Khats' R.V.

ASYMPTOTIC BEHAVIOR OF THE LOGARITHMIC DERIVATIVE OF ENTIRE FUNCTION OF IMPROVED REGULAR GROWTH IN THE METRIC OF $L^{Q}[0,2 \pi]$

Let f be an entire function with $f(0)=1,\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be the sequence of its zeros, $n(t)=$ $\sum_{\left|\lambda_{n}\right| \leq t} 1, N(r)=\int_{0}^{r} t^{-1} n(t) d t, r>0, h(\varphi)$ be the indicator of f, and $F(z)=z f^{\prime}(z) / f(z)$, $z=r e^{i \varphi}$. An entire function f is called a function of improved regular growth if for some $\rho \in(0,+\infty)$ and $\rho_{1} \in(0, \rho)$, and a 2π-periodic ρ-trigonometrically convex function $h(\varphi) \not \equiv-\infty$ there exists a set $U \subset \mathbb{C}$ contained in the union of disks with finite sum of radii and such that

$$
\log |f(z)|=|z|^{\rho} h(\varphi)+o\left(|z|^{\rho_{1}}\right), \quad U \nexists z=r e^{i \varphi} \rightarrow \infty .
$$

In this paper, we prove that an entire function f of order $\rho \in(0,+\infty)$ with zeros on a finite system of rays $\left\{z: \arg z=\psi_{j}\right\}, j \in\{1, \ldots, m\}, 0 \leq \psi_{1}<\psi_{2}<\ldots<\psi_{m}<2 \pi$, is a function of improved regular growth if and only if for some $\rho_{3} \in(0, \rho)$

$$
N(r)=c_{0} r^{\rho}+o\left(r^{\rho_{3}}\right), \quad r \rightarrow+\infty, \quad c_{0} \in[0,+\infty),
$$

and for some $\rho_{2} \in(0, \rho)$ and any $q \in[1,+\infty)$, one has

$$
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{\operatorname{Im} F\left(r e^{i \varphi}\right)}{r^{\rho}}+h^{\prime}(\varphi)\right|^{q} d \varphi\right\}^{1 / q}=o\left(r^{\rho_{2}-\rho}\right), \quad r \rightarrow+\infty
$$

Key words and phrases: entire function of improved regular growth, logarithmic derivative, Fourier coefficients, finite system of rays, indicator, Hausdorff-Young theorem.

Drohobych Ivan Franko State Pedagogical University, Institute of Physics, Mathematics, Economics and Innovation Technologies, 3 Stryis'ka Str., 82100 Drohobych, Ukraine
e-mail: khats@ukr.net

1 INTRODUCTION AND MAIN RESULT

It is well known that ([14, p. 24]) an entire function f of order $\rho \in(0,+\infty)$ can be represented in the form

$$
f(z)=z^{\lambda} e^{Q(z)} \prod_{n=1}^{\infty} E\left(\frac{z}{\lambda_{n}}, p\right),
$$

УДК 517.5

2010 Mathematics Subject Classification: 30D15, 30D20, 30D30.
where λ_{n} are all nonzero roots of the function $f(z), \lambda \in \mathbb{Z}_{+}$is the multiplicity of the root at the origin, $Q(z)=\sum_{k=1}^{\nu} Q_{k} z^{k}$ is a polynomial of degree $\nu \leq \rho, p \leq \rho$ is the smallest integer for which $\sum_{n=1}^{\infty}\left|\lambda_{n}\right|^{-p-1}<+\infty$ and $E(w, p)=(1-w) \exp \left(w+w^{2} / 2+\cdots+w^{p} / p\right)$ is the Weierstrass primary factor.

Let f be an entire function of order $\rho \in(0,+\infty)$. The function

$$
h(\varphi)=\limsup _{r \rightarrow+\infty} \frac{\log \left|f\left(r e^{i \varphi}\right)\right|}{r^{\rho}}, \quad \varphi \in[0,2 \pi],
$$

is called the indicator of f ([14, p. 51]). The indicator is continuous 2π-periodic ρ-trigonometrically convex function that has a derivative at all points except possibly of a countable set (see [14, pp. 52-55]). A set $C \subset \mathbb{C}$ is called a C^{0}-set ([14, p. 90]) if it can be covered by a system of disks $\left\{z:\left|z-a_{k}\right|<s_{k}\right\}, k \in \mathbb{N}$, satisfying $\sum_{\left|a_{k}\right| \leq r} s_{k}=o(r)$ as $r \rightarrow+\infty$. A set $E \subset[0,+\infty)$ is called an E_{η}-set $\left(\left[14\right.\right.$, p. 96]) if $\limsup _{r \rightarrow+\infty} r^{-1} \operatorname{mes}(E \cap[0, r]) \leq \eta, \eta \in(0,1]$.

Let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be the sequence of zeros of an entire function $f, f(0)=1$, let $F(z):=$ $z f^{\prime}(z) / f(z), z=r e^{i \varphi}$, and let

$$
n(r):=\sum_{\left|\lambda_{n}\right| \leq r} 1, \quad N(r):=\int_{0}^{r} \frac{n(t)}{t} d t, \quad r>0 .
$$

An entire function f of order $\rho \in(0,+\infty)$ with the indicator $h(\varphi)$ is said to be of completely regular growth in the sense of Levin and Pfluger (see [2], [14, pp. 139-167]) if there exists a C^{0}-set such that

$$
\log \left|f\left(r e^{i \varphi}\right)\right|=r^{\rho} h(\varphi)+o\left(r^{\rho}\right), \quad C^{0} \not \supset r e^{i \varphi} \rightarrow \infty,
$$

uniformly in $\varphi \in[0,2 \pi)$.
The asymptotic behavior of the logarithms and logarithmic derivatives of entire and meromorphic functions of positive order of completely regular growth in the metric of $L^{q}[0,2 \pi]$ have been described in [13, 16, 17]. Similar results for entire functions of zero order of slowly regular growth were obtained in [1, 15]. In particular, [17, Theorem 3, p. 140] implies the following statement.

Theorem A. Let f be an entire function of order $\rho \in(0,+\infty)$ with the indicator $h(\varphi)$ and $f(0)=1$. Then the following assertions are equivalent:

1) f is of completely regular growth;
2) for some $q \in[1,+\infty)$ and $\widetilde{h}:[0,2 \pi] \rightarrow \mathbb{R}, \widetilde{h} \in L^{q}[0,2 \pi]$, one has

$$
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{\operatorname{Im} F\left(r e^{i \varphi}\right)}{r^{\rho}}-\widetilde{h}(\varphi)\right|^{q} d \theta\right\}^{1 / q} \rightarrow 0, \quad r \rightarrow+\infty, \quad r \notin E \in E_{\eta}, \quad \eta \in(0,1)
$$

and

$$
N(r)=c_{0} r^{\rho}+o\left(r^{\rho}\right), \quad r \rightarrow+\infty, \quad c_{0} \in[0,+\infty)
$$

In this case, $\widetilde{h}(\varphi)=-h^{\prime}(\varphi)$ for almost all $\varphi \in[0,2 \pi]$.

The aim of the present paper is to obtain an analog of Theorem A for entire functions of improved regular growth (for details, see $[3,4,5,6,7,8,9,10,11,12,18,19,20]$) with zeros on a finite system of rays.

An entire function f is called a function of improved regular growth $([5,19])$ if for some $\rho \in(0,+\infty)$ and $\rho_{1} \in(0, \rho)$, and a 2π-periodic ρ-trigonometrically convex function $h(\varphi) \not \equiv$ $-\infty$ there exists a set $U \subset \mathbb{C}$ contained in the union of disks with finite sum of radii and such that

$$
\log |f(z)|=|z|^{\rho} h(\varphi)+o\left(|z|^{\rho_{1}}\right), \quad U \nexists z=r e^{i \varphi} \rightarrow \infty .
$$

If an entire function f is of improved regular growth, then it has the order ρ and indicator $h(\varphi)([19])$. In the case when zeros of an entire function f of improved regular growth are situated on a finite system of rays $\left\{z: \arg z=\psi_{j}\right\}, j \in\{1, \ldots, m\}, 0 \leq \psi_{1}<\psi_{2}<\ldots<$ $\psi_{m}<2 \pi$, the indicator h has the form ([19])

$$
\begin{equation*}
h(\varphi)=\sum_{j=1}^{m} h_{j}(\varphi), \quad \rho \in(0,+\infty) \backslash \mathbb{N}, \tag{1}
\end{equation*}
$$

where $h_{j}(\varphi)$ is a 2π-periodic function such that on $\left[\psi_{j}, \psi_{j}+2 \pi\right)$

$$
h_{j}(\varphi)=\frac{\pi \Delta_{j}}{\sin \pi \rho} \cos \rho\left(\varphi-\psi_{j}-\pi\right), \quad \Delta_{j} \in[0,+\infty)
$$

In the case $\rho \in \mathbb{N}$, the indicator h is defined by the formula ([5])

$$
h(\varphi)=\left\{\begin{array}{l}
\tau_{f} \cos \left(\rho \varphi+\theta_{f}\right)+\sum_{j=1}^{m} h_{j}(\varphi), \quad p=\rho \tag{2}\\
Q_{\rho} \cos \rho \varphi, \quad p=\rho-1
\end{array}\right.
$$

where $\delta_{f} \in \mathbb{C}, \tau_{f}=\left|\delta_{f} / \rho+Q_{\rho}\right|, \theta_{f}=\arg \left(\delta_{f} / \rho+Q_{\rho}\right)$ and $h_{j}(\varphi)$ is a 2π-periodic function such that on $\left[\psi_{j}, \psi_{j}+2 \pi\right)$

$$
h_{j}(\varphi)=\Delta_{j}\left(\pi-\varphi+\psi_{j}\right) \sin \rho\left(\varphi-\psi_{j}\right)-\frac{\Delta_{j}}{\rho} \cos \rho\left(\varphi-\psi_{j}\right)
$$

Our main result is the following theorem.
Theorem 1. Let f be an entire function of order $\rho \in(0,+\infty)$ with zeros on a finite system of rays $\left\{z: \arg z=\psi_{j}\right\}, j \in\{1, \ldots, m\}, 0 \leq \psi_{1}<\psi_{2}<\ldots<\psi_{m}<2 \pi, f(0)=1$, and $h(\varphi)$ be the indicator of f. If f is a function of improved regular growth, then for some $\rho_{2} \in(0, \rho)$ and any $q \in[1,+\infty)$, one has

$$
\begin{equation*}
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{\operatorname{Im} F\left(r e^{i \varphi}\right)}{r^{\rho}}+h^{\prime}(\varphi)\right|^{q} d \varphi\right\}^{1 / q}=o\left(r^{\rho_{2}-\rho}\right), \quad r \rightarrow+\infty \tag{3}
\end{equation*}
$$

where $h(\varphi)$ is defined by formulas (1) and (2). Conversely, if for some $\rho_{3} \in(0, \rho)$

$$
\begin{equation*}
N(r)=c_{0} r^{\rho}+o\left(r^{\rho_{3}}\right), \quad r \rightarrow+\infty, \quad c_{0}:=\frac{1}{\rho} \sum_{j=1}^{m} \Delta_{j}, \quad \Delta_{j} \in[0,+\infty) \tag{4}
\end{equation*}
$$

and for some $\rho_{2} \in(0, \rho)$ and any $q \in[1,+\infty)$ relation (3) is true, then f is an entire function of improved regular growth.

2 Preliminaries

Let f be an entire function with $f(0)=1$, let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be the sequence of its zeros, let $\Omega=\left\{\left|\lambda_{n}\right|: n \in \mathbb{N}\right\}$, and let ([16, p. 42])

$$
\begin{gathered}
c_{k}(r, \log |f|):=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i k \varphi} \log \left|f\left(r e^{i \varphi}\right)\right| d \varphi, \quad k \in \mathbb{Z}, \quad r>0, \\
c_{k}(r, \operatorname{Im} F):=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i k \varphi} \operatorname{Im} F\left(r e^{i \varphi}\right) d \varphi, \quad k \in \mathbb{Z}, \quad r>0, \quad r \notin \Omega,
\end{gathered}
$$

be a Fourier coefficients of the functions $\log \left|f\left(r e^{i \varphi}\right)\right|$ and $\operatorname{Im} F\left(r e^{i \varphi}\right)$, respectively.
Lemma 1. If an entire function f of order $\rho \in(0,+\infty)$ with zeros on a finite system of rays $\left\{z: \arg z=\psi_{j}\right\}, j \in\{1, \ldots, m\}, 0 \leq \psi_{1}<\psi_{2}<\ldots<\psi_{m}<2 \pi$, is of improved regular growth, then for some $\rho_{4} \in(0, \rho)$

$$
\begin{equation*}
c_{k}(r, \operatorname{Im} f)=-i k c_{k} r^{\rho}+\frac{k}{k^{2}+1} o\left(r^{\rho_{4}}\right), \quad r \rightarrow+\infty \tag{5}
\end{equation*}
$$

holds uniformly in $k \in \mathbb{Z}$, where

$$
\begin{equation*}
c_{k}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i k \varphi} h(\varphi) d \varphi=\frac{\rho}{\rho^{2}-k^{2}} \sum_{j=1}^{m} \Delta_{j} e^{-i k \psi_{j}}, \quad \Delta_{j} \in[0,+\infty), \tag{6}
\end{equation*}
$$

if $\rho \in(0,+\infty) \backslash \mathbb{N}$, and

$$
c_{k}=\left\{\begin{array}{l}
\frac{\rho}{\rho^{2}-k^{2}} \sum_{j=1}^{m} \Delta_{j} e^{-i k \psi_{j}}, \quad|k| \neq \rho=p \tag{7}\\
\frac{\tau_{f} e^{i \theta_{f}}}{2}-\frac{1}{4 \rho} \sum_{j=1}^{m} \Delta_{j} e^{-i \rho \psi_{j}}, \quad k=\rho=p \\
0, \quad|k| \neq \rho=p+1 \\
\frac{Q_{\rho}}{2}, \quad k=\rho=p+1,
\end{array}\right.
$$

if $\rho \in \mathbb{N}$.
Proof. If an entire function f of order $\rho \in(0,+\infty)$ satisfies the assumptions of Lemma 1, then ([6, Lemma 1, p. 10]) (see also [9]) for some $\rho_{4} \in(0, \rho)$ the following relation holds

$$
\begin{equation*}
c_{k}(r, \log |f|)=c_{k} r^{\rho}+\frac{o\left(r^{\rho_{4}}\right)}{k^{2}+1}, \quad r \rightarrow+\infty \tag{8}
\end{equation*}
$$

uniformly in $k \in \mathbb{Z}$, where c_{k} are defined by formulas (6) and (7). Since ([16, p. 43])

$$
\begin{equation*}
c_{k}(r, \operatorname{Im} f)=-i k c_{k}(r, \log |f|), \quad k \in \mathbb{Z} \tag{9}
\end{equation*}
$$

using (8), we obtain (5). Lemma 1 is proved.

Remark that, from relations (6)-(8) and the Fischer-Riesz theorem ([13, p. 5]) it follows the existence of an indicator function $h \in L^{2}[0,2 \pi]$ defined by the equality $h(\varphi):=\sum_{k \in \mathbb{Z}} c_{k} e^{i k \varphi}$ (see also [13, p. 77]).

Lemma 2 ([7]). An entire function f of order $\rho \in(0,+\infty)$ with zeros on a finite system of rays $\left\{z: \arg z=\psi_{j}\right\}, j \in\{1, \ldots, m\}, 0 \leq \psi_{1}<\psi_{2}<\ldots<\psi_{m}<2 \pi$, is a function of improved regular growth if and only if for some $\rho_{5} \in(0, \rho)$ and $k_{0} \in \mathbb{Z}$ and each $k \in$ $\left\{k_{0}, k_{0}+1, \ldots, k_{0}+m-1\right\}$, one has

$$
c_{k}(r, \log |f|)=c_{k} r^{\rho}+o\left(r^{\rho_{5}}\right), \quad r \rightarrow+\infty,
$$

where c_{k} are defined by formulas (6) and (7).

3 Proof of Theorem 1

Let f be an entire function of improved regular growth of order $\rho \in(0,+\infty)$ with zeros on a finite system of rays $\left\{z: \arg z=\psi_{j}\right\}, j \in\{1, \ldots, m\}, 0 \leq \psi_{1}<\psi_{2}<\ldots<\psi_{m}<2 \pi$, and $h(\varphi)$ be the indicator of f defined by formulas (1) and (2). By virtue of Lemma 1 , for some constant $C>0$ and all $r \geq r_{0}>0$, we have

$$
\begin{equation*}
\left|\frac{c_{k}(r, \operatorname{Im} F)}{r^{\rho}}+i k c_{k}\right| \leq C \frac{k}{k^{2}+1}, \quad k \in \mathbb{Z} \tag{10}
\end{equation*}
$$

In view of this, the sequence $\left(r^{-\rho} c_{k}(r, \operatorname{Im} F)+i k c_{k}\right)_{k \in \mathbb{Z}}$ belongs to the space $l_{\tilde{q}}$ for all $\widetilde{q}>1$ and $r \geq r_{0}$. Moreover, applying the Hausdorff-Young theorem ([13, p. 5]), for $q \geq 2$, $q^{-1}+\widetilde{q}^{-1}=1$, we get

$$
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{\operatorname{Im} F\left(r e^{i \varphi}\right)}{r^{\rho}}+h^{\prime}(\varphi)\right|^{q} d \varphi\right\}^{1 / q} \leq\left\{\sum_{k \in \mathbb{Z}}\left|\frac{c_{k}(r, \operatorname{Im} F)}{r^{\rho}}+i k c_{k}\right|^{\widetilde{q}}\right\}^{1 / \widetilde{q}}
$$

According to (10), the obtained series is uniformly convergent on $\left[r_{0},+\infty\right)$. Passing termwise to the limit as $r \rightarrow+\infty$ in this series and using Lemma 1, we obtain relation (3) for $q \geq 2$. From this and Hölder's inequality it follows that (3) holds for $1 \leq q<2$.

Let us prove the second part of the theorem. Let relations (3) and (4) be hold. Then for some $\rho_{2} \in(0, \rho)$ and each $k \in \mathbb{Z} \backslash\{0\}$

$$
\begin{aligned}
\left|\frac{c_{k}(r, \operatorname{Im} F)}{r^{\rho}}+i k c_{k}\right| & \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{\operatorname{Im} F\left(r e^{i \varphi}\right)}{r^{\rho}}+h^{\prime}(\varphi)\right| d \varphi \\
& \leq\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{\operatorname{Im} F\left(r e^{i \varphi}\right)}{r^{\rho}}+h^{\prime}(\varphi)\right|^{q} d \varphi\right\}^{1 / q}=o\left(r^{\rho_{2}-\rho}\right), \quad r \rightarrow+\infty
\end{aligned}
$$

whence it follows

$$
c_{k}(r, \operatorname{Im} F)=-i k c_{k} r^{\rho}+o\left(r^{\rho_{2}}\right), \quad r \rightarrow+\infty
$$

From this, using relations (9), for some $\rho_{2} \in(0, \rho)$, we obtain

$$
c_{k}(r, \log |f|)=c_{k} r^{\rho}+o\left(r^{\rho_{2}}\right), \quad r \rightarrow+\infty, \quad k \in \mathbb{Z} \backslash\{0\},
$$

and by using (4) and the equality $([16, \mathrm{p} .42]) c_{0}(r, \log |f|)=N(r)$, for some $\rho_{3} \in(0, \rho)$, we get

$$
c_{0}(r, \log |f|)=c_{0} r^{\rho}+o\left(r^{\rho_{3}}\right), \quad r \rightarrow+\infty .
$$

Thus, according to Lemma 2, the entire function f is a function of improved regular growth. This concludes the proof of the theorem.

References

[1] Bodnar O.V., Zabolots'kyi M.V. Criteria for the regularity of growth of the logarithm of modulus and the argument of an entire function. Ukr. Math. J. 2010, 62 (7), 1028-1039. doi: 10.1007/s11253-010-0411-x (translation of Ukr. Mat. Zh. 2010, 62 (7), 885-893. (in Ukrainian))
[2] Gol'dberg A.A. B.Ya. Levin is a creator of the theory of entire functions of completely regular growth. Mat. Fiz., Anal., Geom. 1994, 1 (2), 186-192. (in Russian)
[3] Chyzhykov I.E. Pfluger-type theorem for functions of refined regular growth. Mat. Stud. 2017, 47 (2), 169-178. doi:10.15330/ms.47.2.169-178
[4] Hirnyk M.O. Subharmonic functions of improved regular growth. Dopov. Nats. Akad. Nauk Ukr. 2009, 4, 13-18. doi:10.1007/s11253-012-0624-2 (in Ukrainian)
[5] Khats' R.V. On entire functions of improved regular growth of integer order with zeros on a finite system of rays. Mat. Stud. 2006, 26 (1), 17-24.
[6] Khats' R.V. Averaging of entire functions of improved regular growth with zeros on a finite system of rays. Visn. Nats. Univ. L'viv. Politekh., Fiz.-Mat. Nauky. 2011, 718 (718), 10-14.
[7] Khats' R.V. Regularity of growth of Fourier coefficients of entire functions of improved regular growth. Ukr. Math. J. 2012, 63 (12), 1953-1960. doi:10.1007/s11253-012-0624-2 (translation of Ukr. Mat. Zh. 2011, 63 (12), 1717-1723. (in Ukrainian))
[8] Khats' R.V. Asymptotic behavior of averaging of entire functions of improved regular growth. Carpathian Math. Publ. 2013, 5 (1), 129-133. doi:10.15330/cmp.5.1.129-133
[9] Khats' R.V. Asymptotic behavior of entire functions of improved regular growth in the metric of $L^{p}[0,2 \pi]$. Carpathian Math. Publ. 2013, 5 (2), 341-344. doi:10.15330/cmp.5.2.341-344
[10] Khats' R.V. Regular growth of Fourier coefficients of the logarithmic derivative of entire functions of improved regular growth. Bukovinian Math. J. 2019, 7 (1), 114-120. doi:10.31861/bmj2019.01.114
[11] Khats' R.V. Sufficient conditions for the improved regular growth of entire functions in terms of their averaging. Carpathian Math. Publ. 2020, 12 (1), 46-54. doi:10.15330/cmp.12.1.46-54
[12] Khats' R.V. Asymptotic behavior of the logarithms of entire functions of improved regular growth in the metric of $L^{q}[0,2 \pi]$. Ukr. Math. J. 2020, 72 (4), 642-650. doi:10.1007/s11253-020-01805-x (translation of Ukr. Mat. Zh. 2020, 72 (4), 557-564. (in Ukrainian))
[13] Kondratyuk A.A. Fourier series and meromorphic functions. Vyshcha shkola, Lviv, 1988. (in Russian)
[14] Levin B.Ya. Distribution of zeros of entire functions. In: Transl. Math. Monogr., 5, Amer. Math. Soc., Providence, R.I., 1980.
[15] Mostova M.R., Zabolotskyj M.V. Convergence in $L^{p}[0,2 \pi]$-metric of logarithmic derivative and angular v-density for zeros of entire function of slowly growth. Carpathian Math. Publ. 2015, 7 (2), 209-214. doi:10.15330/cmp.7.2.209-214
[16] Vasylkiv Ya.V. Asymptotic behavior of logarithmic derivatives and logarithms of meromorphic functions of completely regular growth in the metric of $L^{p}[0,2 \pi]$. I. Mat. Stud. 1999, 12 (1), 37-58. (in Ukrainian)
[17] Vasylkiv Ya.V. Asymptotic behavior of logarithmic derivatives and logarithms of meromorphic functions of completely regular growth in the metric of $L^{p}[0,2 \pi]$. II. Mat. Stud. 1999, 12 (2), 135-144. (in Ukrainian)
[18] Vynnyts'kyi B.V., Khats' R.V. On asymptotic behavior of entire functions of noninteger order. Mat. Stud. 2004, 21 (2), 140-150. (in Ukrainian)
[19] Vynnyts'kyi B.V., Khats' R.V. On growth regularity of entire function of noninteger order with zeros on a finite system of rays. Mat. Stud. 2005, 24 (1), 31-38. (in Ukrainian)
[20] Vynnyts'kyi B.V., Khats' R.V. On asymptotic properties of entire functions, similar to the entire functions of completely regular growth. Visn. Nats. Univ. L'viv. Politekh., Fiz.-Mat. Nauky. 2011, 718 (718), 5-9.

Received 25.08.2020

Хаць Р.В. Асимптотична поведінка логарифмічної похідної цілої функиії покращеного регулярного зростання в $L^{q}[0,2 \pi]$-метрииі // Буковинський матем. журнал - 2021. Т.9, №1. - С. 49-55.

Нехай $f-$ ціла функція, $f(0)=1,\left(\lambda_{n}\right)_{n \in \mathbb{N}}-$ послідовність її нулів, $n(t)=\sum_{\left|\lambda_{n}\right| \leq t} 1$, $N(r)=\int_{0}^{r} t^{-1} n(t) d t, r>0, h(\varphi)$ - індикатор функції f, і $F(z)=z f^{\prime}(z) / f(z), z=r e^{i \varphi}$. Ціла функція f називається функцією покращеного регулярного зростання, якщо для деяких $\rho \in(0,+\infty), \rho_{1} \in(0, \rho)$ і 2π-періодичної ρ-тригонометрично опуклої функції $h(\varphi) \not \equiv$ $-\infty$ існує множина $U \subset \mathbb{C}$, яка міститься в об'єднанні кругів із скінченною сумою радіусів така, що

$$
\log |f(z)|=|z|^{\rho} h(\varphi)+o\left(|z|^{\rho_{1}}\right), \quad U \nexists z=r e^{i \varphi} \rightarrow \infty .
$$

В цій роботі доведено, що ціла функція f порядку $\rho \in(0,+\infty)$ з нулями на скінченній системі променів $\left\{z: \arg z=\psi_{j}\right\}, j \in\{1, \ldots, m\}, 0 \leq \psi_{1}<\psi_{2}<\ldots<\psi_{m}<2 \pi$, є функцією покращеного регулярного зростання тоді і тільки тоді, коли для деякого $\rho_{3} \in(0, \rho)$

$$
N(r)=c_{0} r^{\rho}+o\left(r^{\rho_{3}}\right), \quad r \rightarrow+\infty, \quad c_{0} \in[0,+\infty)
$$

i для деякого $\rho_{2} \in(0, \rho)$ i кожного $q \in[1,+\infty)$ виконується

$$
\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{\operatorname{Im} F\left(r e^{i \varphi}\right)}{r^{\rho}}+h^{\prime}(\varphi)\right|^{q} d \varphi\right\}^{1 / q}=o\left(r^{\rho_{2}-\rho}\right), \quad r \rightarrow+\infty
$$

