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SEMITOPOLOGICAL MODULES

Given a topological ring R, we study semitopological R-modules, construct their comple-

tions, Bohr and borno modi�cations. For every topological space X, we construct the free

(semi)topological R-module over X and prove that for a k-space X its free semitopological

R-module is a topological R-module. Also we construct a Tychono� space X whose free semi-

topological R-module is not a topological R-module.
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1 Introduction

This paper was motivated by problems on semitopological linear spaces posed by Volody-

myr Kyrylovych Maslyuchenko in [8]. A semitopological linear space over a topological �eld

F is a linear space X over the �eld F , endowed with a Hausdor� topology τ turning X into

an Abelian topological group and making the multiplication F × X → X, (λ, x) 7→ λ · x,
separately continuous. If this operation is jointly continuous, then X is a topological linear

space over F . By a semitopological linear space we understand a semitopological linear space

over the �eld R of real numbers endowed with the Euclidean topology. These spaces (under

the name �N -spaces") were introduced and studied by V.K. Maslyuchenko in [8], where he

posed the following

Problem 1. Is each (metrizable) semitopological linear space a topological linear space?

In [2] we proved that each metrizable semitopological linear space is a topological linear

space and also constructed a semitopological linear space which is not a topological linear

space. These results motivate the authors to study semitopological linear spaces in more

details and more generality, so the present paper addresses exactly this problem.
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In Section 3 we introduce semitopological R-modules over topological rings R, study their

completions (in Theorem 5), detect their bounded subsets (in Theorem 6), and establish joint

continuity properties of their multiplication maps (in Theorems 6 and 7).

In Section 4 we study Bohr modi�cations of semitopological modules and construct many

examples of semitopological modules which are not topological modules.

In Section 5 we discuss bornologies on topological rings and construct so-called bornomo-

di�cations of semitopological modules, turning them into topological modules.

So, we have two constructions over semitopological modules, which have opposite ef-

fects: the Bohr modi�cations of semitopological linear spaces produce semitopological linear

spaces which are not topological linear spaces, whereas the bornomodi�cations transform

semitopological linear spaces into topological linear spaces.

The properties of the bornomodi�cations are used in the �nal Section 6 devoted to free

semitopological modules over topological spaces. The main result proved in this section is

Theorem 11 implying that the free semitopological linear space over a k-space X coincides

with the free topological linear space over X. On the other hand, the free semitopological

linear space over the real line endowed with the Bohr topology is not a topological linear

space.

2 Preliminaries

In this section we shall make some conventions and recall the necessary information on

topological spaces and topological groups.

2.1 Baire and strongly Baire spaces

All topological spaces considered in this paper are Tychono�. For a subset A of a topological

space X we denote by Ā the closure of A in X.

A topological space X is called Baire if for any sequence (Un)n∈ω of open dense subsets

of X the intersection
⋂
n∈ω Un is dense in X. Baire spaces can be characterized using the

Choquet game. This game is played by two players, I and II on a topological space X. The

player I starts the game and chooses a non-empty open set U0 ⊆ X. The player II responds

choosing a non-empty open set V0 ⊆ U0. At the nth inning the player I selects a non-empty

open set Un ⊆ Vn−1 and player II responds by selecting a non-empty open set Vn ⊆ Un. At

the end of the game the player II is declared the winner if
⋂
n∈ω Un 6= ∅. In the opposite

case the player I wins the game. By Oxtoby Theorem [7, 8.11], a topological space X is

Baire if and only if the player I has no winning strategy in the Choquet game on X.

Now we recall the de�nition of a strongly Baire space, introduced by Cao and Moors [4]

via the game played by two players I and II on a topological space X with a selected dense

subset D. The Cao-Moors game has the same moves as the Choquet game and di�ers merely

by the winning condition. Given a decreasing sequence U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ · · · of open
sets constructed by the players I and II, the player II is declared the winner if

⋂
n∈ω Un 6= ∅

and every sequence (xn)n∈ω ∈
∏

n∈ω(Vn ∩D) has a cluster point in X. A topological space
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X is called strongly Baire if the �rst player has no winning strategy in the Cao-Moors game

for some dense subset D of X.

It is easy to see that a metrizable space is Baire if and only if it is strongly Baire. Strongly

Baire spaces are Baire and �Cech-complete spaces are strongly Baire.

A subset B of a topological space X is called precompact if B has the compact closure B

in X.

A topological space X is called a k-space if a subset A ⊆ X is closed in X provided for

every compact subset K ⊆ X the intersection A ∩K is closed in K.

A topological space X is de�ned to be

� �rst-countably-compact if for each point x ∈ X there exists a sequence (Un)n∈ω of

neighborhoods of x in X such that any sequence (xn)n∈ω ∈
∏

n∈ω Un has a cluster

point in X;

� �rst-countably-pracompact if for each point x ∈ X there exist a dense subset D of X

and a countable system of neighborhoods (Un)n∈ω of x in X such that every sequence

(xn)n∈ω ∈
∏

n∈ω(Un ∩D) has a cluster point in X.

The class of �rst-countably-compact spaces contain all �rst-countable spaces and all count-

ably compact spaces. Also it can be shown that each topologically homogeneous strongly

Baire space is �rst-countably-pracompact.

A subset A of a topological space X is called sequentially closed in X if for any convergent

sequence {an}n∈ω ⊆ A in X, the limit point limn→∞ an belongs to the set A.

2.2 Co-Namioka spaces

A topological space X is called co-Namioka if for any Baire space Y and any separately

continuous function f : X × Y → R there exists a dense Gδ-set G ⊆ Y such that f is

continuous at each point of the set X ×G.
A continuous map f : X → Y between topological spaces is perfect if it is closed and for

every y ∈ Y the preimage f−1(y) is compact.

The proof of the following proposition was suggested by O.V. Maslyuchenko.

Proposition 1. Let f : X → Z be a surjective perfect map between Hausdor� spaces. If

the space X is co-Namioka, then so is the space Z.

Proof. Fix any separately continuous map ϕ : Z × Y → R and consider the separately

continuous function

ψ : X × Y → R, ψ : (x, y) 7→ ϕ(f(x), y).

Since X is co-Namioka, there exists a dense Gδ-set G ⊆ Y such that the function ψ is

continuous at each point of the set X × G. We claim that the function ϕ is continuous at

each point (z, g) of the set Z ×G.
By the continuity of the function ψ at points of the set X × {g}, for every ε > 0 and

every x ∈ X there exists a neighborhood O(x,g) ⊆ X × G of the point (x, g) ∈ X × G such

that ψ(O(x,g)) ⊆ (ψ(x, g) − ε, ψ(x, g) + ε). We lose no generality assuming that O(x,g) is of
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basic form Ox×Gx for some open sets Ox ⊆ X and Gx ⊆ Y . By the compactness of the set

f−1(z) (which follows from the perfectness of f), there exists a �nite set F ⊆ f−1(z) such

that f−1(z) ⊆
⋃
x∈F Ox. Since the map f is closed, the set

U = Z \ f(X \
⋃
x∈F

Ox)

is an open neighborhood of z in the space Z. Consider the open neighborhood V =
⋂
x∈F Gx

of g in Y . We claim that ϕ(U×V ) ⊆ (ϕ(z, g)−ε, ϕ(z, g)+ε). Indeed, for any (u, v) ∈ U×V
we have f−1(u) ⊆

⋃
x∈F Ox and hence there exist x ∈ F and w ∈ Ox such that f(w) = u.

Then

ϕ(u, v) = ϕ(f(w), v) = ψ(w, v) ∈ ψ(Ox ×Gx) = ψ(O(x,g)) ⊆ (ψ(x, g)− ε, ψ(x, g) + ε) =

= (ϕ(f(x), g)− ε, ϕ(f(x), g) + ε) = (ϕ(z, g)− ε, ϕ(z, g) + ε).

Therefore, the map ϕ is continuous at points of the set Z ×G, witnessing that the space Z

is co-Namioka.

A Hausdor� space X is called

� dyadic compact if for some cardinal κ there exists a continuous surjective map f :

{0, 1}κ → X;

� locally dyadic if each point x ∈ X has a closed neighborhood which is dyadic compact;

� Lindel�of if each open cover of X contains a countable subcover.

Lemma 1. Every diadyc compact space X is co-Namioka.

Proof. Find a cardinal κ and a continuous surjective map f : {0, 1}κ → X. By [3], the

Cantor cube {0, 1}κ is co-Namioka and by Proposition 1 so is its continuous image X.

Proposition 2. Every Lindel�of locally dyadic Hausdor� space X is co-Namioka.

Proof. Let Y be a Baire space and f : X × Y → R be a separately continuous function.

Taking into account that the space X is Lindel�of and locally dyadic, we can �nd a countable

cover K of X by dyadic compact subsets whose interiors cover the space X. By Lemma 1,

every space K ∈ K is co-Namioka. So, we can �nd a dense Gδ-set GK in Y such that the

function f�K×Y is continuous at each point of the set K ×GK . Since the space Y is Baire,

the countable intersection G =
⋂
K∈KGK is a dense Gδ-set in Y . We claim that the function

f is continuous at each point of the set X × G. Given any point (x, y) ∈ X × G, �nd a

dyadic compact set K ∈ K containing x in its interior in X. Then K × Y is a neighborhood

of the point (x, y) in X × Y . Since G ⊆ GK , the function f�K×Y is continuous at (x, y) and

so is the function f .
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2.3 Topological groups

In this subsection we recall some information related to topological groups. For two subsets

A,B ⊆ X we denote by AB = {ab : a ∈ A, b ∈ B} their pointwise product in X.

For topological groups X, Y we denote by Homp(X, Y ) the subspace of the Tychono�

power Y X consisting of continuous homomorphisms from X to Y .

A topological group X is complete if X is closed in any topological group, containing X

as a subgroup. It is well-known [1, �3.6] that each topological group X can be identi�ed with

a dense subgroup of a complete topological group X̆ called the Ra��kov completion of X. It

can be constructed as the completion of X by the two-sided uniformity (which is generated

by the base consisting of the entourages {(x, y) ∈ X × X : x ∈ yU ∩ Uy} where U is a

neighborhood of the identity in X).

The Ra��kov completion has the following extension property: each continuous homomor-

phism h : X → Y to a complete topological group Y uniquely extends to a continuous

homomorphism h̆ : X̆ → Y .

A subset A of a topological group X is totally bounded if for each neighborhood U of the

identity of X there exists a �nite subset F ⊆ X such that A is contained in
⋃
x∈F xU ∩ Ux.

It is known that a subset of a topological group X is totally bounded if and only if it has

compact closure in the Ra��kov completion of X. In particular, a topological group is compact

if and only if it is complete and totally bounded.

A subset A of a topological groupX is left (resp. right) ω-narrow if for each neighborhood

U of the identity of X there exists a countable subset C ⊆ X such that A is contained in⋃
x∈C xU (resp.

⋃
x∈C Ux). It is easy to check that a subset A of a topological group X is

left ω-narrow i� a subset A−1 of X is right ω-narrow. A subset A of a topological group X

is ω-narrow, if A is both left and right ω-narrow.

Proposition 3. Let A and B be left ω-narrow subsets of a topological group X. Then AB

is a left ω-narrow subset of X, too.

Proof. Let U be any neighborhood of the identity ofX. Pick a neighborhood V of the identity

of X such that V V ⊆ U . There exists a countable subset D of X such that B ⊆ DV . For

each element d ∈ D pick a neighborhood Vd of the identity of X such that d−1Vdd ⊆ V .

There exists a countable subset Cd of X such that A ⊆ CdVd. Put C =
(⋃

d∈D Cd
)
D. Let

a ∈ A, b ∈ B be any elements. There exists d ∈ D such that b ∈ dV . There exists c ∈ Cd
such that a ∈ cVd. Then

ab ∈ cVd · dV = cd · d−1VddV ⊆ cdV V ⊆ cdU ⊆ CU.

Corollary 1. For any ω-narrow subset A of a topological group X, the subgroup of X

generated by A is ω-narrow. �
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2.4 Bi-homomorphisms

Let X, Y, Z be topological groups. A function h : X × Y → Z is called a bi-homomorphism

if for every a ∈ X and b ∈ Y the functions

ah : Y → Z, ah : y 7→ h(a, y) and hb : X → Z, hb : x 7→ h(x, b),

are homomorphisms.

A bi-homomorphism h : X × Y → Z is called right-continuous if for any x ∈ X the

homomorphism xh : Y → Z, xh : y 7→ h(x, y), is continuous.

Theorem 1. Let X, Y, Z be topological groups and Y̆ , Z̆ be the Ra��kov completions of X, Y ,

respectively. Any right-continuous bi-homomorphism h : X × Y → Z uniquely extends to a

right-continuous bi-homomorphism h̆ : X× Y̆ → Z̆. The set Ỹ = {y ∈ Y̆ : h̆y is continuous}
is a subgroup of Y̆ . If X is Baire and ω-narrow, then the subgroup Ỹ is sequentially closed in

Y̆ . If h is jointly continuous, then Ỹ = Y̆ and the bi-homomorphism h̆ is jointly continuous.

Proof. For every x ∈ X consider the continuous homomorphism xh : Y → Z and its continu-

ous extension x̆h : Y̆ → Z̆ to the Ra��kov completions of the groups Y, Z. The homomorphisms
x̆h, x ∈ X, compose a function h̆ : X× Y̆ → Z̆ de�ned by h̆(x, y) = xh̆(y) for (x, y) ∈ X× Y̆ .

Let us check that h̆ is indeed a bi-homomorphism. For any x ∈ X, the map x̆h : Y̆ → Z̆

is a homomorphism, being a continuous extension of the homomorphism xh. Next, we prove

that for any point y ∈ Y̆ the map h̆y : X → Z̆, h̆y : x 7→ h̆(x, y), is a homomorphism.

Assuming the opposite, we can �nd two points a, b ∈ X such that h̆(ab, y) 6= h̆(a, y) · h̆(b, y).

Since the topological group Z̆ is Hausdor�, we can �nd disjoint open sets W,W+ ⊆ Z̆ such

that h̆(ab, y) ∈ W and h̆(a, y) · h̆(b, y) ∈ W+. By the continuity of the multiplication in Z̆,

there are open sets Wa,Wb ⊆ Z̆ such that h̆(a, y) ∈ Wa, h̆(b, y) ∈ Wb and WaWb ⊆ W+.

The continuity of the homomorphisms abh̆, ah̆, bh̆ at y provides a neighborhood V ⊆ Y̆

of y such that abh̆(V ) ⊆ W , ah̆(V ) ⊆ Wa and bh̆(V ) ⊆ Wb. Since Y is dense in Y̆ , the

neighborhood V contains some point v ∈ V ∩ Y . Then the points h(ab, v) = abh̆(v) ∈ W

and h(a, v) · h(b, v) = ah̆(v) · bh̆(v) ∈ WaWb ⊆ W+ are distinct, which is not possible as hv is

a homomorphism.

To see that the set Ỹ is a subgroup of Y̆ , observe that for any points y, y′ ∈ Ỹ the map

h̆yy′ : X → Z̆ is continuous being the product h̆y · h̆y′ of two continuous maps. Also the

map h̆y−1 = inv ◦ h̆y is continuous because of the continuity of the inversion inv : Z̆ → Z̆,

inv : z 7→ z−1.

Now assuming that X is Baire and ω-narrow, we shall prove that the subgroup Ỹ in

sequentially closed in Y̆ . Fix any sequence {yn}n∈ω ⊆ Ỹ , convergent to a point y ∈ Y̆ . For
every n ∈ ω, the continuity of the homomorphism hyn : X → Z̆ implies that the image

hyn(X) is an ω-narrow subgroup of Z̆. By Corollary 1, the subgroup H of Z̆ generated

by the union
⋃
n∈ω hyn(X) is ω-narrow and so is its closure H in Z̆. Taking into account

that hy(x) = limn→∞ hyn(x) for all x ∈ X, we conclude that hy(X) ⊆ H and hence the

subgroup hy(X) is ω-narrow. Now we are ready to prove that the homomorphism hy is

continuous. Given any neighborhood U ⊆ Z̆ of the identity, we should �nd a neighborhood

V of the identity in X such that hy(V ) ⊆ U . Choose a neighborhood W of the identity in
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Z̆ such that WW−1 ⊆ U . Since the topological space of Z̆ is Tychono�, we can additionally

assume that the setW is functionally open in Z̆, which means thatW = ξ−1
(
(0, 1]

)
for some

continuous map ξ : Z̆ → [0, 1]. We claim that the set h−1
y (W ) is Borel in X. This follows

from the representation

h−1
y (W ) =

⋃
n∈N

∞⋂
m=n

{x ∈ X : ξ(h(x, ym)) ≥ 1
n
},

witnessing that the set A = h−1
y (W ) is of type Fσ in X. By the ω-narrowness of hy(X), there

exists a countable set C ⊆ X such that hy(X) ⊆ hy(C) ·W . Then X = C · h−1
y (W ) = C ·A.

SinceX is Baire, the set A is non-meager inX. By Pettis Theorem [7, 9.9], the set V = AA−1

is a neighborhood of the identity in X. Then

hy(V ) = hy(A · A−1) ⊆ hy(A) · hy(A)−1 ⊆ WW−1 ⊆ U,

witnessing that the homomorphism hy is continuous.

Finally, assuming the continuity of the bi-homomorphism h, we shall prove that the bi-ho-

momorphism h̆ is continuous. The separate continuity of h implies that Y ⊆ Ỹ , so Ỹ is dense

in Y̆ . First we prove that h̆ is continuous at the identity. Given any neighborhood W ⊆ Z̆

of the identity, �nd a neighborhood W0 ⊆ Z of the identity such that W 0 ⊆ W . Using the

continuity of the homomorphism h : X × Y → Z, �nd a neighborhood U of the identity in

X and a neighborhood V of the identity in Y̆ such that h(V × (U ∩ Y )) ⊆ W0. For every

v ∈ V the continuity of the homomorphism vh̆ implies that vh̆(U) ⊆ vh̆(U ∩ Y ) ⊆ W 0 ⊆ W .

Consequently, h̆(V × U) ⊆ W and the bi-homomorphism h̆ : X × Y̆ → Z̆ is continuous at

the identity and hence continuous everywherem see [5, 3.1].

Now we present two theorems that will help us to establish the joint continuity of some

bi-homomorphisms. The �rst of them was proved by Cao and Moors in [4].

Theorem 2 (Cao, Moors). Let T be a topological space, X, Y be topological groups and

h : T × X → Y be a separately continuous map such that for every t ∈ T the function
th : X → Y , th : x 7→ h(t, x), is a homomorphism. If the space X is strongly Baire,

then for every �rst-countably-pracompact subspace K ⊆ T the restriction h�K×X is jointly

continuous.

Theorem 3. Let T be a topological space, X, Y be topological groups and h : T ×X → Y

be a separately continuous function such that for every t ∈ T the function th : X → Y ,
th : x 7→ h(t, x), is a homomorphism. If the space X is Baire, then for every co-Namioka

compact subspace K ⊆ T the restriction h�K×X is jointly continuous.

Proof. Assume that the space X is Baire and K is a compact co-Namioka subspace of T .

We claim that the map h�K×X is continuous. To derive a contradiction, assume that h�K×X
has a discontinuity point (z, x) ∈ K×X. Then there exists a neighborhood U of the identity

e in the topological group Y such that h(V ) 6⊆ h(z, x) · U for any neighborhood V of (z, x)

in K ×X. Find a neighborhood W of e in Y such that WW−1W ⊆ U .
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By [1, 3.3.9], there exists a left-invariant continuous pseudometric ρ : Y × Y → R such

that B1 ⊆ W where B1 = {y ∈ Y : ρ(e, y) < 1}. Let Yρ be the space Y endowed with the

pseudometric ρ and hρ be the map h considered as a map with values in the pseudometric

space Yρ.

Since the compact space K is co-Namioka, we can apply [3, 3.1] and �nd a dense Gδ-set

G ⊆ X such that the map hρ�K×X is continuous at each point of the setK×G. Fix any point
g ∈ G and by the continuity of the map hρ�K×X at (z, g), �nd open sets Uz ⊆ K and Vg ⊆ X

such that (z, g) ∈ Uz × Vg and hρ(Uz × Vg) ⊆ h(z, g) · B1 ⊆ h(z, g) ·W . Replacing Uz by a

smaller neighborhood, if needed, we can additionally assume that h(Uz ×{x}) ⊆ h(z, x) ·W
and h(Uz × {g}) ⊆ h(z, g) ·W .

Observe that the set xg−1Vg is a neighborhood of the point x in the topological group X.

By the choice of the set U , there is a point (u, v) ∈ Uz×Vg such that h(u, xg−1v) /∈ h(z, x)·U .
On the other hand,

h(u, xg−1v) = h(u, x)h(u, g)−1h(u, v) ⊆ h(z, x) ·WW−1h(z, g)−1 · h(z, g) ·W =

= h(z, x)WW−1W ⊆ h(z, x)·U,

which is a required contradiction.

2.5 Sep-joint automatic pairs of topological groups

De�nition 1. A pair (X, Y ) of topological groups is called sep-joint automatic if every

separately continuous bi-homomorphism h : X×Y → Z into a topological group Z is jointly

continuous.

Theorem 4. A pair (X, Y ) of topological groups is sep-joint automatic if one of the following

conditions holds:

1. the pair (Y,X) is sep-joint authomatic;

2. X is strongly Baire and Y is �rst-countably-pracompact;

3. X is locally compact and Y is Baire;

4. X is locally compact and Y is a k-space.

Proof. 1, 2. The �rst statement is trivial and the second one follows from Theorem 2.

3. To prove the third statement, assume that the topological group X is locally compact

and Y is Baire. Take any separately continuous bi-homomorphism h : X × Y → Z to a

topological group Z. To prove that h is continuous, take any pair (x, y) ∈ X × Y . By

Theorem 3.1.15 in [1], the locally compact topological group X is locally dyadic compact.

Consequently, we can �nd a dyadic compact space K ⊆ X containing x in its interior in X.

By Lemma 1, the dyadic compact space K is co-Namioka and by Theorem 3, the restriction

h�K×Y is jointly continuous. Since K×Y is a neighborhood of (x, y), the bi-homomorphism

h is continuous at (x, y).
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4. Assume that X is locally compact and Y is a k-space. By [6, 3.3.27], the product

X×Y is a k-space. To prove that the pair (X, Y ) is sep-joint automatic, take any separately

continuous bi-homomorphism h : X × Y → Z to a topological group Z. Since X × Y is a

k-space, it su�ces to prove that for every compact space K ⊆ X × Y , the restriction h�K is

continuous. Find a compact set KY ⊆ Y such that K ⊆ X ×KY . Taking into account that

the locally compact space X is strongly Baire and the compact space KY is �rst-countably-

pracompact, we can apply Theorem 2 and conclude that the restriction h�X×KY
is continuous

and so is the restriction h�K .

Remark 1. In [9] Mykhaylyuk and Pol constructed a compact Hausdor� space K whose

function space F = Cp(K, {−1, 1}) is Baire in the topology of pointwise convergence. For

this compact space K, the evaluation map e : K × F → {−1, 1}, e : (x, f) 7→ f(x),

is separately continuous and everywhere discontinuous. This example shows that �strong

Baire� in Cao�Moors Theorem 2 cannot be weakened to �Baire" and also that Theorem 4

cannot be extended beyond the class of bi-homomorphisms.

3 Semitopological modules and their completions

In this section we apply the results of the preceding section to describe the structure of

semitopological modules over topological rings and to study the continuity properties of the

multiplication map in semitopological modules.

By a topological ring we understand a unital ring R endowed with a Hausdor� topology

τ making the addition + : R × R → R and multiplication · : R × R → R continuous. A

ring R will be called unital if it has a unit (i.e., an element 1 ∈ R such that 1x = x1 = x for

all x ∈ X). An element a of a ring R is called invertible if there exists an element a−1 ∈ R
such that aa−1 = a−1a is the unit of R. It follows that a ring is unital if and only if it has

an invertible element. A commutative ring is a �eld if every non-zero element of the ring is

invertible.

Theorem 1 implies that the Ra��kov completion R̆ of (the additive group) of a topological

ring R has the structure of a topological ring. This topological ring will be called the

completion of R.

A module over a ring R (brie�y, an R-module) is an Abelian group X endowed with a

map ∗ : R × X → X, ∗ : (a, x) 7→ a ∗ x, such that for every a, b ∈ R and x, y ∈ X the

following conditions are satis�ed:

� a ∗ (x+ y) = a ∗ x+ a ∗ y;

� (a+ b) ∗ x = a ∗ x+ b ∗ x;

� (ab) ∗ x = a ∗ (b ∗ x);

� 1 ∗ x = x.

The �rst two conditions imply that the multiplication map ∗ : R × X → X is a bi-

homomorphism. So, for points r ∈ R and b ∈ X the functions r∗ : X → X, r∗ : x 7→ r ∗ x,
and ∗b : R→ X, ∗b : ρ 7→ ρ ∗ b, are homomorphisms.
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A right-topological module over a topological ring R (brie�y, a right-topological R-module)

is a module X over R endowed with a Hausdor� topology τ turning X into an Abelian

topological group and making the multiplication map ∗ : R × X → X right-continuous.

If the multiplication map ∗ is separately continuous, then (X, τ) is called a semitopological

R-module; if ∗ is jointly continuous, then (X, τ) is called a topological R-module.

Right-topological R-modules are objects of the category whose morphisms are continuous

R-linear maps between right-topological R-modules. A map h : X → Y between two R-

modules is called R-linear if

h(x1 + x2) = h(x1) + h(x2) and h(a ∗ x1) = a ∗ h(x2)

for any points x1, x2 ∈ X and a ∈ R.
It is clear that (semi)topological linear spaces over topological �elds are partial cases of

(semi)topological modules over topological rings.

Given a right-topological module X over a topological ring R, consider the multiplication

map ∗ : R × X → X, ∗ : (a, x) 7→ a ∗ x, and observe that it is a right-continuous bi-

homomorphism. By Theorem 1, this bi-homomorphism can be uniquely extended to a right-

continuous bi-homomorphism ∗̆ : R × X̆ → X̆, which turns X̆ into a right-topological

R-module, which will be called the Ra��kov completion of X.

For a right-topological R-module X the subgroup

X̃ = {x ∈ X̆ : ∗̆x : R→ X̆ is continuous}

is an R-submodule of X̆. Indeed, for any x ∈ X̃ and a ∈ R the continuity of the map

∗a∗x : R → X̆ follows from the equality ∗a∗x(r) = r ∗ (a ∗ x) = (ra) ∗ x = ∗x(ra), r ∈ R,

and the continuity of the multiplication in the topological ring R. By de�nition, X̃ is the

maximal semitopological R-submodule of X̆. If X is a semitopological R-module, then the

submodule X̃ contains X and is called the semitopological R-completion of X.

The construction of Ra��kov completion determines a functor in the category of right-

topological R-modules.

Indeed, any continuous R-linear map h : X → Y between semitopological R-modules can

be extended to a continuous homomorphism h̆ : X̆ → Y̆ . For every a ∈ R, the continuity

of multiplication by a in X and Y , and the continuity of the map h̆ imply that the set

{x ∈ X̆ : h̆(a ∗ x) = a ∗ h̆(x)} ⊇ X is closed in X̆ and being dense coincides with X̆. This

means that the homomorphism h̆ is R-linear.

The construction of semitopological R-completion also is functorial in the category of

semitopological R-modules. Indeed, for any continuous R-linear map h : X → Y between

semitopological R-modules, consider its continuous extension h̆ : X̆ → Y̆ to the Ra��kov

completions of X and Y . Observe that for any x ∈ X̃ the continuity of the homomorphism

∗x : R→ X̃ ⊆ X̆, ∗x : a 7→ a∗x, implies the continuity of the homomorphism ∗h̆(x) = h̆◦∗x :

R → Y̆ , ∗h̆(x) : a 7→ a ∗ h̆(x) = h̆(a ∗ x). So h̆(x) ∈ Ỹ and h̆(X̃) ⊆ Ỹ . Then the restriction

h̃ = h̆�X̃ : X̃ → Ỹ is a well-de�ned continuous R-linear map between the semitopological

R-modules X̃ and Ỹ .
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Theorem 5. For any semitopologicalR-moduleX over a topological ringR, itsR-completion

X̃ is a semitopological R-module having the following properties.

1. The semitopological R-module X̃ is closed in any semitopological R-module Y con-

taining X̃;

2. If X is a topological R-module, then X̃ coincides with the Ra��kov completion X̆ of X

and is a topological R-module.

3. If the additive topological group of R is Baire and ω-narrow, then the set X̃ is sequen-

tially closed in the Ra��kov completion X̆ of X.

Proof. 1. Let Y be any semitopological R-module containing the semitopological R-module

X̃. Since X ⊆ X̃ ⊆ Y , the Ra��kov completion Y̆ of Y contains the Ra��kov completion X̆

of X and X̆ is closed in Y̆ (see [1, 3.6.18]). For every y ∈ Y ∩ X̆ the continuity of the map

∗y : R→ Y ∩ X̆, ∗y : a 7→ a ∗ y, implies that y ∈ X̃. Now we see that the set X̃ = X̆ ∩ Y is

closed in Y .

2. IfX is a topological R-module, then by Theorem 1, the continuity of the multiplication

map ∗ : R ×X → X implies the continuity of its extension h̆ : R × X̆ → X̆, which means

that X̆ is a topological R-module and X̃ = X̆.

3. If the additive topological group of R is Baire and ω-narrow, then the set X̃ is

sequentially closed in X̆ according to Theorem 1.

Let X be a right-topological R-module over a topological ring R. We say that a subset

B ⊆ X is R-bounded if for every neighborhood U ⊆ X of zero there is a neighborhood V ⊆ R

of zero such that V ∗B ⊆ U . This is equivalent to saying that the family of homomorphisms

{∗x : R → X}x∈B ⊆ Homp(R,X) is equicontinuous. This simple observation allows us to

apply Theorem 4 and obtain the following theorems.

Theorem 6. Let X be a semitopological R-module over a topological ring R.

1. For any R-bounded set B ⊆ X the multiplication map R × B → X, (r, x) 7→ r ∗ x, is
continuous.

2. If the space R is strongly Baire, then each compact subset of X is R-bounded.

Theorem 7. A semitopological R-module X is a topological R-module if (R,X) is a sep-

joint automatic pair of topological groups. This happens if the topological ring R is locally

compact and the space X is Baire or a k-space.

4 The Bohr modifications of semitopological modules

In this section we shall answer Problem 1 by constructing (many) examples of semitopo-

logical linear spaces which are not topological linear spaces. These examples are just usual

linear topological spaces endowed with the Bohr topology.
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The Bohr topology on a topological group X is the largest totally bounded group topology

onX. It can be equivalently de�ned as the smallest topology τ onX such that any continuous

homomorphism h : X → K to a Hausdor� compact topological group K remains continuous

with respect to the topology τ . By X[ we shall denote the group X endowed with the Bohr

topology. This topological group will be called the Bohr modi�cation of X.

A topological group X is called Bohr separated if the Bohr topology on X is Hausdor�.

For example, each locally convex linear topological space is Bohr separated. On the other

hand, the linear metric spaces Lp, 0 < p < 1, are not Bohr separated, see [10, 4.2.3].

Observe that any continuous homomorphism h : X → Y between topological groups

remains continuous as a homomorphism h : X[ → Y [ between the Bohr modi�cations of X

and Y . This observation implies the following simple fact.

Proposition 4. For any Bohr separated semitopological module X over a topological ring

R the Bohr modi�cation X[ is a semitopological R-module.

By de�nition, the Bohr modi�cation X[ of any topological group X is totally bounded. It

turns out that the Bohr modi�cation of a semitopological module is multiplicatively bounded

in the following sense.

Proposition 5. Let X be a semitopological module over a topological ring R. For every

neighborhood U ⊆ X[ of zero there exists a number n ∈ N such that for any subset A ⊆ R

of cardinality |A| ≥ n and any x ∈ X there are two distinct points a, b ∈ A such that

(a− b) ∗ x ∈ U .

Proof. By the de�nition of the Bohr topology on X, there exist a continuous homomorphism

h : X → H to a compact Abelian topological group and a neighborhood W ⊆ H of the

neutral element such that h−1(W − W ) ⊆ U . Replacing H by the closure of h(X), we

can assume that h(X) is dense in H. Let µ be the Haar measure on H and n ∈ N be

any number such that 1
n
< µ(W ). Let A ⊆ R be any subset of cardinality |A| ≥ n. For

any points x ∈ X and a ∈ A, consider the point a∗x and the set h(a∗x) + W ⊆ H.

Observe that µ(h(a∗x) + W ) = µ(W ) > 1
n
≥ 1
|A| , which implies that the indexed family(

h(a∗x) + W )a∈A is not disjoint and hence there are two distinct points a, b ∈ A such that

(h(a∗x) + W ) ∩ (h(b∗x) + W ) 6= ∅. Then h((a − b) ∗ x) = h(a∗x) − h(b∗x) ∈ W −W and

hence (a− b) ∗ x ∈ h−1(W −W ) ⊆ U .

We shall use Proposition 5 to detect topological rings R such that for any non-trivial

semitopological R-module X its Bohr modi�cation X[ is not a topological R-module.

De�nition 2. A topological ring R is called

� crowded if every neighborhood of zero in R contains an invertible element;

� overcrowded if R is crowded and for every n ∈ N there is a set A ⊆ X of cardinality

|A| = n such that for any distinct elements a, b ∈ A the element a − b is invertible in

R.
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It is clear that every crowded topological ring is not discrete; a topological �eld R is

overcrowded if and only if it is crowded if and only if R is not discrete.

Theorem 8. Let X be a Bohr separated semitopological module over a topological ring R.

If the completion R̆ of R is a crowded topological ring, then the Bohr modi�cation X[ of X is

not a topological R-module. Moreover, for any non-zero element x ∈ X the homomorphism

∗x : R→ X[, ∗x : r 7→ r ∗ x, is not a topological embedding.

Proof. Given any non-zero element x ∈ X, we shall prove that the restriction ∗�R×R∗x of the
multiplication map ∗ : R×X[ → X[ is discontinuous (here R∗x = {r∗x : r ∈ R}). To derive
a contradiction, assume that this restriction is continuous. By Theorem 1, the continuous

bi-homomorphism ∗�R×R∗x extends to a continuous bi-homomorphism ∗̆ : R̆ × R∗x → X[,

where X[ is the Ra��kov-completion of the totally bounded topological group X[. Consider

the subset R̆x = {r∗̆x : r ∈ R̆} and observe that R̆x is contained in the closure R∗x of R∗x
in X[. Applying Theorem 1 once more, �nd a continuous bi-homomorphism ? : R̆ × R̆x →
X[ extending the bi-homomorphism ∗̆. Using the continuity of ? it is easy to show that

?(R̆× R̆x) ⊆ R̆x and R̆x is a topological R̆-module.

Since the group R̆x is Hausdor�, the set R̆x \ {x} is an open neighborhood of zero in

R̆x. By the continuity of the operation ?, there exists a neighborhood V of zero in R̆ and

a neighborhood W of zero in R̆x such that V ? W ⊆ R̆x \ {x}. Since the totally bounded

topological group R̆x ⊆ X[ coincides with its Bohr modi�cation, W is a neighborhood of

zero in the Bohr topology of the group R̆x. By Proposition 5, there in a number n ∈ N such

that for any set A ⊆ R̆ of cardinality |A| = n there are two distinct points a, b ∈ A such

that (a − b) ? x ∈ W . The ring R̆, being overcrowded, contains a set B ⊆ R̆ of cardinality

|B| = n such that the set D = {a − b : a, b ∈ B, a 6= b} consists of invertible elements

of the ring R̆. It follows that each element a ∈ D has the inverse a−1 in R and hence the

set D−1 = {a−1 : a ∈ D} is well-de�ned. Using the continuity of multiplication at zero in

the topological ring R̆, �nd a neighborhood V0 ⊆ R̆ of zero such that D−1V0 ⊆ V . Since

R̆ is (over)crowded, the neighborhood V0 contains an invertible element c. By the choice of

the number n, the n-element set c−1B contains two distinct elements c−1a, c−1b such that

(c−1a−c−1b)?x ∈ W . Then x = (a−b)−1c(c−1a−c−1b)?x ∈ D−1V0?W ⊆ V ?W ⊆ R̆x\{x},
which is a required contradiction completing the proof of the discontinuity of the restriction

∗�R×R∗x.
Now we show that the map ∗x : R → X[ is not a topological embedding. Assuming

the opposite, we conclude that ∗x : R → R∗x is a homeomorphism and then ∗�R×R∗x is

continuous as a composition of continuous maps (since a∗ (b∗x) = (a·b)∗x = ∗x(a · ∗−1
x (bx))

for any a, b ∈ R). But this contradicts the discontinuity of ∗�R×R∗x proved above.

Since the �elds R and C are overcrowded, Theorem 8 implies the following corollary

answering Problem 1.

Corollary 2. For any non-trivial semitopological linear space X over a topological �eld

R ∈ {R,C}, the Bohr modi�cation X[ is not a topological linear space and for any element

x ∈ X the map ∗x : R→ X[, ∗x : λ→ λ · x, is not a topological embedding.
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Next, we construct an example of a semitopological R-module X such that X is not

a topological R-module but for every non-zero element x ∈ X the map ∗x : R → X,

∗x : r 7→ r ∗ x, is a topological embedding.

Given a Bohr separated semitopological R-module X over a topological ring R, consider

the R-submodule X<ω = {(xn)n∈ω ∈ Xω : ∃n ∈ ω ∀m ≥ n xm = 0} of the countable

power Xω. Endow X<ω with the group topology τ whose base at zero consists of the sets

(V,W )n = X<ω ∩ (V n ×W ω\n) where n ∈ ω, V is a neighborhood of zero in X and W is a

neighborhood of zero in X[. It is clear that the topology τ turns X<ω into a Bohr separated

semitopological R-module, which will be denoted by X\ω.

The following example yields a more re�ned counterexample to Problem 1.

Example 1. Let R be a topological ring with overcrowded completion R̆. For any non-trivial

Bohr separated topological R-module X, the Bohr separated semitopological R-module X\ω

is not a topological R-module but any �nitely generated R-submodule of X\ω is a topological

R-module.

We shall apply Theorem 8 to construct an example of a semitopological R-module X

whose semitopological R-completion X̃ is strictly smaller than its Ra��kov completion X̆.

Proposition 6. Let R be a Baire topological ring whose Ra��kov completion R̆ is over-

crowded. For any totally bounded semitopological R-module X the R-completion X̃ of X

is strictly smaller than the Ra��kov completion X̆ of X.

Proof. The total boundedness of X implies that X = X[ and the Ra��kov completion X̆ of

X is compact. Assuming that X̃ = X̆, we conclude that X̆ is a compact semitopological

R-module. By Theorem 4, X̆ is a topological R-module. But this contradicts Theorem 8.

In light of Theorem 8, it is important to detect topological rings with overcrowded Ra��kov

completions. We shall show that the class of such topological rings includes normable topo-

logical rings with crowded Ra��kov completions.

A topological ring R is normable if its topology is generated by some norm | · | : R→ R.
A function | · | : R → R on a ring R is called a norm if for any x, y ∈ R the following

conditions are satis�ed:

� |x| ≥ 0 and |x| = 0 i� x = 0;

� |x+ y| ≤ |x|+ |y|;

� |xy| = |x| · |y|.

Such norm | · | generates the invariant metric d : R × R → R, d : (x, y) 7→ |x − y| on R,

which generates a topology turning R into a topological ring.

Proposition 7. A complete normed topological ring R is overcrowded if and only if R is

crowded.
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Proof. Assume that R is crowded and �x a norm | · | : R → R generating the topology of

R. By a standard argument it can be shown that for any element x ∈ R of norm |x| < 1,

the element 1 − x is invertible in R = R̆ and (1 − x)−1 =
∑∞

n=0 x
n. Since R is crowded, it

contains an invertible element x with norm 0 < |x| < 1. Consider the set A = {xn : n ∈ N}
and observe that for any numbers n < m the di�erence xn−xm = xn(1−xm−n) is invertible

in R.

Both completeness and normability of the ring R in Proposition 7 is essential as shown

by the following examples.

Example 2. The smallest subring R of R that contains the transcendent numbers π and

π−1 is crowded but not overcrowded.

We recall that an ordered �eld is a �eld F endowed with a linear order such that for

any elements x, y, a ∈ F the inequality x < y implies x + a < y + a and the inequalities

0 < x, 0 < y imply 0 < xy. It is known that an ordered �eld has characteristic zero and

hence contains a sub�eld isomorphic to the �eld Q of rational numbers. Each ordered �eld

F carries the order topology generated by open order intervals.

Example 3. There exists a subring R of a countable ordered �eld F such that R is crowded

but the completion R̆ is not overcrowded.

Proof. Let x0 = 1 and for every n ∈ N choose a positive real number xn which does not

belong to the smallest algebraically closed �eld Fn ⊆ C containing the set {xi}i<n. Consider
the real �eld F =

⋃
n∈ω(Fn ∩ R). It is easy to see that the �eld F can be ordered so that

0 < xn < y for all n ∈ N and y ∈ Fn ∩R. Endow the �eld F with the topology generated by

the linear order. Let R be the smallest subring of F containing the set {xn, x−1
n : n ∈ ω}. It

can be shown that R is crowded and its completion R̆ is not overcrowded.

5 Bornomodifications of semitopological modules

In this section given a topological ring R and a family B of bounded subsets on R, we dis-

cuss the (functorial) construction of B-modi�cation acting in the category of semitopological

R-modules.

LetR be a topological ring. A subsetB ⊆ R is called bounded inR if for any neighborhood

U ⊆ R of zero there is a neighborhood V ⊆ R of zero such that B · V ⊆ U . So, B is R-

bounded with respect to the right action of R on R.

Observe that for any bounded sets A,B in a topological ring R the product AB is

bounded in R. Indeed, for any neighborhood U ⊆ R of zero the boundedness of A yields

a neighborhood V ⊆ R of zero such that AV ⊆ U and the boundedness of B yields a

neighborhood W ⊆ R of zero such that BW ⊆ V . Then (AB)W = A(BW ) ⊆ AV ⊆ U ,

witnessing that the set AB is bounded in R.

De�nition 3. A family B of bounded subsets of a topological ring R is called a bornology

on R if
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1. for any set B ∈ B, any subset of B belongs to B;

2. for any sets A,B ∈ B the union A ∪B belongs to B;

3. for any set B ∈ B and element r ∈ R the set B · r belongs to B;

4.
⋃
B = R.

A topological ring R is de�ned to be locally B-bounded for a bornology B on R if for any

set B ∈ B there is a neighborhood V ⊆ R of zero such that BV ∈ B. A topological ring

is locally bounded if R is locallyM-bounded for the maximal bornologyM consisting of all

bounded subsets of R. It is easy to show that a topological ring is locally bounded i� it has

a bounded neighborhood of the zero.

Let X be a semitopological module over a topological ring R. For two subsets A,B ⊆ X

we write A b B if A+ U ⊆ B for some neighborhood U ⊆ X of zero in X. For any subsets

U ⊆ X and B ⊆ R consider the set

U/B = {x ∈ U : B ∗ x b U}.

It is clear that for any sets U ⊆ V ⊆ X and A ⊆ B ⊆ R we have U/B ⊆ V/A.

Consequently, for any sets U, V ⊆ X and A,B ⊆ R we have (U∩V )/(A∪B) ⊆ (U/A)∩(V/B).

Let B be a bornology on a topological ring R. For any semitopological R-module X

denote by τ ]B the family of all sets W ⊆ X such that for every point w ∈ W there exist a

neighborhood U of zero in X and a bounded set B ∈ B such that w+U/B ⊆ W . It is clear

that τ ]B is a translation invariant topology on X containing the original topology of X.

The R-module X endowed with the topology τ ]B will be denoted by X]B and called the

B-modi�cation of X.

Proposition 8. Let B be a bornology on a topological ring R. For any semitopologial

R-module X its B-modi�cation X]B is a semitopological R-module.

Proof. First we check that for any open neighborhood U ⊆ X of zero and any bounded set

B ∈ B, the set U/B belongs to the topology τ ]B. Fix any point x ∈ U/B ⊆ U and �nd a

neighborhood V ⊆ U of zero such that V + B ∗ x ⊆ U . We claim that x + V/B ⊆ U/B.

Indeed, for any y ∈ V/B we can �nd a neighborhoodW ⊆ V of zero such thatW+B∗y ⊆ V .

Then W + B ∗ (x + y) ⊆ W + B ∗ y + B ∗ x ⊆ V + B ∗ x ⊆ U , which yields the desired

inclusion x+ y ∈ U/B. So, the set U/B belongs to the topology τ ]B.

Now we can prove that the addition operation + : X]B × X]B → X]B is continuous.

Since the topology τ ]B is invariant under translations, it su�ces to prove that the addition is

continuous at zero. Fix any neighborhood W ∈ τ ]B of zero and �nd an open neighborhood

U ⊆ X of zero and a bounded set B ∈ B such that U/B ⊆ W . By the continuity of the

addition in X, there is an open neighborhood V ⊆ X of zero such that V + V ⊆ U . We

claim that the open neighborhood V/B ∈ τ ]B has the property V/B + V/B ⊆ U/B ⊆ W .

Given any points x, y ∈ V/B, �nd a neighborhood V0 ⊆ X of zero such that V0 +B ∗ x ⊆ V

and V0 +B ∗ y ⊆ V . Then V0 +B ∗ (x+ y) ⊆ V0 +V0 +B ∗x+B ∗ y ⊆ V +V ⊆ U and hence
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x+ y ∈ U/B ⊆ W . Taking into account that the topology τ ]B is invariant under inversions,

we conclude that X]B is a topological group.

Next, we show that the multiplication map ∗ : R×X]B → X]B is separately continuous.

Fix any point x ∈ X and consider the map ∗x : R → X]B, ∗x : r 7→ r ∗ x. Since ∗x is

a homomorphism, it su�ces to check the continuity of ∗x at zero. Fix any neighborhood

W ∈ τ ]B of zero. By the de�nition of the topology τ ]B, there are a neighborhood U ⊆ X of

zero and a bounded subset B ∈ B such that U/B ⊆ W . Choose a neighborhood U0 of zero

in X such that U0 + U0 ⊆ U . The continuity of the map ∗x : R→ X yields a neighborhood

V ⊆ R of zero such that V ∗ x ⊆ U0. By the boundedness of the set B in R, there is a

neighborhood V ′ ⊆ R of zero such that BV ′ ⊆ V . Then U0 +B ∗ (V ′ ∗x) = U0 +(BV ′)∗x ⊆
U0 + V ∗ x ⊆ U0 + U0 ⊆ U and hence B ∗ (V ′ ∗ x) b U and �nally, V ′ ∗ x ⊆ U/B ⊆ W .

Next, �x any r ∈ R and consider the homomorphism r∗ : X]B → X]B, r∗ : x 7→ r∗x. The
continuity of r∗ will follow as soon as we check its continuity at zero. Fix any neighborhood

W ∈ τ ]B of zero and �nd an open neighborhood U ⊆ X of zero and a bounded set B ∈ B
such that U/B ⊆ W .

Observe that U/(Br) is a neighborhood of zero in the topology τ ]B and

r∗ (U/(Br)) = r ∗ {x ∈ X : Br ∗ x b U} ⊆ {y ∈ X : B ∗ y b U} ⊆ U/B ⊆ W.

The following proposition shows that the construction of the B-modi�cation is functorial

in the category of semitopological R-modules.

Proposition 9. Let B be a bornology on a topological ring R. Any continuous R-linear map

h : X → Y between semitopological R-modules remains continuous as a map h : X]B → Y ]B.

Proof. Fix any neighborhood W ⊆ Y ]B of zero and �nd an open neighborhood U ⊆ Y of

zero and a bounded subset B ∈ B such that U/B ⊆ W . Choose a neighborhood U0 ⊆ Y of

zero such that U0 + U0 ⊆ U . The continuity of the map h : X → Y yields a neighborhood

V ⊆ X of zero such that h(V ) ⊆ U0.

We claim that h(V/B) ⊆ U/B. Indeed, for any point x ∈ V/B we get B ∗ x ⊆ V and

hence B ∗ h(x) = h(B ∗ x) ⊆ h(V ) ⊆ U0. Then U0 +B ∗ h(x) ⊆ U0 +U0 ⊆ U , which implies

that B ∗ h(x) b U and hence h(x) ∈ U/B ⊆ W .

Now we show that for a locally B-bounded topological ring R the bounded modi�cation

X]B of any semitopological R-module X is a topological R-module.

Theorem 9. If R is a locally B-bounded topological ring for some bornology B on R, then

the B-modi�cation X]B of any semitopological R-module X is a topological R-module.

Proof. It su�ces to check the continuity of the multiplication ∗ : R × X]B → X]B at zero.

Fix a neighborhood W ∈ τ ]B of zero and �nd a neighborhood U ⊆ X of zero and a bounded

set B ∈ B such that U/B ⊆ W . Since R is locally B-bounded, there exists a neighborhood

V ⊆ R of zero such that the set BV belongs to the bornology B. Then the set U/(BV ) is a

neighborhood of zero in X]B such that for any v ∈ V and x ∈ U/(BV ) we get B ∗ (v ∗ x) ⊆
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(BV ) ∗ x b U , which implies v ∗ x ∈ U/B ⊆ W and shows that the multiplication map

∗ : R×X]B → X]B is continuous.

Observe that for any bornologies A ⊆ B on a topological ring R and any semitopological

R-module X we get τ ]A ⊆ τ ]B, which implies that the identity map X]B → X]A is continuous.

In particular, for the bornology K of precompact subsets of R and the bornologyM of all

bounded subsets of R the identity maps X]M → X]K → X are continuous. These two

identity maps are homeomorphisms, provided the ring R is crowded and X is a topological

R-module.

Proposition 10. Let R be a crowded topological ring and B be a bornology on R. For any

topological R-module X, the identity map id : X]B → X is a homeomorphism.

Proof. It su�ces to check that for any neighborhood U ⊆ X of zero and any bounded subset

B ⊆ R the set U/B is a neighborhood of zero in X. By the continuity of the addition

and multiplication, there exist a neighborhood U0 ⊆ X of zero in X and a neighborhood

V ⊆ R of zero in R such that U0 + (V ∗U0) ⊆ U . The boundedness of the set B in R yields

a neighborhood V0 ⊆ V such that B · V0 ⊆ V . Since R is crowded, the neighborhood V0

contains an invertible element r. The invertibility of r guarantees that the set Ur = r ∗U0 is

a neighborhood of zero in X. We claim that Ur ⊆ U/B. Indeed, for any x ∈ Ur we can �nd

a point y ∈ U0 with x = r ∗ y and conclude that B ∗ x = B·r ∗ y ⊆ B · V0 ∗ U0 ⊆ V ∗ U0 and

U0 +B ∗x ⊆ U0 +V ∗U0 ⊆ U , which implies x ∈ U/B. Therefore, U/B is a neighborhood of

zero in the original topology of X and the identity map X]B → X is a homeomorphism.

Theorem 10. Let X be a semitopological module over a topological ring R.

1. If R is crowded and locally B-bounded for some bornology B on R, then any continuous

R-homomorphism h : Z → X de�ned on a topological R-module Z remains continuous

as a map to X]B.

2. If every compact set in X is R-bounded, then any continuous map f : Z → X de�ned

on a k-space Z remains continuous as a map to X]K, where K is the bornology of

precompact sets in R.

Proof. 1. Assume that R is crowded and locally B-bounded for some bornology B on R.

Let h : Z → X be a continuous R-homomorphism de�ned on a topological R-module Z. By

Proposition 9, the map h : Z]B → X]B is continuous and by Proposition 10, the identity

map id : Z → Z]B is a homeomorphism. Then the map h : Z → X]B is continuous as a

composition of two continuous maps.

2. Assume that each compact set in X in R-bounded and let f : Z → X be a continuous

function de�ned on a k-space Z. To show that the map f : Z → X]K is continuous it

su�ces to check that for every compact set K ⊆ Z the restriction f�K : K → X]K is

continuous at each point z ∈ K. Fix any neighborhood Of(z) of f(z) in X]K and �nd an

open neighborhood U ⊆ X of zero and a compact set B ⊆ R such that f(z) +U/B ⊆ Of(z).

Choose a neighborhood U0 ⊆ X of zero such that U0 + U0 ⊆ U .
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By our assumption, the compact set C = f(K)−f(K) is R-bounded inX. By Theorem 6,

the restriction ∗�R×C : R × C → X is continuous. Since B ∗ {0} = {0} we can use the

compactness of B and �nd a neighborhood U1 ⊆ X of zero such that B ∗ (U1 ∩ C) ⊆ U0.

By the continuity of f : Z → X at z, there is a neighborhood Oz ⊆ K of the point z

such that f(Oz) ⊆ f(z) + U1. We claim that f(Oz) ⊆ f(z) + U/B. Indeed, for any point

y ∈ Oz we get f(y) − f(z) ∈ U1 ∩ C and hence B ∗ (f(y) − f(z)) ∈ B ∗ (U1 ∩ C) ⊆ U0

and U0 + B ∗ (f(y)− f(z)) ⊆ U0 + U0 ⊆ U , which implies f(y)− f(z) ∈ U/B and f(Oz) ⊆
f(z) + U/B ⊆ Of(z).

6 Free semitopological R-modules

In this section we apply the results of the preceding section to study the structure of free

semitopological R-modules.

Let R be a topological ring. For a topological space X its free semitopological R-module

is a pair (MR(X), iX) consisting of a semitopological R-module MR(X) and a continuous

map iX : X → MR(X) such that for any continuous map f : X → Y to a semitopological

R-module Y there exists a unique continuous R-homomorphism f̄ : MR(X)→ Y such that

f = f̄ ◦ iX . The standard category arguments show that for each topological space X a free

semitopological R-module exists and is unique up to an isomorphism.

By analogy we can introduce the notion of a free topological R-module over a topological

space.

It turns out that in some cases the free semitopological R-module over a topological space

coincides with its free topological R-module.

Theorem 11. Assume that a topological ring R is locally compact. Then for every k-space

X its free semitopological R-module MR(X) is a free topological R-module.

Proof. Let (MR(X), iX) be a free semitopological module over X andMR(X)]K be its K-mo-

di�cation with respect to the bornology K of precompact sets in R. Being locally compact,

the topological ring R is locally K-bounded. By Theorem 9, MR(X)]K is a topological

R-module. By Theorems 6(2) and 10(2), the canonical map iX : X → MR(X) remains

continuous as a map iX : X → MR(X)]K. The de�nition of the free semitopological R-

module MR(X) guarantees that the identity map MR(X) → MR(X)]K is continuous and

hence is a homeomorphism, which implies that MR(X) = MR(X)]K is a topological R-

module and a free topological R-module over X.

Finally, we present an example of a topological space X whose free semitopological R-

module is not a topological R-module.

Proposition 11. Let R be a topological ring and X be a semitopological R-module which

is not a topological R-module. Then the free semitopological R-module MR(X) over X is

not a topological R-module.

Proof. The semitopological R-module X is a Tychono� space (being a Hausdor� topological

group), which implies that the canonical map iX : X →MR(X) is a topological embedding.
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By the de�nition of a free semitopological R-module, there exists a unique continuous R-

homomorphism h : MR(X) → X such that h ◦ iX : X → X is the identity map of X.

Assuming that MR(X) is a topological R-module, we conclude that the multiplication map

∗ : R ×MR(X) → MR(X) is continuous and then the map µ : R × X → X, µ : (a, x) 7→
h(a ∗ iX(X)) = a ∗ h(iX(x)) = a ∗ x is continuous, too. On the other hand, this map is

discontinuous because X is not a topological R-module.

7 Acknowledgements

The authors express their sincere thanks to V.V. Mykhaylyuk and O.V. Maslyuchenko

for stimulating discussions concerning co-Namioka spaces.

References

[1] Arhangel'skii A., Tkachenko M. Topological groups and related structures, Atlantis Studies in Mathemat-

ics, 1. Atlantis Press, Paris; World Scienti�c Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.

[2] Banakh T.O., Maslyuchenko V.K., Ravsky A.V. Semitopological vector spaces, Math. Bull. Shevchenko

Sci. Soc. 2016, 13, 84�89.

[3] Bouziad A. Notes sur la propri�et�e de Namioka, Trans. Amer. Math. Soc. 1994, 344(2), 873�883.

[4] Cao J., Moors W. Separate and joint continuity of homomorphisms de�ned on topological groups, New

Zealand J. Math. 2004, 33(1), 41�45.

[5] Ebrahimi-Vishki Y.R. Joint continuity of separately continuous mappings on topological groups, Proc.

Amer. Math. Soc. 1996, 124 (11) (1996), 3515�3518.

[6] Engelking R. General topology, Sigma Series in Pure Mathematics, 6. Heldermann Verlag, Berlin, 1989.

[7] Kechris A.S. Classical descriptive set theory, Springer-Verlag, New York, 1995.

[8] Maslyuchenko V.K. Vector spaces with additive tiopology and separately continuous multiplication by

scalars, Sci. Bull. Chernivtsi Univ. 2001, 1(4) (2011), 95�99 (in Ukrainian).

[9] Mykhaylyuk V.V., Pol R. On a problem of Talagrand concerning separately continuous functions, J.

Institute Math. Jussieu, 2020; (doi.org/10.1017/S1474748019000677).

[10] Rolewicz S. Metric linear spaces, PWN, 1984.

Received 01.03.2021

Áàíàõ Ò.Î., Ðàâñüêèé Î.Â. Íàïiâòîïîëîãi÷íi ìîäóëi // Áóêîâèíñüêè�è ìàòåì. æóðíàë �

2021. � Ò.9, �1. � C. 9�28.

Äëÿ òîïîëîãi÷íîãî êiëüöÿ R âèâ÷àþòüñÿ íàïiâòîïîëîãi÷íi R-ìîäóëi, ¨õíi ïîïîâíåííÿ,

áîðiâñüêi òà áîðíîìîäèôiêàöi¨. Äëÿ òîïîëîãi÷íîãî ïðîñòîðó X ïîáóäîâàíî âiëüíèé (íà-

ïiâ)òîïîëîãi÷íèé R-ìîäóëü íàä X i äîâåäåíî, ùî äëÿ k-ïðîñòîðó X éîãî âiëüíèé íàïiâòî-

ïîëîãi÷íèé R-ìîäóëü ¹ òîïîëîãi÷íèì R-ìîäóëåì. Òàêîæ ïîáóäîâàíî òèõîíîâñüêèé ïðîñòið

X, âiëüíèé íàïiâòîïîëîãi÷íèé R-ìîäóëü ÿêîãî íå ¹ òîïîëîãi÷íèì R-ìîäóëåì.


