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Kusik L.I.

EXISTENCE CONDITIONS AND ASYMPTOTICS FOR SOLUTIONS OF

ONE CLASS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

For a di�erential equation of the second order of the form y′′ = α0p(t)ϕ0(y)|y′|σ1 , where

α0 ∈ {−1, 1}, p : [a, ω[−→]0,+∞[ is continuous function, ϕ0 : ∆Yi −→]0,+∞[ is continuous

regularly varying as y → Y0 the function of σ0 order, and σ0 +σ1 = 1, ∆Yi (i ∈ {0, 1}) is a one-
side neighborhood of Yi and Yi ∈ {0;±∞} (i ∈ {0, 1}), the question of the existence of solutions
for which lim

t↑ω
y(i)(t) = Yi (i ∈ {0, 1}) is considered. Involvement in the 1980s in V.Mari�c, M.

Tomi�c's works in the study of two-term second-order di�erential equations y′′ = p(t)ϕ(y)

with regularly varying nonlinearities in zero made it possible to �nd two-sides estimates of

solutions tending to zero as t → +∞. Further study of two-term second-order di�erential

equations with regularly varying nonlinearities, the right side of which preserves the sign in the

neighborhood of singular point (both �nite or equals ±∞) is carried out by Evtukhov V.M.

on Pω(λ0)−solutions, which arises in the study of generalized n−th order Emden - Fowler

equations. Among the set of such solutions of equation under study we distinguish a fairly

wide class of so-called Pω(Y0, Y1, λ0)-solutions (generalization of Pω(λ0)−solutions). The set

of all Pω(Y0, Y1, λ0)−solutions by its asymptotic properties separate into 4 disjoint classes of

solutions corresponding to the values of λ0: λ0 ∈ R \ {0, 1} is nonsingular case, λ0 = 0, λ0 = 1,

λ0 = ±∞ are particular cases. This type of solution was previously introduced in the study

of the two-term equation y′′ = α0p(t)ϕ0(y)ϕ1(y′), where, α0 ∈ {−1, 1}, p : [a, ω[−→]0,+∞[ is

continuous function, ϕi : ∆Yi −→]0,+∞[ (i = 0, 1) are regularly varying asz → Yi (i = 0, 1)

functions of σi (i = 0, 1) orders, and σ0 + σ1 6= 1. The case σ0 + σ1 = 1 corresponds to the

so-called semilinear di�erential equations, which have a number of properties of both linear

and nonlinear di�erential equations. Thus, for an equation y′′ = p(t)|y|1−λ|y′|λsgn y with

some constraints on a function p (in particular, if the function preserves the sign, it is locally

absolutely continuous and
ω∫
a

p
1

2−λ (t) dt = +∞, lim
t→ω

p′(t)p
λ−3
2−λ (t) = l0 (|l0| ≤ +∞), asymptotic

representations are found as t→ ω for all types of proper solutions of this equation by Evtukhov

V.M.. Here, for the equation we are studying, the necessary as well as su�cient conditions for

the existence of Pω(Y0, Y1, λ0)- solutions are found, asymptotic representations of such solutions

and their �rst-order derivatives are established, and the number of parametric families of such

solutions is indicated.
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Introduction

Consider the di�erential equation

y′′ = α0p(t)ϕ0(y)|y′|σ1 , (1)

where α0 ∈ {−1, 1}, p : [a, ω[−→]0,+∞[ is a continuous function, −∞ < a < ω ≤ +∞,

ϕ0 : ∆Y0 −→]0,+∞[ is continuous and regular varying as y → Y0 function of orders σ0 ,

∆Yi (i ∈ {0, 1}) is a one-side neighborhood of Yi and Yi ∈ {0;±∞} (i ∈ {0, 1}). We assume

that the numbers µi (i = 0, 1) given by the formula

µi =


1 if eigher Yi = +∞ or

Yi = 0 and ∆Yi is right neighborhood of the point 0,

−1 if eigher Yi = −∞ or

Yi = 0 and ∆Yi is left neighborhood of the point 0,

satisfy the relations

µ0µ1 > 0 for Y0 = ±∞ and µ0µ1 < 0 for Y0 = 0. (2)

Conditions (2) are necessary for the existence of solutions of equation (1) de�ned in a

left neighborhood of ω and satisfying the conditions

y(i)(t) ∈ ∆Yi for t ∈ [t0, ω[ , lim
t↑ω

y(i)(t) = Yi (i = 0, 1). (3)

We study equation (1) on class Pω(Y0, Y1, λ0)- solutions, that de�ned as follows.

De�nition 1. A solution y of equation (1) on interval [t0, ω[⊂ [a, ω[ is called Pω(Y0, Y1, λ0)-

solution, where −∞ ≤ λ0 ≤ +∞, it, in addition to (3), it satis�es the condition

lim
t↑ω

[y′(t)]2

y(t)y′′(t)
= λ0.

Depending on λ0 these solutions have di�erent asymptotic properties. For λ0 ∈ R \ {1}
in [2] such ratios

lim
t↑ω

πω(t)y′(t)

y(t)
=

λ0
λ0 − 1

, lim
t↑ω

πω(t)y′′(t)

y′(t)
=

1

λ0 − 1
, (4)

where

πω(t) =

{
t if ω = +∞,

t− ω if ω < +∞,

are established.Let us emphasize that for λ0 = 0 the existence of lim
t↑ω

y′′(t)πω(t)
y′(t)

(�nite or equal

to ±∞) is assumed.

Note that the numbers µ0, µ1 determine the signs of any Pω(Y0, Y1, λ0)- solution of equa-

tion (1) and its derivative in a left neighborhood of ω. In addition, the sign of the second
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derivative of any Pω(Y0, Y1, λ0)-solution of equation (1) in a left neighborhood ω coincides

with α0. Then taking into account (2), we have

α0µ1 > 0 as Y1 = ±∞ and α0µ1 < 0 as Y1 = 0. (5)

By the de�nition of a regularly varying function ( [1], Chap. 1, Sec. 1.1 9-10 of the

Russian translation), each of the functions ϕ0 admits a representation of the form

ϕ0(z) = |z|σ0L0(z),

where L0 : ∆Yi −→]0,+∞[ is a continuous function slowly varying as y → Y0 and satisfying

the condition

lim
y→Y0

L(λy)

L(y)
= 1 for any λ > 0, (6)

and the condition is satis�ed uniformly for λ on any interval [c, d] ⊂]0,+∞[ . Moreover, there

exist continuously di�erentiable functions (see [1], Chap. 1, Sec. 1.1 10-15 of the Russian

translation]) L00 : ∆Yi −→]0,+∞[ slowly varying as y → Y0 and satisfying the conditions

lim
y→Y0
y∈ ∆Y0

L0(y)

L00(y)
= 1, lim

y→Y0
y∈ ∆Y0

yL′00(y)

L00(y)
= 0. (7)

Asymptotic representations and conditions of the existence of Pω(Y0, Y1, λ0)- solutions in

case σ0 + σ1 6= 1 are obtained in [6] for di�erential equation in general view. In each of

the cases λ0 ∈ R \ {0, 1}, λ0 = 0, λ0 = 1, λ0 = ±∞ a condition (RN)λ0 is imposed on the

right-hand side of the equation under which the equation becomes close in a sense to the

two-term as t ↑ ω.
Here we study the behavior of Pω(Y0, Y1, λ0)- solutions in case σ0+σ1 = 1 and λ0 ∈ R\{1},

when it becomes close in some sense to the linear, which is studied in detail in the monograph

[5]. The purpose of this article is to generalize the results from work [3] on equation (1).

We choose a number b ∈ ∆Y0 such that the inequality

|b| < 1 for Y0 = 0, b > 1 (b < −1) for Y0 = +∞ (Y0 = −∞)

is respected and put

∆Y0(b) = [b, Y0[ if ∆Y0 is a left neighborhood of Y0,

∆Y0(b) =]Y0, b] if ∆Y0 is a right neighborhood of Y0.

Now we introduce auxiliary functions and notation as follows:

Φ : ∆Y0(b) −→ R, Φ(y) =

y∫
B

ds

sL0(s)
, B =


b if

Y0∫
b

ds
sL0(s)

= ±∞,

Y0 if
Y0∫
b

ds
sL0(s)

= const,

Z = lim
y→Y0

Φ(y) =


0 if B = Y0,

+∞ if B = b and µ0µ1 > 0,

−∞ if B = b and µ0µ1 < 0,

µ2 =

{
1 if B = b,

−1 if B = Y0,
(8)
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I0(t) =

t∫
A0

p(τ)|πω(τ)|σ0 dτ, I1(t) =

t∫
A1

p(τ)|πω(τ)|−σ1dτ,

where the integration limits Ai ∈ {a;ω} (i = 0, 1) are chosen so as to ensure that the integrals

Ii (i = 0, 1) tend either to zero or to ±∞ as t ↑ ω.
Note that due to the choice µ0, µ1, µ2

signΦ(y) = µ0µ1µ2 as y ∈ ∆Y0(b) \ {b}. (9)

Since the function Φ is strictly monotonic on the interval ∆Y0(b) and the range of its

value is the interval

∆Z(c) =

{
[c, Z[ if µ0 > 0,

]Z, c] if µ0 < 0,

where c = Φ(b), then for it there is a continuously di�erentiable inverse function Φ−1 :

∆Z(c)→ ∆Y0(b), for which lim
z→Z

Φ−1 = Y0.

It is easy to check that the function Φ(y) is slowly varying at y → Y0. Consequently, the

inverse to it Φ−1(z) at z → Z is a rapidly varying function. The question remains what the

function L (Φ−1(z)) will be like at z → Z. In some cases (for example, for functions with a

�nite limit at y → Y0, or for functions of the form |ln|y||k1 , lnk2|ln|y||, k1 ∈ R \ {1}, k2 ∈ R,
exp

(
|ln|y||k3

)
, 0 < k3 < 1) it is regularly varying at y → Y0.

In addition, by virtue of the choice µ0, µ1, µ2 we have signΦ(y) = µ0µ1µ2 at y ∈ ∆Y0(b) \
{b}.

1 Section with results

Theorem. Let λ0 ∈ R \ {1} and let the function L0 (Φ−1(z)) is regular varying of

γ-th order as z → Z, moreover, let the order σ0 of the function ϕ0 regularly varying as

y → Y0 satisfy the condition σ0 + σ1 = 1. Besides for λ0 = 0 exists (�nite or equal to ±∞)

lim
t↑ω

|πω(t)|σ0p(t)
I1(t)

. Then, for the existence of Pω(Y0, Y1, λ0)- solutions of the di�erential equation

(1), it is necessary and, if the condition

(σ0 + λ0) ((σ0 + λ0)(1 + γ)− γ) 6= 0 (10)

is satis�ed, su�cient that, along with inequality (2), (5) the conditions

lim
t↑ω

|πω(t)|σ0p(t)

I1(t)
= −β, lim

t↑ω
µ0µ1|λ0|σ1 |λ0 − 1|σ0I0(t) = Z, (11)

lim
t↑ω

I1(t)πω(t)L0

(
Φ−1(µ0µ1|λ0|σ1 |λ0 − 1|σ0I0(t))

)
= − |λ0|σ0

|λ0 − 1|1+σ0
, (12)

and the sign conditions

µ2I0(t) > 0, α0µ1(λ0 − 1)πω(t) > 0 for t ∈]a, ω[ (13)
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hold. Moreover, each solution of this kind admits the asymptotic representations

Φ(y(t)) = µ0µ1|λ0|σ1|λ0 − 1|σ0I0(t)[1 + o(1)], (14)

y′(t)

y(t)
= −µ0µ1β|λ0|σ1 |λ0 − 1|σ0I1(t)L0

(
Φ−1(µ0µ1|λ0|σ1|λ0 − 1|σ0I0(t))

)
) as t ↑ ω, (15)

and if β(σ0 + λ0)(λ0 − 1) < 0 such solutions form a one-parameter family if

(σ0 + λ0) ((σ0 + λ0)(1 + γ)− γ)h2(t) > 0 for t ∈]a, ω[ and two-parameter family if

(σ0 + λ0) ((σ0 + λ0)(1 + γ)− γ)h2(t) < 0 for t ∈]a, ω[.

Proof. Necessity. Let λ0 ∈ R \ {0, 1} and è y : [t0, ω[→ ∆Y0 be an arbitrary Pω(Y0, Y1, λ0)−
solution of equation(1). Then there is a number t1 ∈ [t0, ω[ such that y(k)(t) 6= 0 (k = 0, 1, 2),

sign y(k)(t) = µk (k = 0, 1) at t ∈ [t1, ω[. In addition, the de�nition of the Pω(Y0, Y1, λ0)−
solution for λ0 ∈ R \ {0, 1} (for λ0 = 0 â in the case of existence lim

t↑ω
y′′(t)πω(t)
y′(t)

) immediately

implies the ful�llment of limit equalities (4), using which, taking into account σ0 + σ1 = 1,

from equation (1) we have

y′′(t) = α0p(t)|y(t)|
∣∣∣∣ λ0
(λ0 − 1)πω(t)

∣∣∣∣σ1

L0(y(t))[1 + o(1)] as t ↑ ω.

From the last equality we have

y′′(t)

y(t)L0(y(t))
= α0µ0

∣∣∣∣ λ0
(λ0 − 1)

∣∣∣∣σ1

p(t)|πω(t)|−σ1 [1 + o(1)] as t ↑ ω, (16)

whence, taking into account the second of relations (4), we obtain the equality

y′(t)

y(t)L0(y(t))
= µ0µ1|λ0|σ1|λ0 − 1|σ0p(t)|πω(t)|σ0 [1 + o(1)] as t ↑ ω. (17)

Integrating the last relation on a segment [A0, t], we obtain (14). In addition, by virtue of

(8), (9) from (14) implies the �rst of the sign conditions (13) and the second of the limit

equalities (11).

For λ0 ∈ R \ {1} it is also obvious in view of (4) that the second of the sign conditions

(13) is satis�ed.

Given the equality(
y′(t)

y(t)L00(y(t))

)′
=

y′′(t)

y(t)L00(y(t))

(
1− (y′(t))2

y′′(t)y(t)
− (y′(t))2

y′′(t)y(t)

L′00(y(t))y(t)

L00(y(t))

)
,

by virtue of the de�nition of a slowly varying function and the de�nition of a , Pω(Y0, Y1, λ0)−
solution we have(

y′(t)

y(t)L00(y(t))

)′
=

y′′(t)

y(t)L00(y(t))
(1− λ0) (1 + o(1)) as t ↑ ω,

from which in view of (16), (7) it follows

y′(t)

y(t)L0(y(t))
= −µ0µ1β|λ0|σ1|λ0 − 1|σ0I1(t)[1 + o(1)] as t ↑ ω. (18)
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Comparing relations (17) è (18), we obtain the �rst of conditions (11). Also from (18) by

virtue of (1) we have the condition

y′′(t)πω(t)

y′(t)
= −βp(t)|πω(t)|σ0

(λ0 − 1)I1(t)
[1 + o(1)] as t ↑ ω,

which in the case λ0 = 0 , due to the existence of the limit p(t)|πω(t)|σ0

(λ0−1)I1(t) , guarantees the

ful�llment of the asymptotic representations (4) for all λ0 ∈ R \ {1}. Further, we note that
condition (14) since the function L0 (Φ(z)) as z → Z is of a regularly varying order γ, implies

that

L0 (y(t)) = L0

(
Φ−1(µ0µ1|λ0|σ1|λ0 − 1|σ0I0(t))

)
[1 + o(1)] as t ↑ ω.

Due to the last equality, taking into account (18) we obtain (15), and also, multiplying both

sides of (18) by πω(t), taking into account(4), we get condition (12).

Su�ciency. Suppose, along with (2), (5), (11) - (13), condition (10) is satis�ed. Let us

show that in this case the di�erential equation (1) has Pω(Y0, Y1, λ0)- solutions admitting

representations (14), (15) and clarify the question of the number of such solutions.

Applying to the di�erential equation (1) the transformation

y′(t)
y(t)

= −βCI1(t)L0 (Φ−1(CI0(t))))[1 + v1(τ)], Φ(y(t)) = CI0(t)[1 + v2(τ)],

τ = β ln |πω(t)|, C = µ0µ1β|λ0|σ1|λ0 − 1|σ0 ,

(19)

we obtain the system of di�erential equations

v′1 = βh1(τ)
(−α0µ0

C |g1(τ)|σ1H(τ, v2)|1 + v1|σ1+

+
βg1(τ)
h1(τ)

(1 + v1)
2 − (1 + v1)(1 + g1(τ)g2(τ))

)
,

v′2 = h2(τ)

(
− (1 + v1)
H(τ, v2)

− h1(τ)(1 + v2)

)
,

(20)

where

h1(τ(t)) =
I ′1(t)πω(t)
I1(t)

, H(τ(t), v2) =
L0

(
Φ−1(CI0(t)(1 + v2)

)
L00

(
Φ−1(CI0(t)

) ,

g1(τ(t)) = Cπω(t)I1(t)L00 (Φ−1(CI0(t))) ,

h2(τ(t)) =
I1(t)πω(t)
I0(t)

, g2(τ(t)) =
Φ−1(CI0(t))L

′
00

(
Φ−1(CI0(t)

)
L00

(
Φ−1(CI0(t)

)
Since the function τ(t) = β ln |πω(t)| is such that

τ : [a0, ω[−→ [τ0,+∞[ (τ0 = β ln |πω(a)|), τ ′(t) > 0 as t ∈ [a0, ω[, lim
t↑ω

τ(t) = +∞,

then by virtue of the �rst of conditions (11)

lim
τ→+∞

h1(τ) = lim
t→ω

h(τ(t)) = −1, lim
τ→+∞

h2(τ) = lim
t→ω

h(τ(t)) = 0,

+∞∫
τ1

|h2(τ)| dτ = +∞, lim
τ→+∞

h′2(τ)
h2(τ)

= 0,
(21)
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where τ is any number from the interval ]τ0,+∞[.

In view of the second of conditions (11), (13) and (8), (9) there exists a number t1 ∈]a, ω[

such, that µ0µ1|λ0|σ1|λ0− 1|σ0I0(t)(1 + v2) ∈ ∆Z(c) for t ∈ [t1, ω[ è |v2| ≤ 1
2
. Consider system

(19) on the set [τ1,+∞[×R2
1
2

, where τ1 = β ln |πω(t1)|, R2
1
2

= {(v1, v2) ∈ R2 : |vi| ≤ 1/2, i =

1, 2}, on which the right-hand sides of the system are de�ned and continuous.

Since the function L0 (Φ−1(z)) is regularly varying as z → Z of the order γ, it admits

the representation L0 (Φ−1(z)) = |z|γL(z), where L is the slowly varying function as z → Z.

Therefore, according to (6)

L0

(
Φ−1(CI0(t)(1 + v2)

)
= |CI0(t)(1 + v2)|γL(CI0(t)(1 + v2)) =

= |CI0(t)|γ|(1 + v2)|γL(CI0(t))[1 +R(t, v2)] = L0

(
Φ−1(CI0(t)

)
|(1 + v2)|γ[1 +R(t, v2)],

where

lim
t↑ω

R(t, v2) = 0 uniformly over |v2| ≤
1

2
.

Therefore, taking into account (7) we have

H(τ, v2) = |(1 + v2)|γ[1 + r1(t, v2)],
1

H(τ, v2)
= |(1 + v2)|γ[1 + r2(t, v2)],

where functions ri(t, v2) (i = 1, 2) are continuous on the set [τ1,+∞[×R2
1
2

and such that

lim
τ→+∞

ri(τ, v2) = 0 (i = 1, 2) uniformly over |v2| ≤
1

2
.

Obviously, that lim
t↑ω

Φ−1(CI0(t)) = Y0, therefore, by virtue of (7), (11), (12)

lim
τ→+∞

g1(τ) = − βλ0
λ0 − 1

lim
τ→+∞

g2(τ) = 0.

Now we rewrite system (20) in the form
v′1 = β

(
f1(τ, v1, v2) + σ0+λ0

λ0−1 v1 −
γ

λ0−1v2 + V1(v1, v2)
)
,

v′2 = h2(τ) (f2(τ, v1, v2)− v1 + (1 + γ)v2 + V2(v1, v2)) ,

(22)

where

lim
τ→+∞

fi(τ, v1, v2) = 0 (i = 1, 2) uniformly over (v1, v2)R2
1
2
,

lim
|v1|+|v2|→0

∂Vi(v1, v2)

∂vj
= 0 (i, j = 1, 2),

whence it follows that lim
|v1|+|v2|→0

Vi(v1,v2)
|v1|+|v2| = 0 (i = 1, 2). In addition, conditions (21) are sat-

is�ed. Thus, for system (20) the conditions of Theorem 2.6 from [4] are satis�ed. Therefore,

this system has at least one solution (v1, v2) : [τ1,+∞[−→ R2
1
2

(τ2 ≥ τ1), tending to zero

as τ → +∞. Due to transformation (20) each such solution corresponds to a solution y of
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di�erential equation (1), admitting asymptotic representations (14), (15). It is easy to check

that the indicated solution is a Pω(Y0, Y1, λ0)- solution of equation (1).

Also, based on Theorem 2.6 in [4], it is easy to �nd the number of families of solutions

to system (20). By virtue of (10), for λ0 ∈ R \ {1}, the determinant∣∣∣∣∣ σ0+λ0

λ0−1
−γ
λ0−1

−1 γ + 1

∣∣∣∣∣
is nonzero. Therefore, for β σ0+λ0

λ0−1 < 0 and h2(τ)σ0+λ0

λ0−1

∣∣∣∣∣ σ0+λ0

λ0−1
−γ
λ0−1

−1 γ + 1

∣∣∣∣∣ < 0 system (20) has

a two-parameter family of solutions tending to zero as τ → +∞. System (20) has a one-

parameter family of solutions vanishing at in�nity either for β σ0+λ0

λ0−1 < 0 and

h2(τ)σ0+λ0

λ0−1

∣∣∣∣∣ σ0+λ0

λ0−1
−γ
λ0−1

−1 γ + 1

∣∣∣∣∣ > 0 or β σ0+λ0

λ0−1 > 0 and h2(τ)σ0+λ0

λ0−1

∣∣∣∣∣ σ0+λ0

λ0−1
−γ
λ0−1

−1 γ + 1

∣∣∣∣∣ < 0.

The theorem is completely proved.

In what follows, equation (1) should be studied at σ0 + σ1 = 1 for values λ0 = 1,

λ0 = ±∞. It is also possible to extend the results of this work to an equation of the form

y′′ = α0p(t)ϕ0(y)ϕ1(y
′), α0 ∈ {−1, 1}, p : [a, ω[−→]0,+∞[ where, p : [a, ω[−→]0,+∞[ is a

continuous function ϕi : ∆Yi −→]0,+∞[ (i = 0, 1) and are a continuous regularly varying as

z → Yi (i = 0, 1) functions of σi (i = 0, 1) orders.
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Êóñiê Ë.I. Óìîâè iñíóâàííÿ òà àñèìïòîòèêà ðîçâ'ÿçêiâ îäíîãî êëàñó äèôåðåíöiàëüíèõ

ðiâíÿíü äðóãîãî ïîðÿäêó // Áóêîâèíñüêè�è ìàòåì. æóðíàë � 2020. � Ò.8, �1. � C. 20�28.

Äëÿ äèôåðåíöiàëüíîãî ðiâíÿííÿ äðóãîãî ïîðÿäêó âèäó y′′ = α0p(t)ϕ0(y)|y′|σ1 , äå α0 ∈
{−1, 1},p : [a, ω[−→]0,+∞[-íåïåðåðâíà ôóíêöiÿ, ϕ0 : ∆Yi −→]0,+∞[ -íåïåðåðâíà ïðà-

âèëüíî çìiííà ïðè y → Y0 ôóíêöiÿ ïîðÿäêó σ0, ïðè÷îìó σ0 + σ1 = 1, ∆Yi- îäíîñòîðîííié

îêië Yi, Yi ∈ {0,±∞} (i ∈ {0, 1}) ðîçãëÿíóòî ïèòàííÿ iñíóâàííÿ ðîçâ'ÿçêiâ, äëÿ ÿêèõ

lim
t↑ω

y(i)(t) = Yi (i ∈ {0, 1}).
Çàëó÷åííÿ ó 80-õ ðð. XX ñò. â ïðàöÿõ V.Mari�c, M. Tomi�c ïðè âèâ÷åííi äâî÷ëåííèõ

äèôåðåíöiàëüíèõ ðiâíÿíü äðóãîãî ïîðÿäêó ç ïðàâèëüíî çìiííèìè â íóëi íåëiíiéíîñòÿìè

y′′ = p(t)ϕ(y) äàëî çìîãó âêàçàòè äâóái÷íi îöiíêè ðîçâ'ÿçêiâ, ùî ïðÿìóþòü äî íóëÿ ïðè

t → +∞. Ïîäàëüøå âèâ÷àííÿ äâî÷ëåííèõ äèôåðåíöiàëüíèõ ðiâíÿíü äðóãîãî ïîðÿäêó ç

ïðàâèëüíî çìiííèìè íåëiíiéíîñòÿìè, ïðàâà ÷àñòèíà ÿêèõ çáåðiãà¹ â îêîëi îñîáëèâié òî÷êè

(ÿê ñêií÷åííié, òàê è ðiâíié ±∞) çíàê, ïðîâåäåíî íà âèäiëåíîìó Â.Ì.�âòóõîâèì êëàñi

Pω(λ0)− ðîçâ'ÿçêiâ, ùî âèíèêà¹ ïðè äîñëiäæåííi óçàãàëüíåíèõ ðiâíÿííÿõ Åìäåíà - Ôàó-

ëåðà n−ãî ïîðÿäêó. Ñåðåä ìíîæèíè ðîçâ'ÿçêiâ âèâ÷àåìîãî ðiâíÿÿíÿ âiäîêðåìëþ¹ìî äî-

ñòàòíüî øèðîêèé êëàñ ò. ç. Pω(Y0, Y1, λ0)- ðîçâ'ÿçêiâ (óçàãàëüíåííÿ Pω(λ0)− ðîçâ'ÿçêiâ).

Ìíîæèíà óñiõ Pω(Y0, Y1, λ0)− ðîçâ'ÿçêiâ çà ñâî¨ìè àñèìïòîòè÷íèìè âëàñòèâîñòÿìè ðîç-

ïàäà¹òüñÿ íà 4 íåïåðòèíàþ÷èõñÿ êëàñiâ ðîçâ'ÿçêiâ, ùî âiäïîâiäàþòü íàñòóïíèì çíà÷åí-

íÿì λ0: λ0 ∈ R \ {0, 1}− íåîñîáëèâèé âèïàäîê, λ0 = 0, λ0 = 1, λ0 = ±∞− îñîáëèâi

âèïàäêè. Òàêîãî òèïó ðîçâ'ÿçêè ðàíiøå áóëî óâåäåíî ïðè âèâ÷åííi äâî÷ëåííîãî ðiâíÿ-

ííÿ y′′ = α0p(t)ϕ0(y)ϕ1(y′), äå α0 ∈ {−1, 1}, p : [a, ω[−→]0,+∞[�íåïåðåðâíà ôóíêöiÿ,

ϕi : ∆Yi −→]0,+∞[ (i = 0, 1) �íåïåðåðâíi ïðàâèëüíî çìiííi ïðè z → Yi (i = 0, 1) ôóíêöi¨

ïîðÿäêiâ σi (i = 0, 1), ïðè÷îìó σ0 + σ1 6= 1. Âèïàäîê σ0 + σ1 = 1 âiäïîâiäà¹ ò.ç. ïîëó-

ëiíiéíèì äèôåðåíöiàëüíèì ðiâíÿííÿì, ÿêèì ïðèòàìàííi âëàñòèâîñòi ÿê ëiíiéíèõ, òàê è

íåëiíiéíèõ äèôåðåíöiàëüíèõ ðiâíÿíü. Òàê, äëÿ ðiâíÿííÿ y′′ = p(t)|y|1−λ|y′|λsgn y ïðè äå-

ÿêèõ îáìåæåííÿõ íà ôóíêöiþ p (çîêðåìà, ÿêùî ôóíêöiÿ p : [a, ω[−→]0,+∞[ çáåðiãà¹ çíàê,

ëîêàëüíî àáñîëþòíî íåïåðåðâíà i
ω∫
a

p
1

2−λ (t) dt = +∞, lim
t→ω

p′(t)p
λ−3
2−λ (t) = l0 (|l0| ≤ +∞),

Â.Ì.�âòóõîâèì çíàéäåíî àñèìïòîòè÷íi çîáðàæåííÿ ïðè t → ω óñiõ òèïiâ ïðàâèëüíèõ

ðîçâ'ÿçêiâ öüîãî ðiâíÿííÿ. Òóò äëÿ ðiâíÿííÿ, ùî âèâ÷à¹ìî, çíàéäåíî íåîáõiäíi, à òàêîæ

äîñòàòíi óìîâè iñíóâàííÿ Pω(Y0, Y1, λ0)- ðîçâ'ÿçêiâ, âñòàíîâëåíî àñèìïòîòè÷íi çîáðàæåííÿ

òàêèõ ðîçâ'ÿçêiâ òà ¨õ ïîõiäíèõ ïåðøîãî ïîðÿäêó, âêàçàíî êiëüêiñòü ïàðàìåòðè÷íèõ ñiìåé

òàêèõ ðîçâ'ÿçêiâ.


