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NONLINEAR MODEL OF THE THREE-COMPONENTS COMPETITIVE

ADSORPTION USING LANGMUIR EQUILIBRIUM

A basis for the mathematical modeling of non-isothermal gas competitive adsorption in a

porous solid using Langmuir equilibrium is given. High-performance analytical solutions of

considered adsorption models based on the Heaviside operating method and Landau's decom-

position and linearization approach of Langmuir equilibrium by expanding into a convergent

series in the temperature phase transition point are proposed.

Numerical experiments results based on high-speed computations on multicore computers

are presented.
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Introduction

The experimental and theoretical study of the competitive adsorption and di�usion of

several gases through a nanoporous solid and the instantaneous (out of equilibrium) distribu-

tion of the adsorbed phases is particularly important in many �elds, such as gas separation,

heterogeneous catalysis, puri�cation of con�ned atmospheres, reduction of exhaust emissions

contributing to global warming, etc.[1]. Taking into account the in�uence of physical factors

that limit the adsorption kinetics on the surface of nanopores, the quality of the math-

ematical models for the adsorption of exhaust gases (hydrocarbon components, CO2) in a

microporous bed determines the e�ectiveness of technological solutions for the neutralization

of gas emissions [2, 3, 4, 5, 6, 7, 8].

However, most of these models do not fully re�ect the complex spatial-temporal repre-

sentations of the course of all components of complex mass transfer in the intercrystallite

space and in the intracrystallite space, including the internal kinetics of the phase transition

taking into account the geometric characteristics of transfer areas [6, 7].
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In the proposed paper, which is a development of papers [8, 9, 10, 11], substantiated and

developed highly productive methods for mathematical modeling of three-component ad-

sorption in the microporous solid based on a system of spatiotemporal equations of heat and

mass transfer in partial derivatives and generalized Langmuir equation. For modeling, we use

the high-performance methods of the Heaviside operational calculus and the decomposition

approach for expansion the adsorption equilibrium.

1 Competitive N-component adsorption model in general formulation

The presented model is analogous to the biporous model [2, 3, 5, 6]. Developing the

approach described by Rhutwen and Karger [7, 8] and Petryk et al. [9] concerning the

construction of a complex process of competitive adsorption and di�usion, one should dwell

on the most important de�ning hypotheses limiting the process.

The general hypothesis adopted in developing the presented model in the most general

formulation concludes that the competitive n-component adsorption interaction between

adsorption molecules of several gases (two or more) and active adsorption centers on the

phase separation surfaces in the nanoporous crystallites is determined on the basis of the

nonlinear competitive equilibrium function of the Langmuir type, taking into account the

physical assumptions [7]:

1. Competitive adsorption is caused by the dispersion forces whose interaction is estab-

lished by Lennard-Jones and the electrostatic forces of gravity and repulsion, the mechanism

of which is described by Van der Waals [8]. The competitive di�usion process involves two

types of mass transfer: di�usion in the macropores (intercrystallite space) and di�usion in

the micropores of crystallites (intracrystallite space).

2. During the evolution of the system towards equilibrium there is a concentration

gradient in the macropores and in the micropores.

3. Competitive adsorption and di�usion occurs in active adsorbent centers, distributed

throughout the inner surface of the nanoporous[7, 8]. All crystallites are spherical and have

the same radius R, the crystallite bed is uniformly packed.

Taking into account the above, we have developed a nonlinear competitive adsorption

model in the form of these hypotheses:

∂Cj (t, Z)

∂t
=
Dinterj

l2
∂2Cj
∂Z2

− einterj
Dintraj

R2

(
∂Qj

∂X

)
X=1

, (1)

∂Qj (t,X, Z)

∂t
=
Dintraj

R2

(
∂2Qj

∂X2
+

2

X

∂Qj

∂X

)
(2)

with initial conditions:

Cj (t, Z)|t=0 = 0, Qj (t,X, Z)|t=0 = 0, X ∈ (0, 1) , j = 1, 3 (3)

and boundary conditions for coordinate X of the crystallite (particle):

∂

∂X
Qj (t,X, Z)|X=0 = 0. (4)
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In expressions (1),(2) the function

Qj (t,X = 1, Z)|X=1 = KjCj (t, Z) [1 +K1C1 (t, Z) +K2C2 (t, Z) +K3C3 (t, Z)]−1 (5)

is the Langmuir competitive adsorption equilibria with boundary conditions on coordinate

Z:

Cj (t, Z)|Z=1 = Cin
j ,

∂

∂Z
Cj (t, Z)|Z=0 = 0. (6)

Here cj, qj, j = 1, 3 is the current concentrations of the di�usion adsorbent components

in the gas phase and micropores of the adsorbent particles, c∞j, q∞j is the corresponding

equilibrium concentrations of the adsorbent components in the gas and adsorbed phase,

K̃j = q∞j
/c∞j

is the adsorption constant of the j-th component of the adsorbent, Kj =

1/K̃j, j = 1, 3, εinter is the macroporosity of the media,

einterj =
εintercj

εintercj + (1− εinter) qj
≈ εinter

(1− εinter) K̃j

.

Next, we perform the decomposition of nonlinear system (1)-(5). The nonlinear function

of the competitive Langmuir adsorption equilibrium is as follows [10]:

ϕj (C1, C2, C3) =
Cj (t, Z)

1 +K1C1 (t, Z) +K2C2 (t, Z) +K3C3 (t, Z)
, j = 1, 3. (7)

We decompose di�usion components of the adsorbate [13] into a Maclaurin series at the

point of zero concentrations:

ϕ0
j (C1, C2, C2) = ϕ0

j +

(
∂2ϕ0

j

∂C1∂C2

C1C2 +
∂2ϕ0

j

∂C1∂C3

C1C3 +
∂2ϕ0

j

∂C2∂C3

C2C3

)
+

+

(
∂ϕ0

j

∂C1

C1 +
∂ϕ0

j

∂C2

C2 +
∂ϕ0

j

∂C3

C3

)
+

1

2

(
∂2ϕ0

j

∂C2
1

C2
1 +

∂2ϕ0
j

∂C2
2

C2
2 +

∂2ϕ0
j

∂C2
3

C2
3

)
+ ...

(8)

where ϕ0
j = ϕj (0, 0, 0) , j = 1, 3. As a result, we obtain the following decompositions for (5)

of the second order of accuracy:

Q1 (t,X = 1, Z)|X=1 = K1 (C1 −K1C
2
1 −K2C1C2 −K3C1C3) ,

Q2 (t,X = 1, Z)|X=1 = K2 (C2 −K2C
2
2 −K1C1C2 −K3C2C3) ,

Q3 (t,X = 1, Z)|X=1 = K3 (C3 −K3C
2
3 −K1C1C3 −K2C2C3) .

(9)

Assuming that K1 = max
{
Kj, Kj < 1

}3
j=1

where ε = K2
1 << 1 (small parameter), prob-

lem (1)-(6), taking into account the approximated kinetic equations of phase transformation

(9) containing a small parameter ε, is a boundary problem for a nonlinear system of par-

tial di�erential equations. The solution of problem (1)-(5) will be sought with the help of

asymptotic expansions in the small parameter ε in the form of the following series [13]:

Cj (t, Z) = Cj0 (t, Z) + εCj1 (t, Z) + ε2Cj2 (t, Z) + ..., (10)

Qj (t,X, Z) = Qj0 (t,X, Z) + εQj1 (t,X, Z) + ε2Qj2 (t,X, Z) + ..., j = 1, 3. (11)
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As the result of substituting the asymptotic sum (10), (11) into equations (1)-(6) and re-

placing variables Njm = X ·Qjm , the initial nonlinear boundary problem (1)-(6) is parallelized

into two types of linearized boundary problems.

Problem Aj0 , j = 1, 3: to �nd a solution of partial di�erential equations system for the

area D = {(t,X, Z) : t > 0, X ∈ (0, 1) , Z ∈ (0, 1)}.

∂

∂t
Cj0 (t, Z) =

Dinterj

l2
∂2Cj0
∂Z2

− einterj
Dintraj

R2

(
∂Nj0

∂X
−Nj0

)
X=1

, (12)

∂

∂t
Nj0 (t,X, Z) =

Dintraj

R2

∂2Nj0

∂X2
(13)

with initial conditions:

Cj0 (t, Z)|t=0 = 0; Nj0 (t,X, Z)|t=0 = 0; X ∈ (0, 1) , j = 1, 3 (14)

and boundary conditions for coordinate X of the crystallite:

Nj0 (t,X, Z)|X=0 = 0; Nj0 (t,X, Z)|X=1 = KjCj0 (t, Z) , j = 1, 3 (15)

The boundary conditions for coordinate Z are as follows:

Cj0 (t, Z)|Z=1 = 1;
∂

∂Z
Cj0 (t, Z)|Z=0 = 0. (16)

Problem Am, m = 1,∞: to �nd in the area D a limited solution for the system of

equations:

∂Cjm
∂t

(t, Z) =
Dinterj

l2
∂2Cjm
∂Z2

− einterj
Dintraj

R2

(
∂Njm

∂X
−Njm

)
X=1

, (17)

∂

∂t
Njm (t,X, Z) =

Dintraj

R2

∂2Njm

∂X2
(18)

with zero initial conditions:

Cjm (t, Z)|t=0 = 0; Njm (t,X, Z)|t=0 = 0, j = 1, 3 (19)

boundary conditions for coordinate X of the crystallite:

Njm (t,X, Z)|X=0 = 0; Njm (t,X, Z)X=1 = KjCjm (t, Z)− Fjm (t, Z) , j = 1, 3, (20)

Fjm (t, Z) =
m−1∑
s=0

3∑
k=1

K
j
Kk

K2
1

Cjs (t, Z)Ckm−1−s (t, Z) , j = 1, 3. (21)

The boundary conditions for coordinate Z are as follows:

Cjm (t, Z)|Z=1 = 0;
∂

∂Z
Cjm (t, Z)|Z=0 = 0. (22)

The construction methodology of an analytical solution. The Heaviside operating

method [13] is used to �nd solutions Cjm and Qjm of linearized system of problems (1)-(6).
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Assuming that the required functions Cjm and Qjm (N>m = X ·Qjm) are Laplace originals,

in Laplace images we obtain the next problems.

Problem A∗0:

∂2C∗j0
∂ Z2 =

l2

Dinterj

pC∗j0 +
3

einterj

l2

R2

Dintraj

Dinterj

(
∂ N∗j0
∂ X

−N∗j0

)
X=1

, (23)

∂2N∗j0
∂X2

− R2

Dintraj

pN∗j0 = 0 (24)

with boundary conditions for coordinate X of the crystallite:

N∗j0 (p,X, Z)|X=0 = 0; N∗j0 (p,X, Z)|X=1 = KjC
∗
j0

(p, Z) , j = 1, 3. (25)

The boundary conditions for coordinate Z are as follows:

C∗j0 (p, Z)|Z=1 = Cin
j /p,

∂

∂Z
C∗j0 (p, Z)|Z=0 = 0. (26)

Problem A∗m, m = 1,∞:

∂2C∗jm
∂ Z2 =

l2

Dinterj

pC∗jm +
3

einterj

l2

R2

Dintraj

Dinterj

(
∂ N∗jm
∂ X

−N∗jm

)
X=1

, (27)

∂2N∗jm
∂X2

− R2

Dintraj

pN∗jm = 0. (28)

The boundary conditions for coordinates X and Z are as follows:

N∗jm (p,X, Z)|X=0 = 0; N∗im (p,X, Z)|X=1 = KjC
∗
jm (p, Z)− F ∗jm (p, Z) , j = 1, 3, (29)

C∗jm (p, Z)|Z=1 = 0;
∂

∂Z
∗
jm (p, Z)|Z=0 = 0. (30)

Here C∗jm (p, Z) =

∫ ∞
0

Cjm (t, Z) e−ptdt, N∗jm (p,X, Z) =

∫ ∞
0

N∗jm (t,X, Z) e−ptdt, p is the

imaginary-signi�cant parameter of Laplace transform.

A solution of Problem A∗0. The solution of boundary problem (22)-(25) is:

N∗j0 (p,X, Z) = KjC
∗
j0

(p, Z) sh

(
R

√
p

Dintraj

X

)/
sh

(
R

√
p

Dintraj

)
, j = 1, 3. (31)

We calculate(
∂N∗i0 (p,X, Z)

∂ X

)
X=1

= R

√
p

Dintrai

cth

(
R

√
p

Dintrai

)
KiC

∗
i0

(p, Z) (32)

than, substituting (30) and (31) into equation (26) we obtain:

∂2C∗j0
∂ Z2 − γ2j (p) C∗j0 (p, Z) = 0 (33)
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where

γ2j (p) = ΓjKj

(
einterj
3Kj

R2

Dintraj

p+R

√
p

Dintraj

cth

(
R

√
p

Dintraj

)
− 1

)
;

Γj =
3

einterj

l2

R2

Dintraj

Dinterj

.

The solution of equation (22) taking into account the boundary conditions (29) are as follows:

C∗j0 (p, Z) = Cin
j

1

p

ch [γj (p)Z]

ch [γj (p)]
= Cin

j

1

p

cos [γj (p)Z]

cos [γj (p)]
. (34)

The roots of transcendental equations ch [γj (p)] = cos [γj (β)] = 0 are determined from

transcendental equations γj(β) = (2k − 1)π/2, k =1,∞ or:

βjctg
(
βj
)
−
einterj
3Kj

(
βj
)2

= 1− 1

ΓjKj

(
2k − 1

2
π

)2

, k =1,∞. (35)

Using Heaviside's theorem on the decomposition of a rational complex expression into a

series by the roots of the denominator and making a substitution p = −Dintrajβ
2
j /R

2, we

obtain a formula for returning the Laplace image to the original (33):

Cj0 (t, Z) = Cin
j

1 +
∞∑
s=1

∞∑
k=1

ch [γj (p)Z] exp (pkst)

pks
d

dp
ch [γj (p)]|p=pks

 ; pks = −
Dintraj(β

j
ks)

2

R2
, (36)

where βjks are distinct positive roots of transcendental equations (34).

After simpli�cations we obtain:

Cj0 (t, Z) = Cin
j

(
1 + 2

(
R

l

)2 Dinterj

Dintraj

×

×
∞∑
s=1

∞∑
k=1

(2k − 1) π cos

(
2k − 1

2
πZ

)
exp

(
−
Dintraj

R2

(
βjks
)2
t

)
(−1)s

(
βjks
)2 [ 3Kj

einterj

(
1

sin2
(
βjks
) − ctg

(
βjks
)

βjks

)
+ 2

]
.

(37)

Transforming formula (30) to a compact form we have:

N∗j0 (p,X, Z) = C∗j0 (p, Z)
sin (βX)

sin (β)
=
Cin
j

p

ch [γj (p)Z]

ch [γj (p)]

sin (βX)

sin (β)
; iβ = R

√
p

Dintraj

and as a result of applying to it the Heaviside theorem on the expansion into a series, we

obtain a formula for calculating the Laplace original of the function Nj0
(t,X, Z):

Ns1
(t,X, Z) = 1 +

∞∑
n=1

∞∑
k=1

sin (βX) ch [γs1(pkn)Z] exp (pkn1t)

pkn1 sin (β) d
dp
ch [γs1(p)l]|

p=pkn1=−
Dintras1

β2
kn1

R2

. (38)
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After transformation and going to the function Qj0
(t,X, Z) to describe the concentration

distributions of the adsorbed components in the nanopores of the particles:

Qj0(t, Z) = Cin
j

(
1 + 2

(
R

l

)2 Dinterj

Dintraj

×

×
∞∑
s=1

∞∑
k=1

(2k − 1) π sin
(
βjksX

)
cos

(
2k − 1

2
πZ

)
exp

(
−
Dintraj

R2
(βjks)

2t

)
(−1)n (βjks)

2X sin (βks)

[
3Kj

einterj

(
1

sin2(βjks)
−
ctg
(
βjks
)

βjks

)
+ 2

]
.

(39)

A solution of Problem Am. A solution of boundary problem (27), (28) is

N∗jm (p,X, Z) =
(
KjC

∗
jm (p, Z)− F ∗jm (p, Z)

) sh
(
R
√

p

Dintraj

X

)

sh

(
R

√
p

Dintraj

) , j = 1, 3 (40)

From (39) at X = 1 we obtain:(
∂N∗im (p,X, Z)

∂ X

)
X=1

= R

√
p

Dintrai

cth

(
R

√
p

Dintrai

)(
KjC

∗
jm (p, Z)− F ∗jm (p, Z)

)
.

By substituting N∗jm |X=1 and
∂ N∗

jm

∂ X

∣∣∣
X=1

in equation (38) we obtain:

d2C∗jm
dZ2 − γ2j (p)C∗jm = −Φ∗jm (p, Z) (41)

here Φ∗jm (p, Z) = Γj

(
R

√
p

Dintrai

cth

(
R

√
p

Dintrai

)
− 1

)
F ∗jm (p, Z) , m = 1,∞.

A solution of the inhomogeneous problem (40), (29) are as follows [15]:

C∗jm (p,X, Z) = −
∫ 1

0

K∗j (p, Z, ξ) Φ∗jm (p, ξ) dξ, (42)

where the fundamental function of Cauchy's in�uence K∗j (p, Z, ξ), which is determined as

follows:

K∗j (p, Z, ξ) =


K−∗j (p, Z, ξ) = d1AhγjZ + e1sh γjZ, 0 < Z < ξ < 1

K+∗
j (p, Z, ξ) = d2chγjZ + e2shγjZ, 0 < ξ < Z < 1

. (43)

All the coe�cients ds , es , s = 1, 2 in expressions (44) are determined by conditions [15]:
K∗j (p, Z, ξ)

∣∣
Z=ξ+0

−K∗j (p, Z, ξ)|Z=ξ−0 = 0

d

dZ
K∗j (p, Z, ξ)|Z=ξ+0 −

d

dZ
K∗j (p, Z, ξ)|Z=ξ−0 = 1

(44)
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and an additional condition (boundary condition at Z = 1):

K+∗
j

∣∣
Z=1
≡ [d2chγjZ + e2shγjZ]Z=1 = 0. (45)

Consistently, applying conditions (44)-(46) as a result, the Cauchy function K∗j (p, Z, ξ) is

fully determined in the following form:

K∗j (p, Z, ξ) = − 1

γj


sh (γj(1− ξ)) · ch (γjZ)

ch (γj)
, 0 < Z < ξ < 1

sh (γj(1− Z)) · ch (γjξ)

ch (γj)
, 0 < ξ < Z < 1

(46)

De�ning another function of in�uence:

H∗j (p, Z, ξ) = −
R

√
p

Dintrai

cth

(
R

√
p

Dintrai

)
γj

K∗j (p, Z, ξ) (47)

solution (44) will take the following form :

C∗jm (p,X, Z) = −Γj

∫ 1

0

(
H∗j (p, Z, ξ)−K∗j (p, Z, ξ)

)
F ∗jm (p, ξ) dξ. (48)

The transition to originals. We carry out the transition to the originals Cjm (t,X, Z)

using the formula:

Cjm (t,X, Z) = −Γj

∫ 1

0

L−1
[
H∗j (p, Z, ξ)−K∗j (p, Z, ξ)

]
∗ Fjm (t, ξ) dξ (49)

where L−1 [...] - is the designation of the Laplace inverse transform operator, ∗ is the image

convolution operator. In the �nal form, after calculating the originals, formula (47) takes

the form:

Cjm (t,X, Z) = − 3

einterj

l2

R2

Dintraj

Dinterj

×

×
∫ t

0


∫ 1

Z

(
H−j (t− τ, Z, ξ)−K−j (t− τ, Z, ξ)

)
Fjm (τ, ξ) dξ+

+

∫ Z

0

(
H+
j (t− τ, Z, ξ)−K+

j (t− τ, Z, ξ)
)
Fjm (τ, ξ) dξ

 dτ

, (50)

were H−j (t− τ, Z, ξ) ,K−j (t− τ, Z, ξ) , H+
j (t− τ, Z, ξ) ,K+

j (t− τ, Z, ξ) are the components

of in�uence functions (45), (47), the calculation algorithms of which are given below.

Applying to the components of the in�uence functions (45), (47) the Heaviside theorem

on the development of a rational complex expression into a convergent series, we obtain:

L−1

[
fhj (p)

γj (p) sh [γj(p)] ch [γj(p)]

]
=
∞∑
s=1

∞∑
k=1

fhj
(
βjks
)
e

Dintraj

R2 (βjks)
2
t

ω1
j

(
βjks
) +

+
∞∑
s1=1

fhj
(
µjs1
)
e

Dintraj

R2 (µjs1)
2
t

ν2j
(
µjs1
) +

∞∑
k1=1

fhj
(
ηjk1
)
e

Dintraj

R2 (ηjk1)
2
t

ω2
j

(
ηjk1
)

(51)
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where fhj , h = 1, 4 determine, respectively, the numerators of the componentsH±j (t− τ, Z, ξ)
- the in�uence functions (46).

Calculate the denominators in the expressions of the sums of each of the three terms of

the right-hand side of formula (50):

ω1
j

(
βjks
)
≡ γj (p) sh

(
R

√
p

Dintraj

)
d

dp
ch [γj(p)]

∣∣∣p=βjks =

= −γj
(
βjks
)

sin
(
βjks
) (−1)k (βjks)

2

2k − 1

[
3Kj

einterj

(
1

sin2(βjks)
− ctg(βjks)

βjks

)
+ 2

] (52)

where
{
βjks
}
, k, s = 1,∞ - set of roots of transcendental equation (34):

ν1j
(
µjs1
)
≡ γj (p) ch [γj (p)]

d

dp
sh

(
R

√
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)
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(
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2Dintrajµ
j
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)
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(
R

√
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Dintraj

)
ch [γj(p)]

d
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= − l
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√
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(
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)
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− 1

sin2 ηjk1
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3Kj

+
ctg
(
ηjk1
)

ηjk1
− 1(

ηjk1
)2

sin
(
ηjk1
)

cos
[
γj
(
ηjk1
)]
,

where
{
ηjk2
}j=1,3

k2=1,∞ is the set of roots of transcendental equation:

einterj
3Kj

(
µj
)2 − µjctg (µj)+ 1 = 0, γ1j (p) = 0, R

√
p

Dintraj

= iµj
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As a result, we obtain the following expressions of the originals:

H−j (t, Z, ξ) = L−1
[
H−∗j (p, Z, ξ)

]
=

=
∞∑
s=1

∞∑
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Z
)
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2
t

ω1
j

(
βjks
) +

+
∞∑
s1=1

µjs1 cos
(
µjs1
)

sin
(
γj
(
µjs1
)

(1− ξ)
)
· cos

(
γj
(
µjs1
)
Z
)
e

Dintraj

R2 (µjs1)
2
t

ν2j
(
µjs1
)

+
∞∑
k1=1

ηjk1 cos
(
ηjk1
)

sin
(
γj
(
ηjk1
)

(1− ξ)
)
· cos

(
γj
(
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Z
)
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2
t

ω2
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(
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) ;

H+
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[
H+∗
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]
=

=
∞∑
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(
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(
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(
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.

Next, we �nd the components Kj (t, Z, ξ). We have:

L−1

[
ghj (p)

γj (p) ch [γj(p)]

]
=
∞∑
s=1

∞∑
k=1

ghj
(
βjks
)
e
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R2 (βjks)
2
t

ω̃1
j

(
βjks
) +

∞∑
k1=1

ghj
(
ηjk1
)
e
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R2 (ηjk1)
2
t

ω̃2
j

(
ηjk1
) (53)

where ghj (p) determine K+
j (t− τ, Z, ξ) ,K+

j (t− τ, Z, ξ) are the components of in�uence func-

tions (45).

We calculate the denominators in the expressions of the sums of each of the two terms
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of the right part of formula (51):

ω̃1
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(
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)
≡ γj (p)

d
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(
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,

The expressions of originals are:

K−j (t, Z, ξ) = L−1
[
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Njm (t,X, Z) is calculated on basis of formula (51). We obtain:

L−1
[
N∗jm(p,X, Z)

]
= L−1

[
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∗
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p
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X
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R

√
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We calculate the original of function Ψ∗jm(p,X) = sh

(
R
√

p
Dintraj

X

)/
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(
R
√

p
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)
:
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Here pjk2 = −Dintraj

π2k22
R2

, k2 = 0,∞ are the roots of the equation sh

(
R

√
p

Dintraj

)
= 0.

Applying formula (50) to (49) one calculus the original Njm (t,X, Z):

Njm (t,X, Z) = L−1
[(
KjC

∗
jm (p, Z)− F ∗jm (p, Z)

)
∗Ψj (p, Z)

]
=

=

∫ t

0

(
KjCjm (t− τ, Z)− Fjm (t− τ, Z)

)
×

×

(
2

Dintraj

R2
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πk2 · sin (k2πX)
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−
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. (56)

Returning to the functions Qjm , we obtain:

Qjm (t,X, Z) =

∫ t

0

(
KjCjm (t− τ, Z)−

m−1∑
s=0

3∑
k=1

K
j
Kk

K2
1
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(
−
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2t)

))
dτ, j = 1, 3.

(57)

The following theorem holds.

Theorem 1. If the given and unknown functions of boundary-value problems (23)-(23), are

Laplace pre-images with respect to the time variable t and the unique solvability conditions of

boundary-value problems A0 and Am of the Laplace images are satis�ed, then the solutions to

the boundary-value problems A0 and Am, exist, are unique, and are determined by formulas

(37),(39) and (51),(57), which constitute the solution of initial nonlinear boundary-value

problem (1)-(6).

2 Simulation and Discussion

The purpose of computer modeling was to study the capabilities of the model proposed for

further use in technologies for cleaning carbon emissions into the atmosphere by energy and
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Figure 1: Breakthrough curves (ci(t)/c0, i = 1,2,3) for three-component adsorption for a

mixture of methane (CH4, i = 1), ethane (C2H6, i = 2), propane (C3H8, i = 3) taken from

di�erent mass ratios in the input mixture: (80%, 15%, 5%) (a), (35%, 35%, 30%) (b)

transport facilities (propane, CO2 and other combustion products). This is one of the key

ways to solve the problem of global warming and create a safe energy strategy [2]. Propane

was chosen as an adsorbent, the volume of which covers about 30% of the total gas �ow

leaving the car's engine. Using the developed mathematical theory and technology oriented

to parallel multicore computer calculations, the modeling and calculation of concentration

dependencies of three-component adsorption and desorption curves in nanoporous catalytic

layers are carried out. Computational experiments were performed for the experimental

sample [7, 10, 12, 14].

3 Conclusions

High-performance methods and computational technologies for modeling non-isothermal

gas adsorption in nanoporous solid for three-component adsorption equilibrium have been

developed. On their basis, new nonlinear mathematical models have been constructed, in-

cluding the balance equations of adsorption/desorption taking into account the interaction of

intracrystalite space (micro �ows) and intercrystallite space (macro �ows). E�ective schemes

for parallelizing and linearizing nonlinear models were developed on basis of the equilibrium

function decomposition into a series at the point of phase transition temperature as a small

parameter. High-speed analytical and numerical solutions of mathematical models using

the Heaviside operational method, their algorithmic and software implementation is im-

plemented, which ensures e�cient parallelization of computational processes for multicore

computers and increased computational speed have been constructed.
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Figure 2: Desorption curves of gases in zeolite nanopores (Qi(t)/c0, i = 1,2,3) for a mixture

of methane (CH4, i = 1), ethane (C2H6, i = 2), propane (C3H8, i = 3) taken in di�erent

mass ratios in the input mixture: (80%, 15%, 5%) (a), (35%, 35%, 30%) (b)
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Íàâåäåíi îñíîâè ìàòåìàòè÷íîãî ìîäåëþâàííÿ íåiçîòåðìi÷íî¨ òðèêîìïîíåíòíî¨ êîìïå-

òèòèâíî¨ àäñîðáöi¨ ãàçó â íàíîïîðèñòîìó ñåðåäîâèùi ç âèêîðèñòàííÿì ðiâíîâàãè Ëåíãìþ-

ðà. Çàïðîïîíîâàíî âèñîêîåôåêòèâíi àíàëiòè÷íi ðîçâ'ÿçêè äëÿ ðîçâèíåíî¨ ìîäåëi àäñîðáöi¨

ç âèêîðèñòàííÿì îïåðàöiéíîãî ìåòîäó Ãåâiñàéäà òà iíòåãðàëüíîãî ïåðåòâîðåííÿ Ëàïëàñà.

Íàâåäåíî ðåçóëüòàòè êîìï'þòåðíîãî ìîäåëþâàííÿ íà îñíîâi âèñîêîøâèäêiñíèõ îá÷è-

ñëåíü íà áàãàòîÿäåðíèõ êîìï'þòåðàõ.


