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ASYMPTOTIC BEHAVIOR OF THE LOGARITHMIC DERIVATIVE OF
ENTIRE FUNCTION OF IMPROVED REGULAR GROWTH IN THE
METRIC OF L@[0, 2]

Let f be an entire function with f(0) = 1, (As)nen be the sequence of its zeros, n(t) =
X <t 1 N(r) = [y t7*n(t)dt, r > 0, h(y) be the indicator of f, and F(z) = zf'(2)/f (=),
z = re*®. An entlre functlon f is called a function of improved regular growth if for some
p € (0,400) and p; € (0, p), and a 27-periodic p-trigonometrically convex function h(p) #Z —oo
there exists a set U C C contained in the union of disks with finite sum of radii and such that

log | £(2)] = [2]h(g) + o(|2]), U #z=re® - oc.

In this paper, we prove that an entire function f of order p € (0,400) with zeros on a finite
system of rays {z :argz =1;}, j € {1,...,m}, 0 <91 <4y < ... <)y, < 2m, is a function of
improved regular growth if and only if for some p3 € (0, p)

N(r) = cor? +o(rf?), r — 400, ¢g € [0,+00),

and for some ps € (0, p) and any ¢ € [1,+00), one has
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1 INTRODUCTION AND MAIN RESULT

It is well known that ([14, p. 24]) an entire function f of order p € (0,+00) can be

represented in the form
f(z) = e HE( )
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where ), are all nonzero roots of the function f(z), A € Z, is the multiplicity of the root at
the origin, Q(z) = Y_y_, Qrz" is a polynomial of degree v < p, p < p is the smallest integer
for which "2 [A\,| P! < 400 and E(w,p) = (1 — w)exp(w + w?/2 + -+ + wP/p) is the

Weierstrass primary factor.
Let f be an entire function of order p € (0, +00). The function

1 i
h(¢) = lim sup o8 JAre TN |f(re®)]

ns o welo2],

is called the indicatorof f (|14, p. 51]). The indicator is continuous 27-periodic p-trigonomet-
rically convex function that has a derivative at all points except possibly of a countable set
(see |14, pp. 52-55]). A set C' C C is called a C°-set ([14, p. 90]) if it can be covered by
a system of disks {z : |z — ai| < s}, k € N, satisfying >  sp = o(r) as r — +00. A set

lag|<r

E C [0,+00) is called an E,-set ([14, p. 96]) if limsup r*mes(E N [0,r]) <, n € (0,1].
r—+00

Let (A,)nen be the sequence of zeros of an entire function f, f(0) = 1, let F(z) :=
2f(2)/f(2), z =re*, and let

n(r) = Z 1, N(r) ::/OT%t)dt, r > 0.

[An|<r

An entire function f of order p € (0,+o00) with the indicator h(p) is said to be of
completely regular growth in the sense of Levin and Pfluger (see [2], [14, pp. 139-167]) if
there exists a C-set such that

log |f(re™®)| = r°h(p) + o(r?), C° Fre’ — oo,

uniformly in ¢ € [0, 27).

The asymptotic behavior of the logarithms and logarithmic derivatives of entire and mero-
morphic functions of positive order of completely regular growth in the metric of L?[0, 27|
have been described in [13, 16, 17|. Similar results for entire functions of zero order of slowly
regular growth were obtained in [1, 15|. In particular, [17, Theorem 3, p. 140] implies the
following statement.

Theorem A. Let f be an entire function of order p € (0,400) with the indicator h(y) and
f(0) = 1. Then the following assertions are equivalent:

1) f is of completely regular growth;

2) for some q € [1,+00) and h : [0,27] — R, h € L9[0, 2], one has

1 2
&7

and

Im F'(re'#)

| 1/q
v — h(p) d&} -0, r—4o00, r¢FE€cE, ne(0,1),

N(r) =cor’ +o(r?), r — 400, ¢g € [0,400).

In this case, h(p) = —I' () for almost all ¢ € [0, 27).
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The aim of the present paper is to obtain an analog of Theorem A for entire functions
of improved regular growth (for details, see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 19, 20]) with
zeros on a finite system of rays.

An entire function f is called a function of improved regular growth ([5, 19]) if for some
p € (0,400) and p; € (0, p), and a 27-periodic p-trigonometrically convex function h(yp) #
—oo there exists a set U C C contained in the union of disks with finite sum of radii and
such that

log | £(2)] = |2Ph(¢) + o(|2|™), U %2 = rei® = oo,

If an entire function f is of improved regular growth, then it has the order p and indicator
h(y) (]19]). In the case when zeros of an entire function f of improved regular growth are
situated on a finite system of rays {z : argz = ¢;}, 7 € {1,...,m}, 0 < ¢y <9y < ... <
Y < 2w, the indicator h has the form ([19])

h(@) = Z hj(@)? pE (07 +OO) \ N, (1)

where h;(p) is a 2m-periodic function such that on [¢;,¢; + 27)

T
hi(p) = = 7ij cosp(e —1; —m), Ajel0,+00).

In the case p € N, the indicator h is defined by the formula ([5])

m

he) = 7y cos(pp + 05) + ; hi(e), p=rp, )

Qpcospp, p=p—1,
where 0; € C, 7y = |§¢/p + Q,l, 05 = arg(ds/p + Q,) and h;(p) is a 2m-periodic function
such that on [¢;,v; + 2m)
: A;
hi(p) = Aj(m — @ + ) sinp(p — ) — 7] cos p(ep — ).
Our main result is the following theorem.

Theorem 1. Let f be an entire function of order p € (0,400) with zeros on a finite system
of rays {z rargz =;}, 7€ {1,....m}, 0 <oy <y < ... <, <27, f(0) =1, and h(yp)
be the indicator of f. If f is a function of improved regular growth, then for some py € (0, p)
and any q € [1,400), one has

1 2
&7

where h(y) is defined by formulas (1) and (2). Conversely, if for some p3 € (0, p)

Im F(re™)

q 1/q
. dgp} =o(r”*7"), r— +oo, (3)
.

+ 1 ()

1 m
N(r) =cor? +o(r??), r— 400, ¢y:=— E Aj, Ay e0,4+00), (4)
p “
7=1

and for some ps € (0, p) and any q € [1,+00) relation (3) is true, then f is an entire function
of improved regular growth.
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2 PRELIMINARIES

Let f be an entire function with f(0) = 1, let (\,),en be the sequence of its zeros, let
Q= {|\,| : n € N}, and let (|16, p. 42])

1 2 ) )
cu(r,Jog | 1]) = o~ / e log| f(ré®)|dp, keEZ, >0,
0

21

be a Fourier coefficients of the functions log | f(re™)| and Im F(re#), respectively.

1 27 ) )
cp(r,Im F) := —/ e Im F(re')dp, ke€Z, r>0 r¢Q,
0

Lemma 1. If an entire function f of order p € (0,+00) with zeros on a finite system of
rays {z:argz=1;}, j€{l,....,m}, 0 <y <)y < ... <1y, < 2m, is of improved regular
growth, then for some py € (0, p)

ce(r,Im f) = —ikeyr? + EN 10(7“’“), r — 400, (5)
holds uniformly in k € 7, where
1 2m . 0 m '
= “5h(p) dp = Aje™™i Ay €0 6
Ck o ] € (@) ¥ pg — k2 ; ;€ ) J [ 7+OO)7 ( )

if p € (0,+00) \ N, and

(

P S —iky);
o 2N k£ =,
j=1

0 m
wer 1 il o
L = 2 4P;Aje 75 k_p_p7 (7)

0, |kl#p=p+1,

P
—_— p— p— 1
5 k=p=p+1,
ifpeN.

Proof. Tf an entire function f of order p € (0, +00) satisfies the assumptions of Lemma 1,
then (|6, Lemma 1, p. 10]) (see also [9]) for some p, € (0, p) the following relation holds

O(Tp4)
k241’

ce(r,log |f]) = cpr? + r — 400, (8)

uniformly in & € Z, where ¢ are defined by formulas (6) and (7). Since ([16, p. 43])
cr(r,Im f) = —ikeg(r,log |f]), k€ Z, 9)

using (8), we obtain (5). Lemma 1 is proved. O
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Remark that, from relations (6)—(8) and the Fischer-Riesz theorem (|13, p. 5]) it follows
the existence of an indicator function h € L?[0, 27] defined by the equality h(p) := > cpe™®

keZ
(see also [13, p. 77]).

Lemma 2 ([7]). An entire function f of order p € (0,+00) with zeros on a finite system
of rays {z : argz = ;}, g € {1,....m}, 0 < )y < Py < ... < )y, < 2m, is a function
of improved regular growth if and only if for some ps € (0,p) and ky € Z and each k €
{ko, ko +1,..., kg +m — 1}, one has

ce(r,log | f]) = cxr? + o(r?®), 1 — 400,

where ¢, are defined by formulas (6) and (7).

3 PROOF OF THEOREM 1

Let f be an entire function of improved regular growth of order p € (0,4+00) with zeros
on a finite system of rays {z : argz = ¢;}, j € {1,...,m}, 0 <y <) < ... <y, < 2m,
and h(p) be the indicator of f defined by formulas (1) and (2). By virtue of Lemma 1, for
some constant C' > 0 and all » > rq > 0, we have

keZ. (10)

In view of this, the sequence (r~?cy(r, Im F') + ikcy)gez belongs to the space 7 for all ¢ > 1
and 7 > 19. Moreover, applying the Hausdorff-Young theorem (|13, p. 5]), for ¢ > 2,
g r+q =1, we get

o g}

keZ
According to (10), the obtained series is uniformly convergent on [rg, +00). Passing termwise
to the limit as r — +o0 in this series and using Lemma 1, we obtain relation (3) for ¢ > 2.
From this and Holder’s inequality it follows that (3) holds for 1 < ¢ < 2.
Let us prove the second part of the theorem. Let relations (3) and (4) be hold. Then for
some po € (0, p) and each k € Z \ {0}

Im F'(re'?)

P + ’Lka

, cp(r,Im F
+ () k(—p)

ce(r,ImF) 1 /27T Im F(re') ,
———— +ikey| <— ———2+h d
S e A ot de
1 [?"|Im F(re) N Ha pa—p
S{%/O T"—h(g&) d(p :O(T2 ), T’—>+OO,
whence it follows
ck(r, Im F) = —ikegr? + o(r??), r — +oo.

From this, using relations (9), for some py € (0, p), we obtain

ce(r,log |f|) = cpr? + o(r??), r— 400, ke€Z\{0},
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and by using (4) and the equality ([16, p. 42]) co(r,log|f|) = N(r), for some p3 € (0, p), we

get

co(r,log|f]) = cor? + o(r??), 1 — +00.

Thus, according to Lemma 2, the entire function f is a function of improved regular growth.

This concludes the proof of the theorem.
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Hexait f — nina dynkuisg, f(0) = 1, (Ay)neny — nocaizosuicrs i nynis, n(t) = le\nlgt 1,
N(r) = fOT t~In(t)dt, r > 0, h(p) — ingukarop byuxuii f, i F(z) = 2f(2)/f(z), z = re'®.
Ilina dysxmia f HA3WBAETHCS (DYHKINEI MOKPAIIEHOTO PEryaspHOrO 3POCTAHHS, SKIMO s
nesakux p € (0,400), p1 € (0, p) i 2w-11€plOAUUHOL P-TPUTrOHOMETPUYHO OnyKJI0T byHkuii h(p) Z
—o0 icaye mHoxkuna U C C, gka micrurbes B 00’ eHanni KPyriB i3 CKIHYEHHOIO CyMOTO paJiyciB
TaKa, 1o

log | f(2)] = |2|°h(p) +o(|z]""), U # 2z =re'¥ = 0.
B wiit po6ori moBeneno, o uina dyukuis f nopaaky p € (0,400) 3 HyasgMu Ha CKiHUeHHiT

cucremi npomenis {z : argz = ¥;}, j € {1,...,m}, 0 <y < 1hp < ... <y, < 27, € hyuKuico
MOKPAIIEHOTO PEryJIsIPHOTO 3POCTAHHS TOJ] 1 TIIbKM Toi, Ko mist aesikoro ps € (0, p)

N(r) =cor? + o(r??), r — 400, ¢ € [0,+00),

i g mesikoro po € (0, p) 1 kKoxkHOTO ¢ € [1,400) BUKOHYETHCSH

1 2
e

Im F(re®?)
rP

q 1/q
+h'(p) dgp} =o(r”="), r— +oo.




