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NONLINEAR MODEL OF THE THREE-COMPONENTS COMPETITIVE
ADSORPTION USING LANGMUIR EQUILIBRIUM

A basis for the mathematical modeling of non-isothermal gas competitive adsorption in a
porous solid using Langmuir equilibrium is given. High-performance analytical solutions of
considered adsorption models based on the Heaviside operating method and Landau’s decom-
position and linearization approach of Langmuir equilibrium by expanding into a convergent
series in the temperature phase transition point are proposed.

Numerical experiments results based on high-speed computations on multicore computers
are presented.
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INTRODUCTION

The experimental and theoretical study of the competitive adsorption and diffusion of
several gases through a nanoporous solid and the instantaneous (out of equilibrium) distribu-
tion of the adsorbed phases is particularly important in many fields, such as gas separation,
heterogeneous catalysis, purification of confined atmospheres, reduction of exhaust emissions
contributing to global warming, etc.|[1]. Taking into account the influence of physical factors
that limit the adsorption kinetics on the surface of nanopores, the quality of the math-
ematical models for the adsorption of exhaust gases (hydrocarbon components, CO) in a
microporous bed determines the effectiveness of technological solutions for the neutralization
of gas emissions [2, 3, 4, 5, 6, 7, §|.

However, most of these models do not fully reflect the complex spatial-temporal repre-
sentations of the course of all components of complex mass transfer in the intercrystallite
space and in the intracrystallite space, including the internal kinetics of the phase transition
taking into account the geometric characteristics of transfer areas |6, 7|.
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In the proposed paper, which is a development of papers [8, 9, 10, 11], substantiated and
developed highly productive methods for mathematical modeling of three-component ad-
sorption in the microporous solid based on a system of spatiotemporal equations of heat and
mass transfer in partial derivatives and generalized Langmuir equation. For modeling, we use
the high-performance methods of the Heaviside operational calculus and the decomposition
approach for expansion the adsorption equilibrium.

1 COMPETITIVE N-COMPONENT ADSORPTION MODEL IN GENERAL FORMULATION

The presented model is analogous to the biporous model |2, 3, 5, 6]. Developing the
approach described by Rhutwen and Karger |7, 8] and Petryk et al. [9] concerning the
construction of a complex process of competitive adsorption and diffusion, one should dwell
on the most important defining hypotheses limiting the process.

The general hypothesis adopted in developing the presented model in the most general
formulation concludes that the competitive n-component adsorption interaction between
adsorption molecules of several gases (two or more) and active adsorption centers on the
phase separation surfaces in the nanoporous crystallites is determined on the basis of the
nonlinear competitive equilibrium function of the Langmuir type, taking into account the
physical assumptions [7]:

1. Competitive adsorption is caused by the dispersion forces whose interaction is estab-
lished by Lennard-Jones and the electrostatic forces of gravity and repulsion, the mechanism
of which is described by Van der Waals [8]. The competitive diffusion process involves two
types of mass transfer: diffusion in the macropores (intercrystallite space) and diffusion in
the micropores of crystallites (intracrystallite space).

2. During the evolution of the system towards equilibrium there is a concentration
gradient in the macropores and in the micropores.

3. Competitive adsorption and diffusion occurs in active adsorbent centers, distributed
throughout the inner surface of the nanoporous|7, 8]. All crystallites are spherical and have
the same radius R, the crystallite bed is uniformly packed.

Taking into account the above, we have developed a nonlinear competitive adsorption
model in the form of these hypotheses:

aCj (t, Z) Dinter‘j 8203' Dintraj (%)
X=1

ot 1 ozz “menT e \9x (1)

8@]‘ (t, X, Z) Dmtraj (aQQj + 2 8QJ> (2)

ot TRz \ox? " X ox

with initial conditions:
C; (t, Z)\t:o =0, Q; (t, X, Z)|t:0 =0, X€(0,1), j =1,3 (3)

and boundary conditions for coordinate X of the crystallite (particle):

0

ax @i (62X Z)1x29 = 0. (4)
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In expressions (1),(2) the function
Qi (t,X =1,2) x_y = K;C; (t, Z) 1+ K, Cy (t, Z) + K,Ca (t, Z) + K3 C3 (1, Z)] 7' (5)

is the Langmuir competitive adsorption equilibria with boundary conditions on coordinate
Z: 5
Cj(t,2) 4= = C}", 375 (t,2) 5= = 0. (6)
Here ¢;, qj, 7 = 1,3 is the current concentrations of the diffusion adsorbent components
in the gas phase and micropores of the adsorbent particles, c;, ¢oo; is the corresponding
equilibrium concentrations of the adsorbent components in the gas and adsorbed phase
K = (oo, /Coo, is the adsorption constant of the j-th component of the adsorbent, K;

1/K j =1,3, Enter is the macroporosity of the media,

EinterCj Einter

~

EinterCyj + (]— - E':in’ﬂelf) q;j -~ (1 - Einter) K

einterj =
J
Next, we perform the decomposition of nonlinear system (1)-(5). The nonlinear function
of the competitive Langmuir adsorption equilibrium is as follows [10]:
C;(t,2) —

j=T1,3.
23 (Cr O, Cy) = 11 K,C1 (t,2) + KOs (t, Z) + K,C3 (8, 2) )3 (7)

We decompose diffusion components of the adsorbate [13] into a Maclaurin series at the
point of zero concentrations:

82800 a Sp‘j a SOJ
@) (C1,Cp, Cy) = (3(]3(JCC+8(]8000 808000)

(8)

0} ., 045 . 9% P o T8 o 095
+<8010+300+80303> (59020 acz 2t 8C2C>

where ¢! = ¢, (0,0,0),j = 1,3. As a result, we obtain the following decompositions for (5)
of the second order of accuracy:

Ql (t>X: 172)|X:1 K (Cl _K1012_K20102_K30103)’
Qa2 (1, X =1, Z)|X:1 K,y (Cy — K03 — K10 Cy — K3CyC5) (9)
Q3 <t7X = 17 Z)|X:1 = K (03 - KBC?? - K101C3 - KZCZC3) .

Assuming that K, = max {K, K; < 1}:;:1 where ¢ = K7 << 1 (small parameter), prob-
lem (1)-(6), taking into account the approximated kinetic equations of phase transformation
(9) containing a small parameter ¢, is a boundary problem for a nonlinear system of par-
tial differential equations. The solution of problem (1)-(5) will be sought with the help of
asymptotic expansions in the small parameter ¢ in the form of the following series [13]:

C;(t,Z)=Cy, (t, 2) +eCy, (t,Z) +°Cy, (t, Z) + ..., (10)

Q;(t,X,2)=Qj, (t,X,Z) +eQj, (t,X,Z) +°Q;, ¢, X, Z) + ..., j = 1,3. (11)



NONLINEAR MODEL OF COMPETITIVE ADSORPTION 67

As the result of substituting the asymptotic sum (10), (11) into equations (1)-(6) and re-
placing variables N; = X-Q; , the initial nonlinear boundary problem (1)-(6) is parallelized
into two types of linearized boundary problems.

Problem A;,,j=1,3: to find a solution of partial differential equations system for the
area D ={(t,X,Z):t>0, X €(0,1),Z € (0,1)}.

a inter,- 820 Dintra- aN
—=C,, (t,Z 2 0 einter, ——t 0 _ N, 12
gt Cio (b 2) = = 7 — Cnter, s (aX J“)Xl’ (12)
a Dint'ra' aQN
—N,, (t,X,Z) = s 20 13
at JO( » <Ly ) R2 aXQ ( )
with initial conditions:
Cjo (ta Z)|t:0 - 0; Njo (thv Z)|t:0 = 0; X e (07 1) ) ] = 17_3 (14)
and boundary conditions for coordinate X of the crystallite:
Njo (t7X7 Z)\X:O =0; Njo (t7Xu Z)\X:l - KjCjo (t7 Z) J = 17_3 (15)
The boundary conditions for coordinate Z are as follows:
)
Cj, (1, Z)\z:1 =1 3_ZCjO (t, Z)\Z:o = 0. (16)
Problem A,,,m = 1,00: to find in the area D a limited solution for the system of
equations:
80 inter- 820 Dintrw 8N
t, 7 . I inter. ! Im N 17
gt W2 = T g T ey ( ax J'")Xl’ (17)
a mtra a N
—N,; (t,X,Z : 18
8t Im ( ) ) ) R2 aXQ ( )
with zero initial conditions:
ij (t7 Z)\t:o = 07 ij (t>X7 Z)\t:o = 07 ] = 17_3 (19)

boundary conditions for coordinate X of the crystallite:

ij (t7X7 Z)\X:O =0; ij (thv Z)X:l = Kjij (t7 Z) - ij <t7 Z)?] :17_37 (20)
m—1 3
B, (12)= Y3 ke (1.2)Cr, L (12).5 =T e1)
5=0 k=1 Kt

The boundary conditions for coordinate Z are as follows:

0
0z
The construction methodology of an analytical solution. The Heaviside operating
method [13] is used to find solutions C; ~and @, of linearized system of problems (1)-(6).

ij (t7 Z)|Z:1 - 07 ij (t7 Z)|Z:0 = 0 (22)
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Assuming that the required functions C; and Q; (N, = X -@; ) are Laplace originals,

in Laplace images we obtain the next problems.
Problem Aj:

0?Cx 2 3 %2 Dintra. 8N*
Jo * - J *
8 Z2 Dinter]- pOJO N 6inter]- R2 Dinterj ( aX NJO) =1 ’
O?N* R2
J0 Nf =0
8X2 Dintraj b 70

with boundary conditions for coordinate X of the crystallite:

N;o (p>X7Z)|X:O :0; N;o (p7XvZ)|X 1 = K, ( b, )’] :m'

J —Jo

The boundary conditions for coordinate Z are as follows:

* mn a
Cjo (p7Z)|Z 1 C /pa Z Jo( ’Z>|Z:O =0.

Problem A}, m =1, 00:

>rC 5 3 1% Dintra, (ON}
Jm C* o J Im N*
0 Z2 Dinter]- b m - einter]- R2 Dinterj ( 90X ! )le ’
O*N; R2
m N =0.
aXQ Dintraj b m

The boundary conditions for coordinates X and Z are as follows:
N;m (p’ X’ Z)|X=0 =0; Nltn <p7 X? Z)|X:1 = ch;m (p7 Z) - F‘]tn (p7 Z) )= 17_37

* 5.
ij (p7 Z>|Z=1 = 07 a_Z]m (p; Z)|Z:O =0.

Im

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

Here C (p,Z) = / C; (t,Z)edt, N; (p,X,Z) / N (t,X,Z)e™dt, p is the
0

imaginary-significant parameter of Laplace transform.
A solution of Problem Aj. The solution of boundary problem (22)-(25) is:

p b . T o
X sh | R ,7=1,3.
Dintraj > / < Dintraj> J
We calculate

ON;: (p, X, Z) 5 K
OlNip (P, A, 24) _ o
( 0X . R Do cth | R Do C2 (p, 2)

N} (p, X, Z) = K;C (p, Z) sh (R

than, substituting (30) and (31) into equation (26) we obtain:

e )
822 _,7]()0(7 )_O

(31)

(32)

(33)
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where

€inter; R2 p p
I'K; ] R th | R —1];
’yj ( ) ( 3K Dmtra b * Dintraj ‘ ( Dintraj ’

12 Dmra
po- 3 tray

J n2 :
einterj R Dinterj

The solution of equation (22) taking into account the boundary conditions (29) are as follows:

Lehly; (0) 2] _ qinlcosly; (p) Z]

G0 2) =Cj" chly; )] 7 p cosly )]

(34)

The roots of transcendental equations ch [y; (p)] = cos[y; (8)] = 0 are determined from
transcendental equations v;(5) = (2k — 1)1 /2, k =1, 0o or:

Bthg (B]) B mter] (6]> 1 2k — 17‘(‘ 2 Kk :—1 . (35)
3K FjK j 2 ’ ’
Using Heaviside’s theorem on the decomposition of a rational complex expression into a
series by the roots of the denominator and making a substitution p = —Dina, 57/ R?, we
obtain a formula for returning the Laplace image to the original (33):

) — j Dintra, 7 )2
Oyt z)—cr |14y A Zewbet) | Duee, Gl g

d R2
=R Pre ch [v; ()] p=p,.
where ] are distinct positive roots of transcendental equations (34).
After simplifications we obtain:
in R ? Dinterj
Cjo (t, Z) = C] (]_ + 2 (7) Dintraj X
2k —1 Dm ra; i
o oo (2k—1)mcos < 5 WZ) exp (— th 2 (5%5)2 t) (37)
DI ;
—1 ke s 3K; 1 ctg ( )
() N ) 2
emterj sin2( is) is
Transforming formula (30) to a compact form we have:
* . sin(BX) O ehly (p) 2] sin(BX) P
NjO (p7X’Z):CJO (p7Z) - J J ; ZBZR

sin (8)  p chly(p)] sin (8) Dintra,

and as a result of applying to it the Heaviside theorem on the expansion into a series, we
obtain a formula for calculating the Laplace original of the function N, (t, X, Z):

n=1 k=1 pknl Sln p Ch [fysl (p)l” Dintra B}%
P=Pkny == ——pg—
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After transformation and going to the function @Q;, (t, X, Z) to describe the concentration
distributions of the adsorbed components in the nanopores of the particles:

in R 2 Dinterj
Qjo (t, Z) = Cj (1 + 2 (7) Dintraj X

o oo (2k—1)7sin (B],X) cos (Zk; 17TZ) exp (— DZZ% ( iS)Qt) (39)
xy > :
s=1 k=1 (_1)11( iS)QX sin (Bks) [ SKJ <S.n 1 _ Ctg (BIZ:S)> +92

einer; \Sin*(Bl,) B,

A solution of Problem A . A solution of boundary problem (27), (28) is

sh (R X)
intraj . _
N: (0, X,2) = (K;C; (p,2)— F; (p,2)) ,i=1,3  (40)

p
h (R
° ( Dintraj >
From (39) at X = 1 we obtain:

ON: (p,X,Z) 5 5
= th K,C: (p,2)—F* (p,2)) .
( X >X1 Ry po—cth ( By 5 — ) (5C5, (0.2) = 5, (0. 2)

o ON; : . .
By substituting N |x-; and 6—)7(’“‘)(:1 in equation (38) we obtain:

d*C . .
A0 G, == (. 2) (41)
here @7 (p,Z):Fj<R Dp cth( ‘/ ) ) FopZ),m=1,00.
intra,; mtraZ
A solution of the inhomogeneous problem (40), (29) are as follows [15]:
qum—/@mMMA@% (12)
0

where the fundamental function of Cauchy’s influence K (p, Z, §), which is determined as
follows:
K" (p, Z,6) = diAh~y; Z + exshy; 2,0 < Z < € < 1

K3 (p, Z,€) = : (43)
K (p, Z,€) = dach; Z + eyshv; 2,0 < £ < Z < 1

All the coefficients d;, e,, s = 1,2 in expressions (44) are determined by conditions [15]:
]C; (p> Z7 £>‘Z:E+0 o ]C; (p7 27 g)‘Z:g—O =0

(44)

d ., d
%’C (p. Z, f)|Z:5+0 dZIC (p, Z, f)’z £—0 — =1
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and an additional condition (boundary condition at Z = 1):

—+ %
,Cj Z

1 = [dzch’}/jZ + sth’ij]Zzl = 0. (45)

Consistently, applying conditions (44)-(46) as a result, the Cauchy function K} (p, Z, §) is
fully determined in the following form:

sh(v;(1 =€) - ch(v;2)

0<Z<E<1
K (p, Z,€) : o "
j\P4,q) = ——
o sM%U—Z»”MW@o<5<Z<1
ch (v;) 7

Defining another function of influence:

R pcth(R p)

intra; Din ra; %
M (p, 2,6) = - ” LK (p, Z.€) (47)
j
solution (44) will take the following form :
1
Cio 0:X.2) ==, [ (5 (0.2.0) ~ K} (0.2.0) F}, (0.€) . (13)
0

The transition to originals. We carry out the transition to the originals C'; (t,X,7)
using the formula:

1
cm<ux;z>:—my/’L1[H;@n2@>—K§unz5ﬂ*F;Au®da (49)
0
where L™1[...] - is the designation of the Laplace inverse transform operator, * is the image
convolution operator. In the final form, after calculating the originals, formula (47) takes
the form:
3 l2 Dintra-
C. (t,X,72)=— — L x
Im ( 7 ’ 1) einterj R2 Dinterj
. fZ (7{]_ (t_Tuzuf)_’C]_ (t_T7Z7€)) F}m (7-7§>d§+ (50)
X dr

0 +A (M (t =1 2.6) — K (t—m Z6)) F, (r.€)de

were Hy (t —7,2,€),K; (t =7,2,8), H; (t —=7,2,€), K (t — 7, Z,&) are the components

of influence functions (45), (47), the calculation algorithms of which are given below.
Applying to the components of the influence functions (45), (47) the Heaviside theorem

on the development of a rational complex expression into a convergent series, we obtain:

Dmtrd

HO ]=Z i (Bh) e 5 (R

L [mp)shmp)]ch S SRR

. (51)
mtra j 2 1ntra 5 2
+Z fh M e R? (“51) —I—Z fh (nkl)e R? ("kl)t

s1=1 ,Usl) k1=1 (nkl)
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where f]h, h =1, 4 determine, respectively, the numerators of the components Hji (t—1,72,¢)

- the influence functions (46).

Calculate the denominators in the expressions of the sums of each of the three terms of
the right-hand side of formula (50):

p=Bi,

wjl (ﬁis) =, (p) sh (R Dil’Z:cI‘a]'> dipCh i (p)]

(52)

) (=R [ 3K, 1 ctg(BL,)
== (Bis) S (Bljfs) 20 — f [ (sin2(ﬁ,zs) - isk ) .

einterj

where {ﬁ,{s} ,k,s =1,00 - set of roots of transcendental equation (34):

v () = () ch [y (9)] d%sh (R p )

Dintraj p:_%(”gl)z N
: . s R2
=7 (’U’g1) cos [’Yj (Mg1)} (_1) ' m Hgl=7fs1 )
1m raj S1
205\ p d
w]' (nk1) = sh (R D: . ) ch h/j (p)] d_ij (p) p:7Dint2raj (Ni )2 =
intra; ) 0
Ctg (ni1) o 1 + 2€interj
l 3K: Dintra. ni sin? ni 3 ‘ , ,
_ _ﬁ - J 5 J 1 ‘1 Sin (77%1) COS [’Yj (77%1)] ,
inter; inter; einterj N Ctg (77]11) 1
?)KJ 77’361 (7’]%1)2

i =13 . .
where {7722 };FE is the set of roots of transcendental equation:

€inter; j j '
e (W) —ietg (W) +1=0, 7} (0) =0, R
J
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As a result, we obtain the following expressions of the originals:

Hy (t,2,6) =L~ [H;"(p, Z,€)] =

81, cos (B1,) sin (v; (B1,) (1= €)) - cos (; (B,) Z) e m (Bh) ¢
-3y ()

Dintra; i\ 2
J ) t

Z pi, cos () sin (3 (1) (1= ©)) - cos (3 () Z) e 5

s1=1 ('usl)
N Z o, cos () s (35 (1) (1= €)) - cos (33 () Z) e 7@ ()"
wy () ’
H;_ <t7Z7€) =L [H;_* (pa Z76)1| =
ﬁ s js I j js 1-27))- j js Dlr;;;a (ﬁk )
Z Z ks COS (Bk ) S (’YJ (ﬁk ) ( : )J) Cos (’Yg (51@ )f) e +
s=1 Wi (6k8)
+ i i, cos (pd,) sin (75 () (1= 2)) - cos (15 (4, ) €) et ()t
s1=1 ij ('u‘]sl)
+ z i, cos (i) sin (3 (1) (1= 2)) -cos (5 (i) €) e A"
k1= (nkl)

Next, we find the components K; (¢, Z,&). We have:

g T @) e m (D S )e m M
75 () ch 5 (p)] s=1 k=1 ('Dal ( is) k=1 (':)12 (77%1)

where g7 (p) determine KF (t — 7, Z,€) , K} (t — 7, Z, €) are the components of influence func-
tions (45).

We calculate the denominators in the expressions of the sums of each of the two terms
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of the right part of formula (51):

31 (BL) = 7 (v) dipch (9]

p=B, —
(D" B | 3K; 1 tg(5i,)
— i (BL.) o il R E
2k — 1 €inter; \ Sin“(5y,) Brs
52 (1) = ch by (0)] =, (9) Y
J TR I dp "’ p=——jRz "M,
Ctg (77%1) 1 2€interj
j RIS
| | 3K; Dinwa, 7, sin’ 17}, 3 j
=i : ‘ cos [v; (nt, )]
2R einterj Dinterj e ct ( J ) 1
inter; + g "7k1 o
SKJ nil (T’il)

The expressions of originals are:

Ky (t,2,6)=L"[K;*(p, 2,€)] =

Dintra]- (/B‘Iis)Qt

2 o () 1 ) -cos (o () 2)
Xy SIER

Dintr ra; (nkl)Qt

_ i sin (v (1m,) (1 €) ~;:238(7(7zj)(77i1) Z)e ® ;

Ki(t2,¢) =L [KI" (p.2,¢)] =

J

= i i sin (v, (B1,) (1 = 2)) - cos (v; (B7,) €) e*Dmt % (pg,) %

T2 +
s=1 k=1 %1- (%s)
. . Dintra; , ; 2
Sy k) (1= 2) o oy (i) ) )
k1=1 @32 (ni1)

N. (t,X,Z) is calculated on basis of formula (51). We obtain:

Im

)

L7V NG (0. X, 2)] = L7 [K;C5, (0, Z) = Fy (0. Z)] = L™

(o) |

(54)
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We calculate the original of function ¥} (p, X) = sh (R Do _X) /sh (R D )

00 sh (R Dinlzr.d. X) .
L, X)) =Y = exp (1) =
k=0 — [ sh | R
dp (S ( Dintraj ) ) . . (55)

P=Pi,

1ntra kgﬂ' sm (kQTFX) ( Dmtra 2 92 )
=2 z exp | — Lkt
I;) 1)k2+1 R2

27.2

; mk
i 2

Here py, = —Dintra, R

ko = 0,00 are the roots of the equation sh (R ) L ) = 0.
intra]-

Applying formula (50) to (49) one calculus the original N, (t, X, Z):

N, (t,X,2) =L [(K,CL (p,Z) — F (, Z)) *¥; (p, Z)] =

J

[ 60, -2 By (- 2)

Dintraj = 7rk‘2-sin (]CQWX) Dintraj 9 9
X (2 RQ Z (_1)k2+1 eXp | — R2 k2ﬂ- t) dr

ko=0

(56)

Returning to the functions @), , we obtain:

Qjm(t7X7Z):/0 <Kj0jm(t_7—7z)_

Dintraj = TFICQ'SiH (k}g’]TX) Dintraj 9 9 ) .
><<2 i Z C1RP exp | ——po kymt) | | dr,j=1,3.

ka=0
The following theorem holds.

Theorem 1. If the given and unknown functions of boundary-value problems (23)-(23), are
Laplace pre-images with respect to the time variable t and the unique solvability conditions of
boundary-value problems A, and A,, of the Laplace images are satisfied, then the solutions to
the boundary-value problems Ag and A,,, exist, are unique, and are determined by formulas
(37),(39) and (51),(57), which constitute the solution of initial nonlinear boundary-value
problem (1)-(6).

2 SIMULATION AND DISCUSSION

The purpose of computer modeling was to study the capabilities of the model proposed for
further use in technologies for cleaning carbon emissions into the atmosphere by energy and
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Figure 1: Breakthrough curves (ci(t)/c0, i = 1,2,3) for three-component adsorption for a
mixture of methane (CHy, i = 1), ethane (CoHg, i = 2), propane (C3Hg, i = 3) taken from
different mass ratios in the input mixture: (80%, 15%, 5%) (a), (35%, 35%, 30%) (b)

transport facilities (propane, COy and other combustion products). This is one of the key
ways to solve the problem of global warming and create a safe energy strategy [2]. Propane
was chosen as an adsorbent, the volume of which covers about 30% of the total gas flow
leaving the car’s engine. Using the developed mathematical theory and technology oriented
to parallel multicore computer calculations, the modeling and calculation of concentration
dependencies of three-component adsorption and desorption curves in nanoporous catalytic

layers are carried out. Computational experiments were performed for the experimental
sample [7, 10, 12, 14].

3 CONCLUSIONS

High-performance methods and computational technologies for modeling non-isothermal
gas adsorption in nanoporous solid for three-component adsorption equilibrium have been
developed. On their basis, new nonlinear mathematical models have been constructed, in-
cluding the balance equations of adsorption/desorption taking into account the interaction of
intracrystalite space (micro flows) and intercrystallite space (macro flows). Effective schemes
for parallelizing and linearizing nonlinear models were developed on basis of the equilibrium
function decomposition into a series at the point of phase transition temperature as a small
parameter. High-speed analytical and numerical solutions of mathematical models using
the Heaviside operational method, their algorithmic and software implementation is im-
plemented, which ensures efficient parallelization of computational processes for multicore
computers and increased computational speed have been constructed.
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Figure 2: Desorption curves of gases in zeolite nanopores (Qi(t)/c0, i = 1,2,3) for a mixture
of methane (CHy, i = 1), ethane (CyHg, i = 2), propane (C3Hg, i = 3) taken in different
mass ratios in the input mixture: (80%, 15%, 5%) (a), (35%, 35%, 30%) (b)
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HaBeneni ocHOBE MaTeMaTHIHOTO MOJETIOBAHHSA HEI30TepMivHOI TPUKOMIIOHEHTHOI KOMITe-
TUTUBHOI a7copoOIii ra3y B HAHOMOPUCTOMY CEPEIOBUII 3 BUKOPUCTAHHAM PiBHOBaru JIeHrmio-
pa. 3amnpornoHOBaHO BUCOKOE(DEKTUBHI AaHATITUYIHI PO3B’A3KH JjIsi PO3BUHEHOI MOJes aicopOIiil
3 BUKOPUCTAHHAM omepariiitnoro merony l'eBicaiiga Ta iHTerpaabHOTO TepeTBOpeHHs Jlammaca.

Hagemeno pesysbraru KOMITIOTEPHOTO MOJIEIIOBAHHS HA OCHOBI BHCOKOIIBUIKICHUX O0YH-
CJIeHb Ha 6AraTosiIEPHUX KOMII IOTEPAX.



