If the function G has generalized regular (v, 5)-growth and k|G| = 3 )
n+l = \n

400 as ng < n — oo then
_ 1 1 1
Q,FG:limﬁ< ~|——l )/ﬁ( —ln—)
wolfle = I 045 o 7

except for the cases, when o, g[F| = 0, 5[G] = 0 or g, g[F] = 0,3[G] = +00.
If, moreover, k,[F] /" 400 as ng < n — oo then

AoolFle = lm 5 (; + iln ﬁ) /B (1 + i1n !f_1n|>
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except for the cases, when \, g[F| = A\, 3|G] = 0 or A\, g[F] = A, 3|G] = +o0.

Similar results in terms of R-types are obtained in [10].
Here we consider the general case when a # 3.

1 ANALOGUES OF THEOREM (A)

We begin from the following general theorem.

Theorem 1. If o« € L and 8 € L then:
1) the inequalities

01,8 F] 01,8 F]
< 0aplFle < (2)
070Gl AyalG]
are true for each function v € L except for the cases 0,g[F] = 0,4[G] = 0,

0v.8LF] = Ay.0lG] = 0, 045[F] = 04,0[G] = +00, 04,8[F] = Ay,0[G] = +00;
2) the inequalities

Ay alF] Ay slF]
: S >\a, [F]G S i (3>
0alG] = T T NG
are true for each function v € L except for the cases A\, g[F] = X\ ,[G] = 0,

M slE] = 04,a]G] = 0, Ay g[F] = Ay oG] = +00, Ay s[F] = 04,0[G] = +o0.

Proof. Indeed,

_ o oM @) o y(nz) a(Mg'(x)
eslllo = B BT (@) ~ M BOL (@) (n o)
o e (M) e (o Mp(0)) alo) oyl
T aotoo (M (2) sotee Y(Inx) oot B(0)  oore v(In Mg(0)) T 04.4[G]
and
) e a(Mgi(@) o (I Mp(0) o alo)
0aplFle < xL—i—oo B(Mg'(x)) :cLJroo ~v(In x) aL+oo B(o) Ul—>+°° Y(In Mg(0))
_ Q%ﬁ[F]
Ayl Gl

i. e. inequalities (2) are proved.
The proof of (3) is similar. Indeed,

o) a(Mg'e) _ o ang) o o(Mghe) A,
Aaﬁ[F]G - acL_Jroo B(MI;I(J;)) ’y(ln 33') = xLToo ﬂ(MEl(x)) xl—H—oo fy(ln .1') A

and

Lo o) L a(MgH(r)  AyplF]
Al Fla > x1_1+foo B(M; (x)) xl_Too y(In x) 0+,alG]’

whence (3) follows. Theorem 1 is proved. O
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Remark 1. In the statements 1) and 2) of Theorem 1 the conditions for the function -y hold
if 0 < A olG] < 04,0|G] < +00. From (2) and (3) it follows that if G has the generalized
regular (7, a)-growth then o, 5[F|¢ = 04,5[F]/0+.a[G].

If we choose a(x) =1In x and f(z) = x for x > 3 then from the definition of g, s[F] and
A, 5| F| we obtain the definition of the R-order pz[G] and the lower R-order Ag[G] introduced
by J. Ritt [11], and if we choose a(z) = f(z) = In x for x > 3 then we obtain the definition
of the logarithmic order g;|G] and the lower logarithmic order \;[G].

For the characteristic of the relative growth of the function F' with respect to a function
G in Ritt’s scale we use

orrlFle = lim Mg (Mp(0))/o, ApgrlFle = lim Mg'(Mg(0))/o,

g—+00 o—+00

in the logarithmic scale we use

o[Flg = lim In M3 (Mp(0))/In o, Ny[Flg= lim In M;'(Mg(c))/In o

o—+00 o—>+00

and in the mixed scale we use

ori[Flg = lim In M;'(Mp(0))/o, Ari[Fle= lim In M '(Mg(0))/o.

o—r+00 o—+00
Then Theorem 1 implies the following statement.

Corollary 1. If 0 < Ag[G] < 0g[G] < 400 then

or[F] or[F] Ar[F] Ar[F]
onlG < orrlFla < WLl and onlCl < ArrlFle < G
If 0 < N[G] < aG] < +oo then
alt] alt] AlF] A[F]
wlC] < 0i[Fle < NG and ol < A\Fle < NG
If 0 < N[G] < 0[G] < 400 then
or[F] or[F] AR[F] AR[F]
e < ori[Fla < NG and e < Agy[Fle < NG

For a more detailed description of the growth of Dirichlet series of finite nonzero order
use the type. If 0 < gr[F] < 400 then the quantities
— In Mg(0)

' _ In Mp(o)
Tr|F= lim ————— and tg|F]= lim ——
r[F] o—+oo exp{oor|F|} =l F) o—-+o0 Xploor([F}

are called the R-type and the lower R-type of function F'. Similarly, the quantities

T[F] = lim M and t[F] = lim M

o—+00 o [F} o400 O'QZ[F]
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are called the logarithmic type and the lower logarithmic type of function F. Therefore,
by analogy, if 0 < g, 5[F] < +00 then we define the generalized (o, 5)-type and the lower
generalized (a, B)-type of F as follows

T, 4[F] = Tm exp{a(ln Mgr(o))} tos[F] = lim exp{a(ln Mr(0))}

o—+00 exp{ﬁ(a)ga,g[F]} ’ ’ o——+00 eXp{ﬁ(g)Qaﬂ[F]} '

Similarly, if 0 < g4 [F]¢ < +00 then we define the generalized (a, 5)-type and the lower
generalized (v, §)-type of the function F' with respect to the function G as follows
—1 -1
Tos[Fle = Tm exp{a(Mg (MF(U)))}7 tos[Fle = lim exp{a(Mg (Mr(0)))}
o—+00 exp{ﬁ(a)ga,g[F]G} o—+00 eXp{ﬁ(a)Qa,ﬁ[F]G}

Theorem 2. Let a« € L, § € L and v € L. If the function G has the regular generalized
(7, a)-growth and 0 < t,,[G] < T, ,[G] < +o00 then

T plF] a o Tysll]
’ < (Tap[Fla)o=l < =2 (4
T..[C] (To,pFe) . )
e i i
by, G bys
P < (tap[Flg)orel@ < 2P 5
T%Q[G] ( 5[ ]G) tva[G] ()
Proof. Since G has the regular generalized (7, a)-growth, by Theorem 1 (see Remark 1) we
01.8(F]
have g4 5[Flc = = . Therefore,
’ 01.a[G]
— exp{0ya[Gla(Mg (Mp(0)}  —— exp{oya[Gla(Mg'(x))}

ov.alGl — Tim = lim =
(TaplFle) A T exp{Bo)oralFIY P exple, [ FIBOL ()}
Tm eXp{’Y(ln x)} eXp{Q’y,a[G]O‘(Mal(x))}
S Sl FIBOL @) e a))  ©
S T exp{y(In x)} i exp{0y,.a[Gla(Mg' ()} _
~ oortoo exp{ 0y, s[FIB(Mp" (7))} eotoo exp{y(In z)}

e Mr(0) | eploalClale)) _ TulF]
o=+oc exp{0,4[F]5(0)} oot exp{y(ln Mg(o))} T,4[G]

and

(Toz,B[F]G)g%a[G] < Tim exp{y(In z)} o exp{0,.o[Gla(M5' (2))} _

z—+o0 exp{ 0, s[F]B(My ' ()} a=+oc exp{y(In z)}

— Tm eXp{’Y(ln MF(U)>} Tm eXp{Q%a[G]O‘(0>} :T%B[F]
o—too exp{oq,p[F]B(0)} oot exp{y(In Mg(0))}  t,.[G]

Estimates (4) are proved. The proof of (5) is similar and we will omit it. O

Theorem 2 implies the following statement.
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Corollary 2. If the function G has the regular growth and 0 < tg[G] < Tg[G] < 400 then

T < (TralFloy@ < T I < (tnalFleyen < 2L
where
o exp{M@l(MF(a))} L eXp{MG_l(MF<O'))}
TR’R[F]G_UETOO exp{oorr[Fla} ’ tR’R[F]G—Jl_%lOO exp{oori[Flc}

If the function G' has the regular logarithmic growth and 0 < t,[G] < T;|G] < +o0 then

=

[F] o |G
a < (T1[Fle)®€ < LG T

oy

where

T,[Fle = lim o @Fe M N (Mp(o)), ty[Flg = lim o2l Mg (Mp(0)).

o—+00 o—+00

If the function G' has the regular logarithmic growth and 0 < ,[G] < T)[G] < +oo then

TR[F] aic] - Tr[F]  tr[F] alc] - trlF]
T[C] < (Tru[Fla)?) < LGl TIC) < (tra[F]e) < ek

where
Tr[Flg = lim Mg (Mr(0)) Mg (Mg(0))

tle[F]G = lim

o—+00 eXp{O'QR,l [F]G} ’ o—+00 eXp{UQR,l[F]G} .

2 ANALOGUES OF THEOREM (B)

We need the following lemma.

d -1

Lemma 1 ([8]). Let a € Ly, 8 € LY and df” (calz)) = O(1) as x — +oo for each
nz

c € (0,+00). If Inn = oM\, (ca(N\,))) as m — oo for each ¢ € (0,+00) and G € S(A)
then

— 1 1
0a.8/G] = lim a(\, B(—ln—). 6
H16) = i a(u)/8 (50 o ©)
If, moreover, a(A,+1) ~ a(\,) and k,[G] / +00 as ng < n — oo then
. 1 1
hoglGl = tm a(0)/5 (- ) 7)
n—00 An |G

Now we prove the following theorem.

da~! dpg1
Theorem 3. Let a € L%, 8 € LY, v € Ly, w = O(1) and w =0(1)
nz n
as * — +oo for each ¢ € (0,400). Suppose that Inn = o(A,a ' (cy(\,))) and In n =

= oAy (A\y))) as n — oo for each ¢ € (0, +00).
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If the function G has generalized regular (v, c«)-growth, y(Apy1) ~ Y(A\,) and
kn|G] /400 as ng < n — oo then

tuolFle = Pagi= Tt (om0 ) /6 (o ). (®)

n—00 |gn| |fn‘

If, moreover, k,[F] /" 400 as ng < n — oo then

1 1
AslFlG = po = lim a (—m ) /5 ( ) (9)
’ g 90] "7
F
Proof. Since G has generalized regular (v, a)-growth, by Theorem 1 g, 3[Fl¢ = QWLH,
Oy,a
Ay sl F]
Aas[Fle = 22222 and by Lemma 1
’ MalC]
F= T 90w/8 (5o 1)+ 2al6] = B (o ).
0, = lim ~ —In— |, 0,.[G] = lim v al—In —
e =300 A i n-300 |90

Therefore,

< 5 (100 () e (o ) ) =

On the other hand, let P, 3 > 0. Then for every € € (0, P, 3) there exists an increasing

pnalFle = T ()5 (10 )t (ot ) ) <

to 400 sequence (ny) of integers such that

1 1 1 1
a n—-:|>(FPasg—¢e)p <—ln )

Y(n)/B (—m ! ) (Pas — )y(Any) a0 (Lm ! )

and, thus,

0y F] = Tim y(An)/8 (— In i) (Pop —¢) lim y(\,)/ax (Ain In i) —

= (Pag — €)M,alG] = (Pag — €)04,0[G],
whence in view of the arbitrariness of ¢ we get 0, 3[F|¢ > P.p. For P, = 0 the last
inequality is obvious. Equality (8) is proved.

For the proof of (9) we remark that since G has generalized regular («, 5)-growth, by
Theorem 1 and Lemma 1

MaalFla = T 90n)/8 (-t ) T o (o ) /20 2

n—00 ‘fn’ n—oo |gn|
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i (00 (L)) (o o ) ) -

On the other hand, let p, 3 < +00. Then for every ¢ > 0 there exists an increasing to
+00 sequence (ny) of integers such that

1 1 1 1
al—In — ) < (pa, +5)5<—1n—)
(Ank |gnk|) g Mo ol
1

AglF] = lim v(\,)/B (iln Ifn|) < (Pagp + ) Tim v(Aa)/a (— In _> -

and, as above,

90|
= (Pa,g + €)07,a[G] = (Pa,s + €)M alGl,

whence in view of the arbitrariness of € we get Ay 5[F|e < paps. For p,s = 400 the last
inequality is obvious. Equality (9) is proved, and the proof of Theorem 3 is complete. [

For the study of the relative growth in classical scales we need the following lemmas.

Lemma 2 ([11], [12], [13], [14]). IfIn n = o(A, In A,,) as n — oo then
or[F] = lim A\, In \,/(—In |f,])
n—oo
and if, moreover, In A\, 11 ~ In A, and k,|G]| /* +00 as ng < n — oo then

Ar[F] = lm AyIn A/(—In [fa]).

n—oo

IfIn n = o()\,) as n — oo then
Tr[F] = (1/(er[F])) Tim A, f, |01/ An
n—oo
and if, moreover, A\, 11 ~ A\, and k,[G] /* 400 as ng < n — oo then

talF] = (1) (cor[F])) Lim Ay |fu[onF12,

n—oo

Lemma 3 ([8]). If lim InIn n/In A\, <1 then
n—o0

_ 1 1
Fl=1+ lim In A, /1 —In —
Ql[ ] +n1—>nolo n /Il ()\n n |fn|)

and if, moreover, In \,, 11 ~ In A, and k,|G] /* +00 as ng < n — oo then

n—oo

1 1
MF]=14 lim In \,/In <—111—).
[F] / T

If 1 < o[F] < 400 and In n = o( A2V @17y a5 n 5 50 then

n—

_ 1 1—0i[F]

and if, moreover, A\, 11 ~ A\, and k,[G] /400 as ng < n — oo then

1 1—gi[F]
) = Alal) Jn 3 (1 )

n—o0
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Choosing «a(z) = f(z) = x and y(z) = In z, from Theorem 3 we obtain the following
statement.

Proposition 1. If the function G has regular growth, k,[G] /* +oo, In n = o(A, In \,,) and
In Aty ~1n A, as ng <n — oo then ggp[Flc = lim In [g,|/In |f,].
n—oo
If, moreover, k,[F| 7 +00 then Agr[F|¢ = lim In |g,|/In |f,|.
n—oo
This result can be directly obtained using Lemma 2. It is easy to see also that the

functions a(x) = f(x) = v(z) = In x do not satisfy the conditions of Theorem 3. However,
the following statement is correct.

Proposition 2. If the function G has regular logarithmic growth, lim In In n/In A\, <1,
n—oo
In A1 ~In A\, and k,[G] 7 400 as ng < n — oo then

1 1 1
In In |f_| In (— In ﬁ)
oulFle = Fi = lim T 1" 91" : (10)
Inln —1In <— In —)
|gn| Ao |l
If, moreover, k,[F] /* 400 as ng < n — oo then
1 1 1
In In m In <— In ﬁ)
MalFle = pr = lim . 1" il (11)
" Inln —In (—m —)
’gn‘ A |l
. . o alF]
Proof. Since G has generalized regular logarithmic growth, by Corollary 2 ¢,;[F]¢ = a
o

N[ F
MulFla = % and by Lemma 3

1 1 1 1
ou[Fla = hm In In —/ln (—ln ) lim In (— >/ln1n—<Pl
| fal | fal ) nooo |9n] 9]

On the other hand, if P, > 0 then for every ¢ € (0, ) there exists an increasing to 400
sequence (ny) of integers such that

Inln — Inln ——

|fnk|
> _
1 T = B9 1 1\
In —ln In —ln
1 1

1 1 1
ofF]=lim InIn —/In (—hl—) P —¢)limInln —/In (—ln—):
(F]= T b 7,7) 2 -9l b o/l { S o0

= (P, — e)N[G] = (P, — ¢)al[G],

whence in view of the arbitrariness of ¢ we get o;[F|¢ > F,. For P, = 0 the last inequality is

i. e. by Lemma 3

obvious. Equality (10) is proved.
The proof of (11) is similar. O
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The condition In n = o(\, In \,,) as n — oo implies the condition lim In In n/In A, < 1.
n—o0

Therefore, using Lemmas 2 and 3 it is easy to prove the following statement.

Proposition 3. If the function G has regular logarithmic growth, Inn = o(A,In \,),
In A1 ~1In A, and k,[G] 7 400 as ng < n — oo then

- )\n ln /\n ln 1 n
ori[Fle = lim (1/1gnl)

n—oo In (1/[fu]) In In (1/]g,])"
If, moreover, k,[F| /* 400 as ng < n — oo then
. AnIn Ay In (1/]gn)
Ap | Fle = lim .
rilFle = B e i (1/]g, )

Let us turn to the results about the relative growth of functions in terms of their types.

For classic growth scales, we can use Lemmas 2 and 3, and for generalized orders we need
such lemma.

Lemma 4. Let o« € L, f € L, zo/(x) = o(1), zf'(z) = O(1) and dﬁ_l(i;l:l_ Z2a<x>) =0(1)

as ¥ — +oo for each 0 < ¢1,¢c5 < +00). If Inn = o(\,87(ca(\,))) as n — oo for each
€ (0,400) and G € S(A) then

— 1 1

lim exp{a An) — 0a.8G|B (—ln —)} =T, 5G] 12

T exp f ) = 0200615 (-0 - N (12)
If, moreover, a(A,41) — a(\,) — 0 and k,[G] /7 +00 as ng < n — oo then

lim exp {a()\n) — 0a.5|G]B (i In L)} = t4.5[G]. (13)

n—o0 Ao 1l

Proof. Put a;(z) = exp{a(x)} and f1(x) = exp{0a[G|5(z)}. Then
+— ai(ln Mg(o))
I TG el

If, for example, ¢ > 1 then

a(cr) —a(r) = o/ (§)(c — D < (¢ — 1)a’(§)

for some £ € [z, cx] and, since zo/(x) = o(1) as + — +00, we have a(cz) — a(z) — 0 as
x — +00, 1. e. a; € L. Similarly, in view of condition zf'(z) = O(1) as x — +00, we have
B((1+o(1))z) — B(x) = B'(§)o(§) — 0 as & — +oo, whence it follows that 8; € L°.

Since B (z) = B71((In 1)/0a.5[G]), we have

df; Hcar(x))  dB7H((In e+ () /0aplG)) B (1 + cra(x))
dln x N dln z : N dln x =O0(), == oo

Finally, the condition Inn = o(\.0; (car(N\,))) as n — oo holds if Inn =
— oA (10 c+a(A))/0aslG])) s — 0. But (In c+a(A))/0aslG] > a(An)/(200s(C))
for n > ng. Therefore, the last condition holds if In n = o(\,57(ca(N,))) as n — oo for
¢ = 1/(204,5|G]). Thus, the functions oy and f; satisfy the conditions of Lemma 1 and in
a1 (Ant1)

Oél()\n)
and, therefore, by Lemma 1 formulas (13) is correct. O

view of (8) formula (12) is proved. Also =exp{a(As1) —a(A,)} = Lasn — o
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Using Lemma 4, we prove the following theorem.

Theorem 4. Let « € L, f € L, v € L, za/(x) = O(1), zp'(x) = O(1), 7' (x) = o(1),
da(e1 + cyy()) — O(1) and A" (c1 + coy(2))

dln z dln z
+00. Suppose that In n = o(A,a ' (cy(\,))) and In n = o(\,37(cy(\,))) as n — oo for

each ¢ € (0, +00).
If the function G has strongly regular generalized (v, a)-growth (i. e. 0 < t,,[G] =
T, 0[G] < +0), Y(Ant1) — 7(An) = 0 and k,[G] /' 00 as ng < n — oo then

(TaplFlo)? 1% = Q := exp{ lim Qu(F, G)},

= 0O(1) as & — +o0o for each 0 < ¢, ¢y <

where

1,1 LI
Qn(F, G) = 0,,0[Gla (A_n In @) ~ ol F)B (/\_n " ﬁ) '

If, moreover, k,[F| /' oo as ng < n — oo then

(tas[Fle) ! = q = exp{ lim Qu(F, G)}.

n—0o0

Proof. Since the function G has strongly regular generalized (7, a)-growth, by Theorem
2 (TopFle)? ¢ = T, 4[F|/T, o[G] and (ts[Flc)? =@ = t 5[F]/t,«[G]. Therefore, by
Lemma 4

(Ta [ Fla) ot =

= i oxp {30 = 2300718 (-0 o) 1 exp fo,afGa (10 ) <50 f <
< T exp {Qu(F, O} = Q

and
(ta,s[Fla)e=le =
. 1 1 — 1 1
= h_}_m exp {7()\”) — 0, 8[F|B <)\—1n m) } nh_g)lo exp {Q%Q[G]a (A—ln m) — ”y()\n)} >
> lim €xp {Qn(Fa G)} =4q.

n—oo

On the other hand, let @) > 0. Then for every @7 € (0, Q) there exists an increasing to
oo sequence (ny) of integers such that exp {Q,, (F, G)} > @1, 1. e.

exXp {7()‘%) — 0,5F]B ()\L In ﬁ)} > ()1 exp {V(Ank) — 0yalFla <)\L In Fll)}

and, thus,

T, pF] = Tim exp {V(An) — 0y5[F1B (% In ﬁ) } >
> Q1 Jim exp {200 = gralFla (1o ) L QutalGl = QT (61

whence in view of the arbitrariness of Q1 we get T, 3[F|¢ > Q. For @ = 0 the last inequality
is obvious. The equality (T, 3[F]c)?l¢ = Q is proved.

Similar we prove the inequality ¢, 3[F]a < g, i. e. we get the equality (t,.5[F]q)2 ¢ = q.
The proof of Theorem 4 is complete. n
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Next three statements are proved in general a way and we will drop their proofs. Using
Corollary 2 and Lemma 2, we get the following statement.

Proposition 4. If the function G has the strongly regular growth (i. e. 0 < tg[G] =
= Tg[G] < +0), In n. = 0(\,), Ms1 ~ Ay and k,[G] 7 400 as ng < n — oo then

— onlq]
T o 1F1enl6 — T CRIG) ¢ vontF/an ) —enlGl/n
(Tr,r[Flc) Hm QR[F]|f”| |9n]

If, moreover, k,[F] /400 as ng < n — oo then

. orlG -
(tRR[F]G)QR[G]: lim Bl ]|fn|QR[F]/>\n|gn| or[G]/2n
n—+oo OR F]
Since the condition Inlnn = o(ln \,) as n — oo implies the condition Inn =

= 0()\5/(9_1)) as n — oo for every p > 1, using Corollary 2 and Lemma 3, we get the

next statement.

Proposition 5. Let 1 < g[F], 0[G] < +oo. If the function G has the strongly regular
logarithmic growth (i. e. 0 < §[G] = T}|G] < 4+00), Inlnn = o(ln A,), A\py1 ~ A, and
kn|G] /400 as ng < n — oo then

L 1\ el 1\ ale-1
(E’I[F]G)QR[G} — lim )\zz[F]—gz[G} (ln _) (ln _) ]

AlalG))
F | fo |gn

Aol F)

) n—oo

If, moreover, k,[F] /* 400 as ng < n — oo then

]) 1 1—gi[F] 1 o[G]-1
S §)27l6] — Jim AalFl-a(d] (m m) (m _> ,

) n—roc |gn

Finally, since the condition Inlnn = o(ln A\,;) as n — oo implies the condition
Inn = o(\,) as n — oo, using Corollary 2 and Lemmas 2 and 3, we get the next state-
ment.

Proposition 6. Let 1 < g[G] < +oo. If the function G has the strongly regular logarithmic
growth, In In n = o(ln \,,), A\yi1 ~ A\, and k,[G] 7 400 as ng < n — oo then

o 1 a[G]-1
eQR[F]A(Ql[G])(TRJ[F]G)QR[G] — lim )\:Z_QZ[G]|fn|Ql[F]/>\n (ln ﬁ) '
n—oo gn

If, moreover, k,[F] /* 400 as ng < n — oo then

1 alG]-1
conlFIAGIG (n lFo) ™ = i A1 (1 )T
9

n—r00 n|
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st wiyimx dysKil F i G, 306paxkenux psaamu Jipixe 31 3pocTaroquMu J10 +00 TOKa3HU-
KaM¥, 3HaIeHO (DOPMYJIH JIJIsl 3HAXOJ/ZKEHHSI Y3araJibHEHOI'O TOPSIIKY

— a(M; N (Mp(0)))
Flg = lim G
0a.sFla a—1>+oo B(o)
1 y3araJbHEHOTO HUZKHBOTO HOPSIJIKY
. a(Mg(Mp(0)))
M glFlg = lim
75[ Je o——+00 B(U)

dyukiii F Bignocno dyukuii G, ne Mp(o) = sup{|F(o +it)| : t € R}, a o i f - nonarsi
3pocTaroti 10 +00 GyHKIIII.
Karwuosi caosa i Ppasu: psan Hdipixiie, y3arajgbHeHUil OPsIIOK, BiJIHOCHE 3POCTAHHS.



