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SEMITOPOLOGICAL MODULES

Given a topological ring R, we study semitopological R-modules, construct their comple-
tions, Bohr and borno modifications. For every topological space X, we construct the free
(semi)topological R-module over X and prove that for a k-space X its free semitopological
R-module is a topological R-module. Also we construct a Tychonoff space X whose free semi-
topological R-module is not a topological R-module.

Key words and phrases: Semitopological linear space, semitopological module, Bohr topol-

ogy.

Ivan Franko National University of Lviv (Banakh T.O.)

Ya. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of National
Academy of Sciences of National Academy of Sciences of Ukraine (Ravsky O.V.)

e-mail: ¢.0.banakh@gmail.com (Banakh T.0.), alexander.ravsky@uni-wuerzburg.de (Ravsky O.V.)

Dedicated to the memory of V.K. Maslyuchenko

1 INTRODUCTION

This paper was motivated by problems on semitopological linear spaces posed by Volody-
myr Kyrylovych Maslyuchenko in [8]. A semitopological linear space over a topological field
F'is a linear space X over the field F', endowed with a Hausdorff topology 7 turning X into
an Abelian topological group and making the multiplication F' x X — X, (\,z) — X -z,
separately continuous. If this operation is jointly continuous, then X is a topological linear
space over F'. By a semitopological linear space we understand a semitopological linear space
over the field R of real numbers endowed with the Euclidean topology. These spaces (under
the name “N-spaces") were introduced and studied by V.K. Maslyuchenko in [8], where he
posed the following

Problem 1. Is each (metrizable) semitopological linear space a topological linear space?

In |2| we proved that each metrizable semitopological linear space is a topological linear
space and also constructed a semitopological linear space which is not a topological linear
space. These results motivate the authors to study semitopological linear spaces in more
details and more generality, so the present paper addresses exactly this problem.
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In Section 3 we introduce semitopological R-modules over topological rings R, study their
completions (in Theorem 5), detect their bounded subsets (in Theorem 6), and establish joint
continuity properties of their multiplication maps (in Theorems 6 and 7).

In Section 4 we study Bohr modifications of semitopological modules and construct many
examples of semitopological modules which are not topological modules.

In Section 5 we discuss bornologies on topological rings and construct so-called bornomo-
difications of semitopological modules, turning them into topological modules.

So, we have two constructions over semitopological modules, which have opposite ef-
fects: the Bohr modifications of semitopological linear spaces produce semitopological linear
spaces which are not topological linear spaces, whereas the bornomodifications transform
semitopological linear spaces into topological linear spaces.

The properties of the bornomodifications are used in the final Section 6 devoted to free
semitopological modules over topological spaces. The main result proved in this section is
Theorem 11 implying that the free semitopological linear space over a k-space X coincides
with the free topological linear space over X. On the other hand, the free semitopological
linear space over the real line endowed with the Bohr topology is not a topological linear
space.

2 PRELIMINARIES

In this section we shall make some conventions and recall the necessary information on
topological spaces and topological groups.

2.1 Baire and strongly Baire spaces

All topological spaces considered in this paper are Tychonoff. For a subset A of a topological
space X we denote by A the closure of A in X.

A topological space X is called Baire if for any sequence (U,),c. of open dense subsets
of X the intersection (), ., Uy, is dense in X. Baire spaces can be characterized using the
Choquet game. This game is played by two players, I and II on a topological space X. The
player I starts the game and chooses a non-empty open set Uy C X. The player II responds
choosing a non-empty open set Vo C Uy. At the nth inning the player I selects a non-empty
open set U, C V,,_; and player II responds by selecting a non-empty open set V,, C U,,. At
new Un # 2. In the opposite
case the player I wins the game. By Oxtoby Theorem |7, 8.11], a topological space X is

the end of the game the player II is declared the winner if [

Baire if and only if the player I has no winning strategy in the Choquet game on X.

Now we recall the definition of a strongly Baire space, introduced by Cao and Moors [4]
via the game played by two players I and II on a topological space X with a selected dense
subset D. The Cao-Moors game has the same moves as the Choquet game and differs merely
by the winning condition. Given a decreasing sequence Uy O Vo D U; D Vi D --- of open

new Un # gz
V., N D) has a cluster point in X. A topological space

sets constructed by the players I and II, the player II is declared the winner if [

and every sequence (Z,)new € [[,c.(
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X is called strongly Baire if the first player has no winning strategy in the Cao-Moors game
for some dense subset D of X.

It is easy to see that a metrizable space is Baire if and only if it is strongly Baire. Strongly
Baire spaces are Baire and Cech-complete spaces are strongly Baire.

A subset B of a topological space X is called precompact if B has the compact closure B
in X.

A topological space X is called a k-space if a subset A C X is closed in X provided for
every compact subset K C X the intersection AN K is closed in K.

A topological space X is defined to be

e first-countably-compact if for each point z € X there exists a sequence (U,)pe, Of
neighborhoods of x in X such that any sequence (x,)ne,, € [],., Un has a cluster

new

point in X;

e first-countably-pracompact if for each point x € X there exist a dense subset D of X
and a countable system of neighborhoods (Up,)new of  in X such that every sequence
(Zn)new € [1,en(Un N D) has a cluster point in X.

The class of first-countably-compact spaces contain all first-countable spaces and all count-
ably compact spaces. Also it can be shown that each topologically homogeneous strongly
Baire space is first-countably-pracompact.

A subset A of a topological space X is called sequentially closed in X if for any convergent
sequence {ay, fnew € A in X, the limit point lim,_, a, belongs to the set A.

2.2 Co-Namioka spaces

A topological space X is called co-Namioka if for any Baire space Y and any separately
continuous function f : X x Y — R there exists a dense Gg-set G C Y such that f is
continuous at each point of the set X x G.

A continuous map f : X — Y between topological spaces is perfect if it is closed and for
every y € Y the preimage f~!(y) is compact.

The proof of the following proposition was suggested by O.V. Maslyuchenko.

Proposition 1. Let f : X — Z be a surjective perfect map between Hausdorff spaces. If
the space X is co-Namioka, then so is the space Z.

Proof. Fix any separately continuous map ¢ : Z X Y — R and consider the separately
continuous function

P: X XY =R, ¥ (2,y) = o(f(2),y)

Since X is co-Namioka, there exists a dense Gs-set G C Y such that the function v is
continuous at each point of the set X x GG. We claim that the function ¢ is continuous at
each point (z, g) of the set Z x G.

By the continuity of the function v at points of the set X x {g}, for every ¢ > 0 and
every € X there exists a neighborhood O, 5 € X x G of the point (z,9) € X x G such
that ¢¥(O.q)) € (V(z,9) —€,9(z,g) + ). We lose no generality assuming that O, g is of
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basic form O, x G, for some open sets O, C X and GG, C Y. By the compactness of the set
f~(z) (which follows from the perfectness of f), there exists a finite set £ C f~!(z) such
that f~'(2) C U,cp O Since the map f is closed, the set

U=2\f(X\{J O

zeF

is an open neighborhood of z in the space Z. Consider the open neighborhood V' =, . G
of gin Y. We claim that o(U x V') C (p(z,9) —¢, ¢(z,9)+¢). Indeed, for any (u,v) € UxV
we have f~(u) C U,cr O, and hence there exist v € F and w € O, such that f(w) = w.
Then

(p(U,U) = (p(f(w),v) = 1/}(71},1}) S ¢(Om X G:B) = w(O(’hg) - ('Lﬂ(l‘,g) - €,¢(l’,g) + 8) =
= ((p(f(m)vg) - 57(10(f(x>79> + 5)

Therefore, the map ¢ is continuous at points of the set Z x GG, witnessing that the space Z
is co-Namioka. O

A Hausdorff space X is called

e dyadic compact if for some cardinal x there exists a continuous surjective map f :
{0,1}" = X;

e Jocally dyadic if each point z € X has a closed neighborhood which is dyadic compact;
e Lindeldf if each open cover of X contains a countable subcover.
Lemma 1. Every diadyc compact space X is co-Namioka.

Proof. Find a cardinal x and a continuous surjective map f : {0,1}* — X. By [3], the
Cantor cube {0,1}" is co-Namioka and by Proposition 1 so is its continuous image X. [

Proposition 2. Every Lindeldf locally dyadic Hausdorff space X is co-Namioka.

Proof. Let Y be a Baire space and f : X x Y — R be a separately continuous function.
Taking into account that the space X is Lindel6f and locally dyadic, we can find a countable
cover K of X by dyadic compact subsets whose interiors cover the space X. By Lemma 1,
every space K € K is co-Namioka. So, we can find a dense Gs-set G in Y such that the
function f[j .y is continuous at each point of the set K x Gk. Since the space Y is Baire,
the countable intersection G = (. Gk is a dense G-set in Y. We claim that the function
f is continuous at each point of the set X x G. Given any point (z,y) € X x G, find a
dyadic compact set K € K containing x in its interior in X. Then K X Y is a neighborhood
of the point (z,y) in X x Y. Since G C Gk, the function f[,. is continuous at (x,y) and
so is the function f. O]
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2.3 Topological groups

In this subsection we recall some information related to topological groups. For two subsets
A, B C X we denote by AB ={ab:a € A, b € B} their pointwise product in X.

For topological groups X,Y we denote by Hom,(X,Y’) the subspace of the Tychonoff
power Y ¥ consisting of continuous homomorphisms from X to Y.

A topological group X is complete if X is closed in any topological group, containing X
as a subgroup. It is well-known [1, §3.6] that each topological group X can be identified with
a dense subgroup of a complete topological group X called the Raikov completion of X. It
can be constructed as the completion of X by the two-sided uniformity (which is generated
by the base consisting of the entourages {(z,y) € X x X : z € yU N Uy} where U is a
neighborhood of the identity in X).

The Raikov completion has the following extension property: each continuous homomor-
phism h : X — Y to a complete topological group Y uniquely extends to a continuous
homomorphism h:X Y.

A subset A of a topological group X is totally bounded if for each neighborhood U of the
identity of X there exists a finite subset F' C X such that A is contained in UIGF zUNUz.
It is known that a subset of a topological group X is totally bounded if and only if it has
compact closure in the Raikov completion of X. In particular, a topological group is compact
if and only if it is complete and totally bounded.

A subset A of a topological group X is left (resp. right) w-narrow if for each neighborhood
U of the identity of X there exists a countable subset C' C X such that A is contained in
U,ec #U (resp. U,cc Uz). It is easy to check that a subset A of a topological group X is
left w-narrow iff a subset A~ of X is right w-narrow. A subset A of a topological group X
is w-narrow, if A is both left and right w-narrow.

Proposition 3. Let A and B be left w-narrow subsets of a topological group X. Then AB
is a left w-narrow subset of X, too.

Proof. Let U be any neighborhood of the identity of X. Pick a neighborhood V' of the identity
of X such that VV C U. There exists a countable subset D of X such that B C DV. For
each element d € D pick a neighborhood V, of the identity of X such that d~'V;d C V.
There exists a countable subset Cy of X such that A C CyVy. Put C = (UdED C’d) D. Let
a € A, b € B be any elements. There exists d € D such that b € dV. There exists ¢ € Cy
such that a € cV;. Then

ab€ cVy-dV =cd-d 'VydV C edVV C cdU C CU.

]

Corollary 1. For any w-narrow subset A of a topological group X, the subgroup of X
generated by A is w-narrow. O
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2.4 Bi-homomorphisms

Let XY, Z be topological groups. A function h: X x Y — Z is called a bi-homomorphism
if for every a € X and b € Y the functions

‘h:Y = Z, “h:yw— h(a,y) and hy: X — Z, hy:x— h(z,b),

are homomorphisms.
A bi-homomorphism h : X x Y — Z is called right-continuous if for any x € X the
homomorphism *h : Y — Z, *h : y — h(z,y), is continuous.

Theorem 1. Let X,Y, Z be topological groups and 1\//, Z be the Raikov completions of X, Y,
respectively. Any right-continuous bi-homomorphism h : X x Y — Z uniquely extends to a
right-continuous bi-homomorphism h : X xY — Z. The set Y = {y € Y lvzy is continuous}
is a subgroup of Y. If X is Baire and w-narrow, then the subgroup Y is sequentially closed in
Y. Ifhis jointly continuous, then Y =Y and the bi-homomorphism h is Jjointly continuous.

Proof. For every x € X consider the continuous homomorphism “h : Y — Z and its continu-
ous extension % : Y — Z to the Ratkov completions of the groups Y, Z. The homomorphisms
7, z € X, compose a function h: X x Y — Z defined by h(z,y) = “h(y) for (z, ) eXxY.

Let us check that A is indeed a bi- homomorphism. For any xz € X, the map 0 Y — 7
is a homomorphism, being a continuous extension of the homomorphism “h. Next, we prove
that for any point y € Y the map 7zy - X = 7, ﬁy LT ﬁ(x,y), is a homomorphism.
Assuming the opposite, we can find two points a,b € X such that ﬁ(ab, y) # 71(@, NE E(b, ).
Since the topological group 7 is Hausdorff, we can find disjoint open sets W, W, C Z such
that ﬁ(ab, y) € W and ﬁ(a, y) - fl(b, y) € W,. By the continuity of the multiplication in Z,
there are open sets W,, W), C 7 such that luz(a,y) e Ww,, ;L(b, y) € Wy, and W, W, C W,.
The continuity of the homomorphisms “biz, aiz, bR at y provides a neighborhood V' C Y
of y such that ®h(V) C W, “h(V) C W, and *h(V) C W,. Since Y is dense in Y, the
neighborhood V' contains some point v € V NY. Then the points h(ab,v) = ®h(v) € W
and h(a,v) - h(b,v) = *h(v) - *h(v) € W,W, C W, are distinct, which is not possible as h, is
a homomorphism.

To see that the set Y is a subgroup of Y, observe that for any points y,y € Y the map
;Lyy X — Z is continuous being the product h h » of two continuous maps. Also the
map h -1 =invo hy is continuous because of the continuity of the inversion inv : 7 — Z

inv:ze— 2z~ 1.

Now assuming that X is Baire and w-narrow, we shall prove that the subgroup Y in
sequentially closed in Y. Fix any sequence {yy }new C }7, convergent to a point y € Y. For
every n € w, the continuity of the homomorphism h,, : X — A implies that the image
hy,(X) is an w-narrow subgroup of Z. By Corollary 1, the subgroup H of Z generated
by the union |, Ay, (X) is w-narrow and so is its closure H in Z. Taking into account
that h,(z) = lim, .. hy, () for all z € X, we conclude that h,(X) C H and hence the
subgroup h,(X) is w-narrow. Now we are ready to prove that the homomorphism h, is
continuous. Given any neighborhood U C Z of the identity, we should find a neighborhood
V' of the identity in X such that h,(V) C U. Choose a neighborhood W of the identity in
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Z such that WW ! C U. Since the topological space of Z is Tychonoff, we can additionally
assume that the set W is functionally open in Z, which means that W = ¢! ((0, 1]) for some
continuous map ¢ : Z — [0,1]. We claim that the set h,'(W) is Borel in X. This follows
from the representation

by W) = ({z € X €h(a,ym)) = 1},

neNm=n

witnessing that the set A = h,'(W) is of type F, in X. By the w-narrowness of hy(X), there
exists a countable set C' C X such that hy(X) C hy(C)-W. Then X = C-h (W) =C-A.
Since X is Baire, the set A is non-meager in X. By Pettis Theorem [7, 9.9], the set V = AA™!
is a neighborhood of the identity in X. Then

hy (V) = hy(A- A1) C hy(A) - hy(A)"L CWW™ C U,

witnessing that the homomorphism A, is continuous.

Finally, assumlng the continuity of the bi-homomorphism h, we shall prove: that the bi-ho-
momorphlsm h is continuous. The separate continuity of h implies that Y C Y so Y is dense
in Y. First we prove that h is continuous at the identity. Given any neighborhood W C Z
of the identity, find a neighborhood Wy C Z of the identity such that W, C W. Using the
continuity of the homomorphism A : X x Y — Z, find a neighborhood U of the identity in
X and a neighborhood V of the identity in Y such that h(V x (U N Y)) C Wy. For every
v € V the continuity of the homomorphism A implies that ”E(U) C ”h(U nNY)CcW,CWw.
Consequently, h(V x U) C W and the bi-homomorphism h: X xY — Z is continuous at
the identity and hence continuous everywherem see [5, 3.1]. O

Now we present two theorems that will help us to establish the joint continuity of some
bi-homomorphisms. The first of them was proved by Cao and Moors in [4].

Theorem 2 (Cao, Moors). Let T be a topological space, X, Y be topological groups and
h :T x X — Y be a separately continuous map such that for every t € T' the function
'h + X - Y, ' : x — h(t,x), is a homomorphism. If the space X is strongly Baire,
then for every first-countably-pracompact subspace K C T the restriction h| ., x is jointly
continuous.

Theorem 3. Let T be a topological space, X,Y be topological groups and h : T'x X —Y
be a separately continuous function such that for every t € T the function th : X — Y,
'h : x — h(t,x), is a homomorphism. If the space X is Baire, then for every co-Namioka
compact subspace K C T the restriction h| ., y is jointly continuous.

Proof. Assume that the space X is Baire and K is a compact co-Namioka subspace of T
We claim that the map A, x is continuous. To derive a contradiction, assume that Al x
has a discontinuity point (z,z) € K x X. Then there exists a neighborhood U of the identity
e in the topological group Y such that h(V) € h(z,z) - U for any neighborhood V' of (z,x)
in K x X. Find a neighborhood W of e in Y such that WW ='W C U.
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By [1, 3.3.9], there exists a left-invariant continuous pseudometric p : ¥ x Y — R such
that By C W where B; = {y € Y : p(e,y) < 1}. Let Y, be the space Y endowed with the
pseudometric p and h, be the map h considered as a map with values in the pseudometric
space Y.

Since the compact space K is co-Namioka, we can apply [3, 3.1] and find a dense Gs-set
G C X such that the map h, [, x is continuous at each point of the set K x . Fix any point
g € G and by the continuity of the map h, [, x at (2, g), find open sets U, C K and V, C X
such that (z,9) € U, x V; and h,(U, x V) C h(z,g) - By C h(z,g) - W. Replacing U, by a
smaller neighborhood, if needed, we can additionally assume that A(U, x {z}) C h(z,z) - W
and h(U. x {g}) C h(z,g) - W.

Observe that the set xg~'V} is a neighborhood of the point z in the topological group X.
By the choice of the set U, there is a point (u,v) € U, x V, such that h(u,zg 'v) ¢ h(z,z)-U.
On the other hand,

h(u, g™ v) = h(u, 2)h(u, g) " h(u,v) C h(z,2) - WW ' h(z,9)"" - h(z,g9) - W =
= h(z,2)WW W C h(z,z)-U,

which is a required contradiction. O

2.5 Sep-joint automatic pairs of topological groups

Definition 1. A pair (X,Y) of topological groups is called sep-joint automatic if every
separately continuous bi-homomorphism h : X XY — Z into a topological group Z is jointly
continuous.

Theorem 4. A pair (X,Y) of topological groups is sep-joint automatic if one of the following
conditions holds:

1. the pair (Y, X) is sep-joint authomatic;

2. X is strongly Baire and Y is first-countably-pracompact;
3. X is locally compact and Y is Baire;

4. X is locally compact and Y is a k-space.

Proof. 1, 2. The first statement is trivial and the second one follows from Theorem 2.

3. To prove the third statement, assume that the topological group X is locally compact
and Y is Baire. Take any separately continuous bi-homomorphism h : X XY — Z to a
topological group Z. To prove that h is continuous, take any pair (z,y) € X x Y. By
Theorem 3.1.15 in [1], the locally compact topological group X is locally dyadic compact.
Consequently, we can find a dyadic compact space K C X containing z in its interior in X.
By Lemma 1, the dyadic compact space K is co-Namioka and by Theorem 3, the restriction
h| gy is jointly continuous. Since K x Y is a neighborhood of (z,y), the bi-homomorphism
h is continuous at (z,y).
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4. Assume that X is locally compact and Y is a k-space. By [6, 3.3.27|, the product
X xY is a k-space. To prove that the pair (X,Y") is sep-joint automatic, take any separately
continuous bi-homomorphism h : X XY — Z to a topological group Z. Since X x Y is a
k-space, it suffices to prove that for every compact space K C X x Y, the restriction Al is
continuous. Find a compact set Ky C Y such that K C X x Ky. Taking into account that
the locally compact space X is strongly Baire and the compact space Ky is first-countably-
pracompact, we can apply Theorem 2 and conclude that the restriction hl y, . is continuous
and so is the restriction A g. ]

Remark 1. In [9] Mykhaylyuk and Pol constructed a compact Hausdorff space K whose
function space F' = C,(K,{—1,1}) is Baire in the topology of pointwise convergence. For
this compact space K, the evaluation map e : K x F — {=1,1}, e : (x,f) — f(x),
is separately continuous and everywhere discontinuous. This example shows that ‘“strong
Baire” in Cao—Moors Theorem 2 cannot be weakened to “Baire" and also that Theorem 4
cannot be extended beyond the class of bi-homomorphisms.

3  SEMITOPOLOGICAL MODULES AND THEIR COMPLETIONS

In this section we apply the results of the preceding section to describe the structure of
semitopological modules over topological rings and to study the continuity properties of the
multiplication map in semitopological modules.

By a topological ring we understand a unital ring R endowed with a Hausdorff topology
7 making the addition + : R x R — R and multiplication - : R X R — R continuous. A
ring R will be called unital if it has a unit (i.e., an element 1 € R such that 1z = 21 = x for
all z € X). An element a of a ring R is called invertible if there exists an element a™' € R

such that aa™!

= a~'a is the unit of R. It follows that a ring is unital if and only if it has
an invertible element. A commutative ring is a field if every non-zero element of the ring is
invertible.

Theorem 1 implies that the Raikov completion R of (the additive group) of a topological
ring R has the structure of a topological ring. This topological ring will be called the
completion of R.

A module over a ring R (briefly, an R-module) is an Abelian group X endowed with a
map * : R x X — X, % : (a,2) — a % x, such that for every a,b € R and z,y € X the

following conditions are satisfied:
e ax(z+y)=ax*xx+axy;
o (atb)xz=axx+bx*ux;
o (ab)xx =ax* (bxx);
o lxx=ux.

The first two conditions imply that the multiplication map * : R x X — X is a bi-
homomorphism. So, for points r € R and b € X the functions "x : X — X, "« : x — r x x,
and ¥’ : R — X, #%: p— px b, are homomorphisms.
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A right-topological module over a topological ring R (briefly, a right-topological R-module)
is a module X over R endowed with a Hausdorff topology 7 turning X into an Abelian
topological group and making the multiplication map % : R x X — X right-continuous.
If the multiplication map * is separately continuous, then (X, 7) is called a semitopological
R-module; if * is jointly continuous, then (X, 7) is called a topological R-module.

Right-topological R-modules are objects of the category whose morphisms are continuous
R-linear maps between right-topological R-modules. A map h : X — Y between two R-
modules is called R-linear if

h(xy 4+ x2) = h(z1) + h(zy) and  h(a*z1) = a x h(zs)

for any points x1,22 € X and a € R.

It is clear that (semi)topological linear spaces over topological fields are partial cases of
(semi)topological modules over topological rings.

Given a right-topological module X over a topological ring R, consider the multiplication
map x : R X X — X, x: (a,x) — a* z, and observe that it is a right-continuous bi-
homomorphism. By Theorem 1, this bi- homomorphlsm can be umquely extended to a right-
continuous bi-homomorphism % : R x X — X, which turns X into a right-topological
R-module, which will be called the Raikov completion of X.

For a right-topological R-module X the subgroup

X ={z e X:%,: R— X is continuous}

is an R-submodule of X. Indeed, for any z € X and a € R the continuity of the map

%are : R — X follows from the equality sq.(r) = 7 % (a x 2) = (ra) x & = %,(ra), r € R,
and the continuity of the multiplication in the topological ring R. By definition, X is the
maximal semitopological R-submodule of X. IfXisa semitopological R-module, then the
submodule X contains X and is called the semitopological R-completion of X.

The construction of Raikov completion determines a functor in the category of right-
topological R-modules.

Indeed, any continuous R-linear map h : X — Y between semitopological R-modules can
be extended to a continuous homomorphism h:X =Y. For every a € R, the continuity
of multiplication by a in X and Y, and the continuity of the map h imply that the set
{r € X :h(axx)=axh(z)} DX is closed in X and being dense coincides with X. This
means that the homomorphism h is R-linear.

The construction of semitopological R-completion also is functorial in the category of
semitopological R-modules. Indeed, for any continuous R-linear map h : X — Y between
semitopological R-modules, consider its continuous extension h : X = Y to the Ratkov
completions of X and Y. Observe that for any x € X the continuity of the homomorphism

‘R— X - X, ¥z 1 a — a*x, implies the continuity of the homomorphism *; ., = =ho *,

R—>Y *hea) a v axh(z)=h(axz). Soh(z) €Y and h(X) C Y. Thentherestrlctlon

h = h[ : X — Y is a well-defined continuous R-linear map between the semitopological
R-modules X and Y.
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Theorem 5. For any semitopological R-module X over a topological ring R, its R-completion
X is a semitopological R-module having the following properties.

1. The semitopological R-module X is closed in any semitopological R-module Y con-
taining X ;

2. If X is a topological R-module, then X coincides with the Raikov completion X of X
and is a topological R-module.

3. If the additive topological group of R is Baire and w-narrow, then the set X is sequen-
tially closed in the Raikov completion X of X.

Proof 1. Let Y be any semitopological R-module containing the semitopological R-module
X. Since X C X C Y, the Ratkov completion Y of Y contains the Ratkov completion X
of X and X is closed in Y (see [1, 3.6.18]). For every y € Y N X the continuity of the map
*y R—>Yﬂ)u(, *, 1 a +— a*y, implies that y € X. Now we see that the set X = X NY is
closed in Y.

2. If X is a topological R-module, then by Theorem 1, the Contlnmty of the multiplication
map * : R x X — X implies the contmmty of its extension h: R x X — X which means
that X is a topological R-module and X = X.

3. If the additive topological group of R is Baire and w-narrow, then the set X is
sequentially closed in X according to Theorem 1. O

Let X be a right-topological R-module over a topological ring R. We say that a subset
B C X is R-bounded if for every neighborhood U C X of zero there is a neighborhood V' C R
of zero such that V « B C U. This is equivalent to saying that the family of homomorphisms
{*: : R = X}.ep € Hom,(R, X) is equicontinuous. This simple observation allows us to
apply Theorem 4 and obtain the following theorems.

Theorem 6. Let X be a semitopological R-module over a topological ring R.

1. For any R-bounded set B C X the multiplication map R x B — X, (r,z) — r* x, is
continuous.

2. If the space R is strongly Baire, then each compact subset of X is R-bounded.

Theorem 7. A semitopological R-module X is a topological R-module if (R, X) is a sep-
Jjoint automatic pair of topological groups. This happens if the topological ring R is locally
compact and the space X is Baire or a k-space.

4 THE BOHR MODIFICATIONS OF SEMITOPOLOGICAL MODULES

In this section we shall answer Problem 1 by constructing (many) examples of semitopo-
logical linear spaces which are not topological linear spaces. These examples are just usual
linear topological spaces endowed with the Bohr topology.
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The Bohr topology on a topological group X is the largest totally bounded group topology
on X. It can be equivalently defined as the smallest topology 7 on X such that any continuous
homomorphism A : X — K to a Hausdorff compact topological group K remains continuous
with respect to the topology 7. By X’ we shall denote the group X endowed with the Bohr
topology. This topological group will be called the Bohr modification of X.

A topological group X is called Bohr separated if the Bohr topology on X is Hausdorff.
For example, each locally convex linear topological space is Bohr separated. On the other
hand, the linear metric spaces L,, 0 < p < 1, are not Bohr separated, see |10, 4.2.3].

Observe that any continuous homomorphism h : X — Y between topological groups
remains continuous as a homomorphism & : X” — Y” between the Bohr modifications of X
and Y. This observation implies the following simple fact.

Proposition 4. For any Bohr separated semitopological module X over a topological ring
R the Bohr modification X" is a semitopological R-module.

By definition, the Bohr modification X° of any topological group X is totally bounded. It
turns out that the Bohr modification of a semitopological module is multiplicatively bounded
in the following sense.

Proposition 5. Let X be a semitopological module over a topological ring R. For every
neighborhood U C X" of zero there exists a number n € N such that for any subset A C R
of cardinality |A| > n and any © € X there are two distinct points a,b € A such that
(a—b)xzeU.

Proof. By the definition of the Bohr topology on X, there exist a continuous homomorphism
h : X — H to a compact Abelian topological group and a neighborhood W C H of the
neutral element such that h='(W — W) C U. Replacing H by the closure of h(X), we
can assume that h(X) is dense in H. Let p be the Haar measure on H and n € N be
any number such that < u(W). Let A C R be any subset of cardinality |[A] > n. For
any points x € X and a € A, consider the point axz and the set h(axz) + W C H.
Observe that p(h(axz) + W) = p(W) > + > ﬁ, which implies that the indexed family
(h(a*x) + W)aea is not disjoint and hence there are two distinct points a,b € A such that
(h(axx) + W) N (h(bxx) + W) # @. Then h((a — b) * x) = h(a*xz) — h(bxz) € W — W and
hence (a —b)xx € Y (W — W) CU. O

We shall use Proposition 5 to detect topological rings R such that for any non-trivial
semitopological R-module X its Bohr modification X” is not a topological R-module.

Definition 2. A topological ring R is called
e crowded if every neighborhood of zero in R contains an invertible element;

e overcrowded if R is crowded and for every n € N there is a set A C X of cardinality
|A| = n such that for any distinct elements a,b € A the element a — b is invertible in

R.
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It is clear that every crowded topological ring is not discrete; a topological field R is
overcrowded if and only if it is crowded if and only if R is not discrete.

Theorem 8. Let X be a Bohr separated semitopological module over a topological ring R.
If the completion R of R is a crowded topological ring, then the Bohr modification X of X is
not a topological R-module. Moreover, for any non-zero element x € X the homomorphism
%, 0 R — X°, %, 17— rxx, is not a topological embedding.

Proof. Given any non-zero element x € X, we shall prove that the restriction *[, p,, of the
multiplication map * : R x X” — X is discontinuous (here Rxz = {r+x : r € R}). To derive
a contradiction, assume that this restriction is continuous. By Theorem 1, the continuous
bi-homomorphism *[ g, p,, extends to a continuous bi-homomorphism * : R x Rxx — ﬁ,
where X? is the Raikov-completion of the totally bounded topological group X°. Consider
the subset Rz = {r¥z : r € R} and observe that Rz is contained in the closure Rxx of Rz
in X". Applying Theorem 1 once more, find a continuous bi-homomorphism * : R x Rz —
X extending the bi-homomorphism %. Using the continuity of x it is easy to show that
*(]? X f%:c) C Rz and Rz is a topological R-module.

Since the group Rz is Hausdorff, the set Rz \ {x} is an open neighborhood of zero in
Rz. By the continuity of the operation x, there exists a neighborhood V of zero in R and
a neighborhood W of zero in Rz such that V « W C Rz \ {z}. Since the totally bounded
topological group Rx C X coincides with its Bohr modification, W is a neighborhood of
zero in the Bohr topology of the group Rz. By Proposition 5, there in a number n € N such
that for any set A C R of cardinality |A| = n there are two distinct points a,b € A such
that (a —b) xx € W. The ring R, being overcrowded, contains a set B C R of cardinality
|B| = n such that the set D = {a — b : a,b € B, a # b} consists of invertible elements
of the ring R. Tt follows that each element a € D has the inverse a~! in R and hence the
set D7! = {a™' : a € D} is well-defined. Using the continuity of multiplication at zero in
the topological ring R, find a neighborhood V C R of zero such that D=V, C V. Since
R is (over)crowded, the neighborhood Vj contains an invertible element ¢. By the choice of
the number n, the n-element set ¢™'B contains two distinct elements ¢ 'a,c'b such that
(¢ ta—c'b)*x € W. Then z = (a—b) (¢ ra—cb)xx € D Vyx W C VW C R\ {z},
which is a required contradiction completing the proof of the discontinuity of the restriction
*rRxR*x'

Now we show that the map *, : R — X is not a topological embedding. Assuming
the opposite, we conclude that *, : R — Rxx is a homeomorphism and then *[x, p,. is
continuous as a composition of continuous maps (since a* (bxx) = (a-b) *x = *,(a-*, ' (bx))
for any a,b € R). But this contradicts the discontinuity of *[ ., ., proved above. O]

Since the fields R and C are overcrowded, Theorem 8 implies the following corollary
answering Problem 1.

Corollary 2. For any non-trivial semitopological linear space X over a topological field
R € {R, C}, the Bohr modification X’ is not a topological linear space and for any element
x € X themap #, : R — X, %, : A = \ -z, is not a topological embedding.
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Next, we construct an example of a semitopological R-module X such that X is not
a topological R-module but for every non-zero element x € X the map *x, : R — X,
%, o T — 1%z, is a topological embedding.

Given a Bohr separated semitopological R-module X over a topological ring R, consider
the R-submodule X<“ = {(2,)new € X : In € w Vm > n x,, = 0} of the countable
power X“. Endow X<“ with the group topology 7 whose base at zero consists of the sets
(V,W), = X< N (V" x W¥\") where n € w, V is a neighborhood of zero in X and W is a
neighborhood of zero in X°. It is clear that the topology 7 turns X <“ into a Bohr separated
semitopological R-module, which will be denoted by X*.

The following example yields a more refined counterexample to Problem 1.

Example 1. Let R be a topological ring with overcrowded completion R. For any non-trivial
Bohr separated topological R-module X, the Bohr separated semitopological R-module X%
is not a topological R-module but any finitely generated R-submodule of X* is a topological
R-module.

We shall apply Theorem 8 to construct an example of a semitopological R-module X
whose semitopological R-completion X is strictly smaller than its Raikov completion X.

Proposition 6. Let R be a Baire topological ring whose Raikov completion R is over-
crowded. For any totally bounded semitopological R-module X the R-completion X of X
is strictly smaller than the Raikov completion X of X.

Proof. The total boundedness of X 1mphes that X = X’ and the Raikov completion X of
X is compact. Assuming that X = X we conclude that X is a compact semitopological
R-module. By Theorem 4, Xisa topological R-module. But this contradicts Theorem 8. [

In light of Theorem 8, it is important to detect topological rings with overcrowded Raikov
completions. We shall show that the class of such topological rings includes normable topo-
logical rings with crowded Ratkov completions.

A topological ring R is normable if its topology is generated by some norm |- |: R — R.
A function |- | : R — R on a ring R is called a norm if for any z,y € R the following
conditions are satisfied:

e |z| >0 and |z| =0 iff z = 0;
o |z +yl < 2] +yl;
o |vy| =[x - lyl.

Such norm | - | generates the invariant metric d : R x R — R, d : (z,y) — |z — y| on R,
which generates a topology turning R into a topological ring.

Proposition 7. A complete normed topological ring R is overcrowded if and only if R is
crowded.
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Proof. Assume that R is crowded and fix a norm |- | : R — R generating the topology of

R. By a standard argument it can be shown that for any element z € R of norm |z| < 1,

the element 1 — z is invertible in R = R and (1 —2)~' = 3. 2. Since R is crowded, it

contains an invertible element = with norm 0 < |z| < 1. Consider the set A = {z" : n € N}
m—n

and observe that for any numbers n < m the difference 2" — 2™ = 2"(1 — 2™ ") is invertible
in R. [l

Both completeness and normability of the ring R in Proposition 7 is essential as shown
by the following examples.

Example 2. The smallest subring R of R that contains the transcendent numbers m and
71 is crowded but not overcrowded.

We recall that an ordered field is a field F' endowed with a linear order such that for
any elements x,y,a € F' the inequality x < y implies £ + a < y + a and the inequalities
0 <, 0<yimply O < zy. It is known that an ordered field has characteristic zero and
hence contains a subfield isomorphic to the field Q of rational numbers. Each ordered field
F' carries the order topology generated by open order intervals.

Example 3. There exists a subring R of a countable ordered field F such that R is crowded
but the completion R is not overcrowded.

Proof. Let g = 1 and for every n € N choose a positive real number x,, which does not
belong to the smallest algebraically closed field F,, C C containing the set {x;};<,,. Consider
the real field ' = J,.,(F, NR). It is easy to see that the field /' can be ordered so that
0<x, <yforalln € Nand y € F,, NR. Endow the field F’ with the topology generated by
the linear order. Let R be the smallest subring of F' containing the set {z,,z,' :n € w}. It
can be shown that R is crowded and its completion R is not overcrowded. O

5 BORNOMODIFICATIONS OF SEMITOPOLOGICAL MODULES

In this section given a topological ring R and a family B of bounded subsets on R, we dis-
cuss the (functorial) construction of B-modification acting in the category of semitopological
R-modules.

Let R be a topological ring. A subset B C R is called bounded in R if for any neighborhood
U C R of zero there is a neighborhood V' C R of zero such that B-V C U. So, B is R-
bounded with respect to the right action of R on R.

Observe that for any bounded sets A, B in a topological ring R the product AB is
bounded in R. Indeed, for any neighborhood U C R of zero the boundedness of A yields
a neighborhood V' C R of zero such that AV C U and the boundedness of B yields a
neighborhood W C R of zero such that BW C V. Then (AB)W = A(BW) C AV C U,
witnessing that the set AB is bounded in R.

Definition 3. A family B of bounded subsets of a topological ring R is called a bornology
on R if
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1. for any set B € B, any subset of B belongs to B;

2. for any sets A, B € B the union AU B belongs to B;

3. for any set B € B and element r € R the set B - r belongs to B;
4. |UB = R.

A topological ring R is defined to be locally B-bounded for a bornology B on R if for any
set B € B there is a neighborhood V' C R of zero such that BV € B. A topological ring
is locally bounded if R is locally M-bounded for the maximal bornology M consisting of all
bounded subsets of R. It is easy to show that a topological ring is locally bounded iff it has
a bounded neighborhood of the zero.

Let X be a semitopological module over a topological ring R. For two subsets A, B C X
we write A € B if A+ U C B for some neighborhood U C X of zero in X. For any subsets
U C X and B C R consider the set

U/B={xe€U:BxzecU}.

It is clear that for any sets U C V C X and A C B C R we have U/B C V/A.
Consequently, for any sets U,V C X and A, B C R we have (UNV')/(AUB) C (U/A)N(V/B).

Let B be a bornology on a topological ring R. For any semitopological R-module X
denote by 7% the family of all sets W C X such that for every point w € W there exist a
neighborhood U of zero in X and a bounded set B € 5 such that w+U/B C W. It is clear
that 7% is a translation invariant topology on X containing the original topology of X.

The R-module X endowed with the topology 78 will be denoted by X*5 and called the
B-modification of X.

Proposition 8. Let B be a bornology on a topological ring R. For any semitopologial
R-module X its B-modification X*B is a semitopological R-module.

Proof. First we check that for any open neighborhood U C X of zero and any bounded set
B € B, the set U/B belongs to the topology 5. Fix any point € U/B C U and find a
neighborhood V' C U of zero such that V + B s ax C U. We claim that x + V/B C U/B.
Indeed, for any y € V/B we can find a neighborhood W C V of zero such that W+ Bxy C V.
Then W+ Bx(x+y) CW+Bsxy+ Bsxx CV + Bxx C U, which yields the desired
inclusion x +y € U/B. So, the set U/B belongs to the topology 7.

Now we can prove that the addition operation + : X*8 x X*8 — X% ig continuous.
Since the topology 78 is invariant under translations, it suffices to prove that the addition is
continuous at zero. Fix any neighborhood W € 7%8 of zero and find an open neighborhood
U C X of zero and a bounded set B € B such that U/B C W. By the continuity of the
addition in X, there is an open neighborhood V' C X of zero such that V +V C U. We
claim that the open neighborhood V/B € 78 has the property V/B +V/B C U/B C W.
Given any points z,y € V/B, find a neighborhood Vj C X of zero such that Vo + B2z CV
and Vo+ Bxy CV. Then Vo+Bx(z+y) C Vo+Vo+Bxx+Bxy CV+V CU and hence
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r+y € U/B CW. Taking into account that the topology 7% is invariant under inversions,
we conclude that X5 is a topological group.

Next, we show that the multiplication map * : R x X*8 — X*®5 i5 separately continuous.

Fix any point z € X and consider the map *, : R — X®, %, : 7 — r x 2. Since #, is
a homomorphism, it suffices to check the continuity of %, at zero. Fix any neighborhood
W € 788 of zero. By the definition of the topology 72, there are a neighborhood U C X of
zero and a bounded subset B € B such that U/B C W. Choose a neighborhood Uy of zero
in X such that Uy + Uy C U. The continuity of the map %, : R — X yields a neighborhood
V C R of zero such that V x 2 C Uy. By the boundedness of the set B in R, there is a
neighborhood V’ C R of zero such that BV’ C V. Then Uy+ B* (V'xx) = Uy+ (BV')xx C
Up+Vsxx CUj+ Uy CU and hence B (V' xz) € U and finally, V' x2 CU/B C W.

Next, fix any » € R and consider the homomorphism "+ : X*8 — X# 7x: 2+ rxz. The
continuity of "x will follow as soon as we check its continuity at zero. Fix any neighborhood
W € 788 of zero and find an open neighborhood U C X of zero and a bounded set B € B
such that U/B C W.

Observe that U/(Br) is a neighborhood of zero in the topology 7% and

"sx (U/(Br))=rx{re X :BrxaxeU}C{ye X:BxyeU} CU/BCW.
[

The following proposition shows that the construction of the B-modification is functorial
in the category of semitopological R-modules.

Proposition 9. Let B be a bornology on a topological ring R. Any continuous R-linear map
h: X — Y between semitopological R-modules remains continuous as a map h : X*8 — Y5,

Proof. Fix any neighborhood W C Y of zero and find an open neighborhood U C Y of
zero and a bounded subset B € B such that U/B C W. Choose a neighborhood Uy C'Y of
zero such that Uy + Uy C U. The continuity of the map h : X — Y yields a neighborhood
V C X of zero such that h(V) C U,.

We claim that hA(V/B) C U/B. Indeed, for any point x € V/B we get B*xx C V and
hence B x h(z) = h(Bxx) C h(V) C Uy. Then Uy + B * h(z) C Uy + Uy C U, which implies
that B * h(z) € U and hence h(z) € U/B C W. O

Now we show that for a locally B-bounded topological ring R the bounded modification
X8 of any semitopological R-module X is a topological R-module.

Theorem 9. If R is a locally B-bounded topological ring for some bornology B on R, then
the B-modification X*? of any semitopological R-module X is a topological R-module.

Proof. Tt suffices to check the continuity of the multiplication * : R x X* — X5 at zero.
Fix a neighborhood W € 7% of zero and find a neighborhood U C X of zero and a bounded
set B € B such that U/B C W. Since R is locally B-bounded, there exists a neighborhood
V' C R of zero such that the set BV belongs to the bornology B. Then the set U/(BV) is a
neighborhood of zero in X*5 such that for any v € V and z € U/(BV) we get B x (v x) C
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(BV) %« x € U, which implies v« x € U/B C W and shows that the multiplication map
*: R x X*8 — X* is continuous. []

Observe that for any bornologies A C B on a topological ring R and any semitopological
R-module X we get 7% C 78, which implies that the identity map X*® — X* is continuous.
In particular, for the bornology IC of precompact subsets of R and the bornology M of all
bounded subsets of R the identity maps X*" — X% — X are continuous. These two
identity maps are homeomorphisms, provided the ring R is crowded and X is a topological
R-module.

Proposition 10. Let R be a crowded topological ring and B be a bornology on R. For any
topological R-module X, the identity map id : X*¥ — X is a homeomorphism.

Proof. 1t suffices to check that for any neighborhood U C X of zero and any bounded subset
B C R the set U/B is a neighborhood of zero in X. By the continuity of the addition
and multiplication, there exist a neighborhood Uy C X of zero in X and a neighborhood
V' C R of zero in R such that Uy + (V x Uy) C U. The boundedness of the set B in R yields
a neighborhood Vj C V such that B -V, C V. Since R is crowded, the neighborhood V
contains an invertible element r. The invertibility of r guarantees that the set U, = r Uy is
a neighborhood of zero in X. We claim that U, C U/B. Indeed, for any x € U, we can find
a point y € Uy with x = r xy and conclude that Bxx = Brxy C B-VyxUy CV x U, and
Up+ Bxx CUy+V Uy C U, which implies x € U/B. Therefore, U/B is a neighborhood of
zero in the original topology of X and the identity map X*¥ — X is a homeomorphism. [

Theorem 10. Let X be a semitopological module over a topological ring R.

1. If R is crowded and locally B-bounded for some bornology B on R, then any continuous
R-homomorphism h : Z — X defined on a topological R-module Z remains continuous
as a map to X",

2. If every compact set in X is R-bounded, then any continuous map f : Z — X defined
on a k-space Z remains continuous as a map to X**, where K is the bornology of
precompact sets in R.

Proof. 1. Assume that R is crowded and locally B-bounded for some bornology B on R.
Let h: Z — X be a continuous R-homomorphism defined on a topological R-module Z. By
Proposition 9, the map h : Z%¥ — X8 is continuous and by Proposition 10, the identity
map id : Z — Z"8 is a homeomorphism. Then the map h : Z — X8 is continuous as a
composition of two continuous maps.

2. Assume that each compact set in X in R-bounded and let f : Z — X be a continuous
function defined on a k-space Z. To show that the map f : Z — X** is continuous it
suffices to check that for every compact set K C Z the restriction fl, : K — X* is
continuous at each point z € K. Fix any neighborhood Oy, of f(z) in X** and find an
open neighborhood U C X of zero and a compact set B C R such that f(z) +U/B C Oy(,).
Choose a neighborhood Uy C X of zero such that Uy + Uy C U.
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By our assumption, the compact set C' = f(K)—f(K) is R-bounded in X. By Theorem 6,
the restriction *[4.» : R x C — X is continuous. Since B % {0} = {0} we can use the
compactness of B and find a neighborhood U; C X of zero such that B x (U; N C) C U,.
By the continuity of f : Z — X at z, there is a neighborhood O, C K of the point z
such that f(O,) C f(z) + Uy. We claim that f(O,) C f(z) + U/B. Indeed, for any point
y € O, we get f(y) — f(z) € Uy NC and hence B x (f(y) — f(2)) € Bx (U NC) C Uy
and Uy + B * (f(y) — f(2)) C Uy + Uy C U, which implies f(y) — f(z) € U/B and f(O,) C
F(2)+ U/B C Oy, a

6 FREE SEMITOPOLOGICAL R-MODULES

In this section we apply the results of the preceding section to study the structure of free
semitopological R-modules.

Let R be a topological ring. For a topological space X its free semitopological R-module
is a pair (Mg(X),ix) consisting of a semitopological R-module Mg(X) and a continuous
map ix : X — Mpg(X) such that for any continuous map f : X — Y to a semitopological
R-module Y there exists a unique continuous R-homomorphism f : Mz(X) — Y such that
f = foix. The standard category arguments show that for each topological space X a free
semitopological R-module exists and is unique up to an isomorphism.

By analogy we can introduce the notion of a free topological R-module over a topological
space.

It turns out that in some cases the free semitopological R-module over a topological space
coincides with its free topological R-module.

Theorem 11. Assume that a topological ring R is locally compact. Then for every k-space
X its free semitopological R-module Mr(X) is a free topological R-module.

Proof. Let (Mg(X),ix) be a free semitopological module over X and Mz(X)*® be its K-mo-
dification with respect to the bornology K of precompact sets in R. Being locally compact,
the topological ring R is locally K-bounded. By Theorem 9, Mp(X)* is a topological
R-module. By Theorems 6(2) and 10(2), the canonical map ix : X — Mpg(X) remains
continuous as a map ix : X — Mp(X)*. The definition of the free semitopological R-
module Mp(X) guarantees that the identity map Mg(X) — Mz(X)* is continuous and
hence is a homeomorphism, which implies that Mgz(X) = Mgz(X)* is a topological R-
module and a free topological R-module over X. O]

Finally, we present an example of a topological space X whose free semitopological R-
module is not a topological R-module.

Proposition 11. Let R be a topological ring and X be a semitopological R-module which
is not a topological R-module. Then the free semitopological R-module Mr(X) over X is
not a topological R-module.

Proof. The semitopological R-module X is a Tychonoff space (being a Hausdorff topological
group), which implies that the canonical map ix : X — Mg(X) is a topological embedding.
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By the definition of a free semitopological R-module, there exists a unique continuous R-
homomorphism h : Mr(X) — X such that hoiy : X — X is the identity map of X.
Assuming that Mg(X) is a topological R-module, we conclude that the multiplication map
% 1 R X Mp(X) — Mg(X) is continuous and then the map p: Rx X — X, u: (a,2) —
h(a xix(X)) = a* h(ix(z)) = a * x is continuous, too. On the other hand, this map is
discontinuous because X is not a topological R-module. O]
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1t TOTOMIOTiYHOTO KibIl R BUBYAIOTHCS HAIMIBTOMOJOTIUHI R-MOy/Ii, IXHI MOMOBHEHHS,
Gopiscbki Ta GopHoMoaudikanii. s Tonosoriunoro npocropy X noGyJoBaHO BiibHuUil (Ha-
niB)Tonosioriunuii R-monynb nan X i mosesgeno, mio s k-upocropy X iioro BijbHuil Hamisro-
nosioriguauiit R-monysb € Tonosorivaum R-momysiem. Takoxk mo0yq0BaHO THXOHOBCHKHIT IPOCTIP
X, BiIbHUE HAMIBTOMOJIOTIYHUN R-MOMYIh SIKOTO HE € TOMOJOTIYHUM R-MomTymeM.



