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UNIQUENESS THEOREMS FOR ALMOST PERIODIC OBJECTS

Uniqueness theorems are considered for various types of almost periodic objects: functions,
measures, distributions, multisets, holomorphic and meromorphic functions.
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INTRODUCTION

It easily follows from the definition of almost periodic functions that if values of two such
functions converge at infinity, then these almost periodic functions coincide. This effect also
manifested itself in |7] for the zeros of holomorphic almost periodic functions, and then in [1]
and [2] for Fourier quasicrystals and some classes of transformable measures on LCA-groups.

In this note, we discuss this effect in detail, show how can it be strengthened, what form it
takes for other almost periodic objects - almost periodic distributions, almost periodic mea-
sures, almost periodic multisets, a -points of holomorphic and meromorphic almost periodic
functions.

1 ALMOST PERIODIC FUNCTIONS

We start with the simplest almost periodic object - uniformly almost periodic functions
on a finite-dimensional space and on tube sets. The definitions introduced in this section
will also be used in subsequent sections.

Let Be(2Y, R) be the open ball {2z € C: |z —2°| < R} in the space C?, and Bg(z°, R) be
the open ball {x € R : |z — 2°| < R} in the space R%. The tube set Tk C C? means the set
of the form

Ty ={z=z+iyeC’:zeR’) ye K},

where K is a compact subset of R%. Clearly, R? = Typy. Then T means the domain
Tﬂz{z:x—l—iy:xeRd, yEQ},
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where € is a domain in RY, maybe ) = R? The set E is relatively dense in R?, if there
exists R < oo such that each ball Bg(z, R) intersects with £. By #A denote the number of
elements of a finite set A.

Definition 1. A continuous complex-valued function f(z) on a tube set T is called almost
periodic if for all € > 0 the set of its e-almost periods

Eex = Bex(f) ={r € R": sup |f(z +7) — f(2)| <}

ze€TK
is relatively dense in R,

It easily follows from this definition that almost periodic functions on Tk are bounded.
Less obvious is the following statement:

Theorem 1. ([9]) A continuous function f(z) on Tk is almost periodic iff for any sequence
{x,} C RY there is a subsequence {x,,} such that the functions f,/(z) = f(z + z,) form the
fundamental sequence with respect to the uniform convergence on Tk.

Definition 2. A function f(z) on a tube domain T, is called almost periodic if for every
compact set K C () its restriction to Tk is almost periodic.

Theorem 2. ([9]) A continuous function f(z) is almost periodic on a tube domain Ty, iff for
any sequence {r,} C R? there is a subsequence {x,} such that the functions
fw(z) = f(z+ x,) form the fundamental sequence with respect to the uniform convergence
on Tk for every K C ().

Remark 1. All these definitions and theorems carry over practically unchanged to the case
of mappings F : Txe — CN or F': T, — CV. Since component-wise convergence is equivalent
to the convergence of mappings, we get that the vector function F(z) = (fi(2),..., fn(2))
is almost periodic if and only if its components are almost periodic. Therefore for any € > 0
the set I x of common almost periods of functions fi,..., fnx is also relatively dense. In
particular, this implies that a sum or a product of any finite number of almost periodic
functions is also an almost periodic function.

In the rest of the article, only the cases of functions and sets on R? or on T, C C? will
be considered.
Next we give the basic definition of our article.

Definition 3. We shall say that functions f,g on R? converge weakly at infinity, if

lim__[f(z) —g(z)| =0,

r—00,2€G

where G C R? is a set with the property

G D U Bg(zk, Ri) for some sequence of balls Bg(xy, Ri), Ry — o0. (1)
k=1
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Definition 4. Functions f, g on Tq converge weakly at infinity if for each fixed y° € ) the
functions f(x +1iy°), g(z + iy°) of the variable x € R? weakly converge at infinity.

Theorem 3. If almost periodic functions f, g on R? or Ty, converge weakly at infinity, then
they coincide identically.

Proof. Let f, g be almost periodic functions on R?. Fix 2° € R? and € > 0. Let E. be the
set of e-almost periods of the almost periodic function h = f — g. Taking into account (1)
and relative density of E., we get that for large n there is a point 7,, € E. N Br(z, —2° R,,).
Hence xg + 7, € Br(z,, R,) and |h(zg + 7,)| < €. Also, |h(z® + 7,,) — h(2?)] < €, therefore,
|h(2%)] < 2e. The choice of ¢ and z° was arbitrary, therefore h(z) = 0. In the case of
functions on Ty we take 2° = 2° + iy € T and a compact set K C € such that 3° € K,
then replace E. by E. ;¢ and z° by 2°. Theorem is proved. O

2 ALMOST PERIODIC DISTRIBUTIONS, MEASURES, MULTISETS

Let D(R?) be the space of test functions on R?, i.e., C*°-functions with compact supports,
equipped with the topology of uniform convergence of derivatives of all orders of functions
from D(R?), provided that all their supports are subsets of some fixed compact from R?, let
D'(RY) be the space of distributions on R¢, that is, the set of continuous linear functionals
on D(RY). The distribution space D’'(Ty) is similarly defined as continuous linear functionals
on the space D(Tg), consisting of C*°-functions with compact support in Tg,.

Definition 5. A distribution f € D'(RY) (or f € D'(Ty)) is called almost periodic, if for
any test-function ¢ the function (f,p(- —t)) is almost periodic in the variable t € R.

Definition 6. A distribution f € D'(Tg) is called almost periodic, if for any test-function
v € D(Tq) the function (f, ¢(- — 2)) is almost periodic in the variable z € T,,. Here w is the
open subset of () such that for all z € T, the condition ( — z € supp ¢ implies ( € Tg.

A particular case of distributions are complex-valued measures. Such measures will be
denoted by y, and the measure, which is the variation of u, by |g|. A measure u on R? is
called translation bounded if

sup |u|(Br(z,1)) < oco.
rERI

Similarly, a measure on T, is called translation bounded if for any compact K C 2

sup |p|(Br(z,1) x K) < C,|

z€R4

where C'is a constant depending on K. Note that every nonnegative almost periodic measure
is translation bounded. To prove this we should take a nonnegative test function p(z) €
D(Tg) such that ¢(z) =1 on Bg(0,1) x K, where K is a compact subset of Q (for the case
Tra we should take nonnegative ¢ € D(R?), ¢(z) =1 on Bg(0,1)). The function

/ (= — Duldz) 2)
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is almost periodic, hence it is bounded in ¢ € R%. On the other hand, for all t € R?

H(Ba(t, 1) x K) < / oz — thuldz).

If a measure u € D'(Ty) is translation bounded, then we can use any continuous function
with compact support as test functions in Definition 5. This follows from the fact that
any such a function can be uniformly approximated by C*°-functions supported on a fixed
compact set. On the other hand, there are signed almost periodic measures for which (2) are
not almost periodic for an appropriate continuous compactly supported ¢ (|4]). Note that
if (2) is bounded for all continuous ¢ with compact support, then the complex measure p is
translation bounded ([9]).

Let D = {a,p},p € N, be a discrete multiset in T or in R%. Tt can be identified with a
sequence {a,} without condensation points in Ty (or in R?) such that each point from Ty
or in R can occur in this sequence at most a finite number of times. In the case of T, C C
a discrete multiset is also called a divisor (see [6]).

Definition 7. ([6]) A discrete multiset D C R? is called almost periodic if for all ¢ > 0 there
is a relatively dense set E. C R? such that a bijection o : N — N corresponds to any 7 € F.
with the property

SUp [ay, — T — Qo] < €.
neN

A discrete multiset D C Tq is called almost periodic if for all ¢ > 0 and compact set K C )
there is a relatively dense set E. . C R? such that a bijection o : N — N corresponds to any
T € E. x with the property

SUp |an — T — Go(y| < €,

where supremum is taken over all n € N such that either a,, or a,) belongs to Ti.

We also need a notion of bounded density. For a discrete multiset D C RY, D = {a,},
this means that

sup #{n : a, € Bg(z,1)} < 0.
zeR?

Also, D C Tg is of bounded density if for every compact K C 2
N(K) := sup #{n: a, € Br(z,1) x K} < c0. (3)
reR4

It is easy to check that each almost periodic multiset is of bounded density. For T, ¢ C?
the proof can be found in [6]. For convenience, we present it here. The proof for D C R?
differs only in the corresponding simplifications.

Set 1 = 1 dist(K,99) (in the case Q = R? set n = 3). Take R < oo such that every ball
Br(z, R) intersects with E, . Fix 7 € Br(z, R) N E, k and take the bijection 0 : N — N
such that for each a,, € Tk

lan — T — agm)| <.

For a, € Br(z,1) x K we get

IRe ag(n)| < |Re o) — Re ap + 7|+ |Re ap, — x|+ |z —7| <n+1+R,
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Im ay) = 1m a, + (Im aym) — Im ay,).

Since Im a, € K and [Im agrn) — Im a,| < 71, we get Im a,,) € K;, where
K, ={y: dist(y, K) <n}. Thus,

#{n:a, € Br(z,1) x K} <#{n:a,(n) € Br(0,14+n+ R) x K},

and we obtain (3).
Note that the measure

Up = Z 5an7

corresponds to each discrete multiset D = {a,}, where 4,, is the unit mass at the point a,,.
Theorem 4. A discrete multiset D is almost periodic iff the measure i p is almost periodic.

For D C C this theorem was proved in |6], and for D C R? in [3]. Here we give a new,
much simpler proof for D C Ty. The proof for D C R? differs only in the corresponding
simplifications.

Proof. Let a discrete multiset D be almost periodic and K C €2 be a compact set. Take
a function ¢ € C*(Ty) such that suppy C Bgr(0,1/2) x K. Let € > 0 be arbitrary and
d < (1/2)dist(K, 0N2) such that for |z — 2/| < 0

[o(2) 2l < Fy

where N(K) is defined in (3). Pick 7 € E; k(D) and the corresponding bijection o. We have

/ oz — T)p(dz) — / Nin(d2) = 3 plon = 1) = 3 olan) =
—Z — @(ao(m))]-

The number of terms in the letter sum does not exceed 2N (K), moreover, |a, —T — G| < 9,
hence the difference between integrals does not exceed . Therefore the points of the set
Es k(D) are e-almost periods of the function (pp(¢(- —t)). This reasoning is valid for every
@ with compact support, therefore the measure up is almost periodic.

On the other hand, let pp be the almost periodic measure on Ty, which corresponds to
a discrete multiset D = {a,}. Fix a compact set K C  and ¢ < { min{1, dist(K, Q)}. Put

K ={y € Q:dist(y, K) < ¢}.

Choosing a sufficiently large K, we can assume that either D C K, or D\ T # @. Since
Wp is almost periodic we get that it is translation bounded, hence for some N < co

pp(Br(z,1) x K) < N, VzeR?
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therefore,
#{n:a, € Br(r,1) x K} <N, Vr € R%. (4)

Set 0 = /(4N + 1). Let A be any connected component of the set | J Be(an,29) such that

ANTgk # @. There exists a,» € A such that Be(a,,20) N Tk # @. It A N OBc(ay, ) # 2,
then the connected set A N Be(a,,e) contains at least €/(49) > N points of D, which
contradicts (4). Hence,

A C Be(aw,€) C Bp(Reay,1) x K

and, by (4), #{n :a, € A} < N.
By ¢(z) denote any C*-function on C% such that

0<¢(z) <1, ¢0)=1, suppe C Bc(0,1), (5)

")

Let a = [ ¢(2)w(dz), where w is the Lebesgue measure on C?. Put

m(@::/@(zg )uD (dw) Zso(

dist(K,09Q) > dist(K,00) —e > ¢,

Since

we see that W(z) is defined and almost periodic on T%. Let 7 be p-almost period of ¥(z)
with p < min{1;27%a/(Nwaq)}, where waq = w(Bc(0,1)). We have

W(z+7)-V(2)| <p, VzeTx. (6)
On the other hand,
U(z)=0 for z¢U,Bc(a,,0) and V(z+7)=Y(a,) >1 forz=a,—7

Therefore the set A\ U,Bc(a,,d) does not contain any point a, — 7. If A’ is another
connected component of the set U, Bc(ay, 2d), then for the same reason A’ \ U, Bc(ay,d)
does not contain any point a, — 7 as well. Thus the set A contains all balls B¢(ay,d), for
which a, € A and all balls Bc(a, — 7,6), for which a, — 7 € A, and do not intersect balls
Be(ap, §) with a, ¢ A and balls Be(a, — 7,0) with a, — 7 ¢ A. We get

0 {n g, Ay = 3 / ( )w(dz): /A U (2)w(dz),

n:an€A
0 {n g, —re Ay = Y / (’" ki ) wl(dz) = /A\Il(z +P)w(dz),
n:an—T7EA
Note that )
/ (dz) ZE:A /B o = Nuwyq(26)%.
By (6),

2) = U(z+7)|w(dz)  pNwyy2*
< <
02y «

\#{n:aneA}—#{n:an—TeA}\gfA"I’(
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Therefore,
#{n:a,€ A} =#{n:a, — 1€ A},
which allows to construct a bijection o between the sets {n : a,—7 € A} and {n : a, € A}.
This construction works for every connected component of the set U, Bc(ay, 29), hence
there exists a bijection o of a part S7 of N to the part Sy of N. It follows from the inequality
diam A < 2¢ that
’CLn - T — ag(n)| < 2e. (7)

If D C Tk, we have S; = Sy = N, and theorem is proved. If D\ T% # &, we have only
{n:ra, €Tk} CSHUS C{n: a, € Tz}

For a € D\ T put
n < %min{dist(lm a, I?%dist{lm a,00}}

and consider the function

o0 fo (5 i~ ()

n:an€D

In view of the choice of 7, this function is well-defined and almost periodic on T, with
w={y € Q: dist(y,00) > n}. Furthermore, ¥(a) > ¢(0) = 1, hence ¥(a + ) is strictly
positive for some large enough ¢ € RY. Therefore the set {n : a, € D\[?} is unbounded and
countable, as well as the sets N\ S} and N\ Sy. For points a,, with n ¢ S; condition (7)
need not be required, therefore the bijection o : S; — S5 can can be extended to a bijection
N — N. The theorem is proved. O

3 UNIQUENESS THEOREMS FOR ALMOST PERIODIC DISTRIBUTIONS, MEASURES,
MULTISETS

Definition 8. We shall say that distributions f,g € D'(R?) converge weakly at infinity, if
for any ¢ € D(R?) the functions (f, ¢ (- —t)) and (g, @( - —t)) of the variable t € R?
converge weakly at infinity.

Also, we shall say that distributions f,g € D'(Tq) converge weakly at infinity, if for any
v € D(Tq) the functions (f, (- —z)) and (g, (- —2)) of the variable z € T,, converge weakly
at infinity (w C 2 is defined in Definition 6).

It follows from Theorem 3

Theorem 5. If two almost periodic distributions or measures f,g € D'(R?) converge weakly
at infinity, then f = g. The similar assertion is valid for f,g € D'(Tq).

Definition 9. We shall say that two discrete multisets F = {a, }, H = {b,} C R? converge
weakly at infinity, if there is a set G C RY satisfying (1) such that under an appropriate
numbering

lim a, — b, =0,
n—oo,n€N(G)

where N(G) ={n € N:a, or b, € G}.
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Definition 10. We shall say that two discrete multisets F' = {a, }, H = {b,} C Ty, converge
weakly at infinity, if for every K C  there is a set G = G(K) C R? satisfying (1) such that
under an appropriate numbering

lim a, — b, =0,
n—oo,neN(G,K)

e N(G,K)={neN:a,e GXx K or b, € Gx K}.

Theorem 6. If two discrete multisets I, H converge weakly at infinity, then they are iden-
tical.

Proof. Tt follows from theorems 4 and 5 that we have to check the weak convergence of
measures jp and gy at infinity. The latter means that for any ¢ € D(R?) (or ¢ € D(Tq))
the almost periodic functions of the variable t € R?

Up(t) = (pur, (- — 1)) = ZSOWTL —1)

and

Uy (t) = (o = 1)) = > plbn — 1)

converge weakly at infinity. To be specific consider the case F' = {a,}, H = {b,} C Tq. The
is similar for F, H C R

Suppose that supp ¢ C Bg(0,1) x K for compact K C Q. Take £ > 0 and then § > 0 such
that |p(z) — p(2)| < ¢/(N(K)) for |z — 2/| < d, where N(K) is the constant from (3). Let
a set G C RY satisfy (1) with balls Bg(zy, Ri), k € N. Tt is easy to see that having reduced
by 3 times the radii of these balls and changing the location of their centers, we can assume
that dist(B(zx, Ri),0) — oo. For sufficiently large k and for a,, b, € Br(zk, Rx) X K we
have |a,, — b,| < 9. Also assume that Ry > 2.

Let t € Br(zy, Rp/2) and a,, — t € supp . Then a,, € Bgr(xy, R;) X K, and the same is
valid for b, — t. Therefore if a,, —t € supp ¢ or b, —t € supp ¢, we get |a, — b,| < and

£
Up(t) —Uy(t)| < —t)— (b, —t -N(K) =e.
(0) = W] < 3 olan ~ 1) = gl ] < 7y N =

Hence the almost periodic functions Wp(t) u Wy (t) converge weakly at infinity. O

4 UNIQUENESS THEOREMS FOR DELTA-SUBHARMONIC AND MEROMORPHIC
FUNCTIONS

It follows immediately from the definition that any partial derivative of an almost peri-
odic distribution from D'(R?) or D'(Tg) is also an almost periodic distribution. Since any
subharmonic function on any region from R? is locally integrable, it can be considered as
a distribution. Thus, if v is a subharmonic almost periodic function on D’(R%) or D'(Ty),
then its Riesz measure Awu is also an almost periodic distribution, and the same is true for
the difference of subharmonic functions, the so-called delta-subharmonic functions.

It follows from Theorem 5
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Theorem 7. If two delta-subharmonic functions u,v on R? or Ty, have weakly converging
at infinity Riesz measures Au and Av, then u = v + h with a harmonic function h.

The last part of the proof uses the fact that the condition Ah = 0 in the sense of
distributions implies that A is an ordinary harmonic function.

Definition 11. (see [10], [5]) A meromorphic function f(z) on the strip S, = {z € C :
Rez € Rya < Imz < b}, —o0 < a < b < +o0, is called almost periodic, if in any smaller
Strip Sa g, a < a < [ < b, the function ps(f(z+1), f(z)), where pg is the spherical distance,
is almost periodic in the variable t € R.

In [5] the following properties of meromorphic almost periodic functions are proved:

e The distance between any pole and any zero of meromorphic almost periodic functions
is bounded from below by a strictly positive constant depending on the strip in which
this pole and zero lie,

e Every meromorphic almost periodic function on S, is a ratio of two holomorphic al-
most periodic functions in S, 3; the converse assertion is only valid if distances between
poles and zeros of this ratio are uniformly bounded from below by a strictly positive
constant in any smaller strip. In particular, every holomorphic almost periodic function
in a strip is simultaneously a meromorphic almost periodic function.

It was proved in [9] that for any holomorphic function f on S, the function log | f| is an
almost periodic distribution, hence the measure ;17 corresponding to the multiset of zeros Z;
is almost periodic. Also, if f is an almost periodic meromorphic function, then the measures
iz and pp corresponding to the multiset of zeros Z; and the multiset of poles P of f are
also almost periodic. Therefore, Theorem 7 implies

Theorem 8. If multisets of poles Py and P, of meromorphic almost periodic functions f, g
in a strip S, converge weakly at infinity and the same is true for multisets of zeros Z; and
Zg, then Py = P,, Zy = Z,, hence, f/g is a holomorphic almost periodic function on S,
without zeros.

If f, g are holomorphic almost periodic functions on S,; and multisets of zeros Z;, Z,
converge weakly at infinity, then Z; = Z;, and we obtain Theorem 6 from [7].

Note that the linear-fractional mapping of a meromorphic almost periodic function f is
a meromorphic almost periodic function as well. Then instead of zeros and poles one can
consider A; -points and A, -points, A; # A,, that is zeros of functions f — A; and f — As.
Also, for T, = C we obtain the following theorem:

Theorem 9. Let f, g be meromorphic almost periodic functions on C and let A;-points of
f converge weakly at infinity to A;-points of g for three pairwise distinct values Ay, As, As.
Then either f = g, or f and g have the forms

1—h1 h2_h1h2
=T =T7T|——-—= 8

where hy, ho are distinct entire functions without zeros, and T is a linear-fractional mapping
that moves the triple point 0,1, 00 to the triple point Ay, As, As.
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At the final stage of the proof we use the following theorem from [8]: If two meromorphic
functions on C have the same multisets of A -points for three distinct values of Ay, A,, As,
then these functions either coincide, or have form (8).
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