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CENTER CONDITIONS FOR A CUBIC DIFFERENTIAL SYSTEM WITH
TWO INVARIANT STRAIGHT LINES AND ONE INVARIANT CUBIC

We determine conditions for the origin to be a center for a class of cubic differential systems
having two invariant straight lines and one invariant cubic. We prove that a fine focus 0(0,0) is a
center if and only if the first two Lyapunov quantities vanish.
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Introduction
We consider the cubic differential system of
the form

&=y +ax?+ coy + fy? + kad+
+ma?y + pry? +ry’ = P(z,y),

v = —(z+ gz* + dovy + by? + sz +
+qz?y + nry® +1y°) = Q(x,y),

(1)

where P(z,y) and Q(x,y) are real and copri-
me polynomials in the variables x and y. The
origin O(0,0) is a singular point of a center or
a focus type for (1), i.e. a fine focus. The aim
of this paper is to find verifiable conditions for
0(0,0) to be a center.

It is known that a singular point O(0,0)
is a center for system (1) if and only if it
has a holomorphic first integral of the form
F(z,y) = C in some neighborhood of O(0,0)
[19]. Also, O(0,0) is a center if and only if
(1) has a holomorphic integrating factor of the
form pr =1+ p;(x,y) in some neighborhood
of O(0,0) [1].

There exists a formal power series F'(x,y) =
> Fi(z,y) such that the rate of change of
F(z,y) along trajectories of (1) is a linear
combination of polynomials {(z* + 4%)7}32, :

Cil_}tW N j=2 Li1(z® +y°).

Quantities L;, j = 1,00 are polynomials
with respect to the coefficients of system (1)
called to be the Lyapunov quantities. The ori-
gin is a fine focus of order rif L; = Ly = ... =
L, 1 =0and L, # 0. The origin is a center for
(1) if and only if L; =0, j =1, 00.

By the Hilbert basis theorem, there is N
such that L; = 0 for all j if and only if L; =0

for all 7 < N. It is only necessary to find a
finite number of Lyapunov quantities, though
in any given case it is not known a priori how
many are required.

The number N is known for quadratic
systems N = 3 [2] and for cubic systems
with only homogeneous cubic nonlinearities
N = 5 [26]. If the cubic system (1) contains
both quadratic and cubic nonlinearities, the
problem of the center has been solved only
in some particular cases (see, for example,
[3-15,17,18,20, 21]).

In this paper we solve the problem of
the center for a class of cubic differential
systems (1) with two invariant straight li-
nes and one irreducible invariant cubic. The
paper is organized as follows. In Section 1 we
present the known results concerning relati-
on between integrability, invariant algebraic
curves and Lyapunov quantities. In Section 2
we find twenty eight sets of conditions for the
existence of two invariant straight lines and
one invariant cubic. In Section 3 we obtain
the center conditions for cubic system (1) with
two invariant straight lines and one invariant
cubic and determine the order of the fine focus
0(0,0).

1. Algebraic
sequences

In this paper we study the problem of the
center for cubic differential system (1) assumi-
ng that the system has irreducible invariant
algebraic curves: two invariant straight lines
and one invariant cubic.

solutions and center

Definition 1. An algebraic invariant curve of
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(1) is the solution set in C* of an equation
O(x,y) = 0, where ® is a polynomial in x,y
with complex coefficients such that

0P 0P

%P(x,y) + 8—yQ(=T7iU) = &(z,y)K(z,y),

for some polynomial in z,y, K = K(z,y) with
complex coefficients, called the cofactor of the
nvariant algebraic curve ® = 0.

We say that the invariant algebraic curve
O (z,y) = 01is an algebraic solution of (1) if and
only if ®(z,y) is an irreducible polynomial in
Clz, y].

If the cubic system (1) has sufficiently many
invariant algebraic curves ®;(z,y) = 0, j =
1,...,q, then in most cases a first integral (an
integrating factor) can be constructed in the
Darboux form

DY PY? - - DY (2)
Function (2), with o; € C not all zero, is a
first integral (an integrating factor) for (1) if
and only if

! _ : _0Q 9P
;ajKj:O <]Z_;(XJK]:—8—(U—$>

If system (1) has a first integral or an
integrating factor of the form (2), being ®; =0
invariant algebraic curves of (1), then system
(1) is called Darboux integrable [25]. The cubic
systems (1) which are Darboux integrable have
a center at O(0,0).

The method of Darboux turns out to be
very useful and elegant one to prove integrabi-
lity for some classes of systems depending on
parameters. These years, interesting results on
algebraic solutions, Lyapunov quantities and
Darboux integrability have been obtained (see,
for example, [6-11,14,16,22,23|).

Definition 2. We say that (Pp, k& =
1,M; L = N) is a center sequence for (1)
if the existence of M invariant irreducible
algebraic curves ®p(x,y) = 0 and the vanishi-
ng of the Lyapunov quantities L,, v = 1, N,
implies the origin O(0,0) to be a center for (1).

The problem of center sequences for cubic
differential systems with invariant algebraic
curves was considered in [5-9, 24]. In these
papers, the problem of the center for cubic
systems with four invariant straight lines, three
invariant straight lines, two invariant straight
lines and one invariant conic was completely
solved. The main results of these works are
summarized in the following theorem.

Theorem 1. (a;z+bjy+c;, j = 1,4, L=2),
(ajz +bjy+cj, j =13, L=17) and (a;x +
bjy+cj, 7 =1,2, az02% + a1y + agy?® +apr+
agy +1=0; L =4) are center sequences for
the cubic system (1).

The problem of the center for cubic system
(1) having two parallel invariant straight li-
nes and one invariant cubic was solved in [11]
and for cubic system (1) having a bundle of
two invariant straight lines and one invariant
cubic was solved in [12], [13]. The main results
of these papers are gathered in the following
theorem.

Theorem 2. (I, = az + bjy +¢j,j =
1,2, L||la, ®; L =2) and (l; = 1+ ajo —
y,j:1,2, q), llﬂlzﬂsz((),l), L =
3), where ® = x* + y? + azox® + anriy +
a122y® +agsy® is an irreducible invariant cubic,
are center sequences for the cubic system (1).

In the present paper, we shall prove that
(1+ax—y j = 1,2 & L = 2), where
O = 2% + y? + azr® + a2’y + apay? is an
irreducible invariant cubic, is a center sequence
for the cubic system (1).

2. Conditions for the existence of an
invariant cubic

Let the cubic system (1) have two invari-
ant straight lines [y, [ intersecting at a real si-
ngular point (zg, o). By rotating the system
of coordinates (x — xcosp — ysinp,y —
rsing + ycosy) and rescaling the axes of
coordinates (r — az,y — ay), we obtain
[1Nly = (0,1). In this case the invariant strai-
ght lines can be written as

l; =14a;2—y =0, a; € C, j =1,2; ay—a; # 0.

(3)
According to [10] the straight lines (3) are
invariant for (1) if and only if the following
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coefficient conditions are satisfied:

k:(a—l)(a1+a2)+g, l:—b,
r=—f—1, s=(1—a)aas,

m = (ay + az)(c — ay — as) + ajas—
—a+d+2, ¢g= (a1 + az — c)aaz — g,
p=([+2)(a1+a2)+b—c
n = —(f + 2)(11@2 — (d+ 1)

In this case the cubic system (1) looks:

t=y+ar*+cxy+ fy* + [(a —1)x
X (ay + ag) + glzi+
+d+2—a—a?— (a; + az)(az — c)]x
xx?y + [(f +2)(ay + az) + b — ] x
xzy? — (f + 1)y’ = P(z,y),
= —x — gr? — davy — by*+
+(a — 1)ajasa® + [g + araz(c—
—ay — az)|x?y + [(f + 2)aras + d + 1] X
xxy® + by’ = Q(z,y).
(1)
In this section for cubic system (1) with two
invariant straight lines (4) we find conditions
for the existence of one irreducible invariant
cubic curve

®(z,y) = 2° + y* + azox® + an Y+

()

+ary’ + agy’ =0,
where (aso, az1, a1z, aps) # 0 and a;; € R.

By Definition 1, the cubic curve (5) is an
invariant cubic curve for system (1) if there
exist numbers coq, c11, Co2, C10, o1 € R such
that

= O(z,y) X

0o 0P

(6)

Identifying the coefficients of the monomials
z'y’ in (6), we reduce this identity to a system
of fifteen equations { F;; = 0} for the unknowns
aso, G21, 12, A3, C20, C11, Co2, C10,Co1- When i +
j = 3, we find that Cilo — 2a — asy, Cp1 =
a2 — 2[), d = (3@21 - 3@03 — 2a + 2f)/2, g =
(3@30 - 3(112 + 2b + 26)/2 and asp, 21, 12, A3
are the solutions of the following systems of
algebraic equations:

X (Czox2 + cuixy + 002y2 + c10T + cory)-

F50 = 9@12@30 — 2(130(3(&1 + CLQ)(CL — ].) + 3b+
+3c — 020) -+ 2@21@1&2(1 — a) — 9@30 = O,

Fi1 = 9apsaso + 9ai2a21 + 4arza1a2(1 — a)—
—18as1a30 + 2as1(c20 + (a1 + az)(aras—
—2a + 2) — cayas — 3b — 3¢)+
+ 20,30(011 + 6a — 3f -6 + 3(@1 —+ CLQ)X
X (a1 + ag — ¢) — 3ajas) =0,

= 9agzas; + 6agzaias(l — a) + 9a2y,—
—961%1 — 9@12@30 -+ 2&12(020 -+ (a1 + GQ)X
X (1 —a)+ 2a1az(a; + az — ¢) — 3b — 3¢)+
+2a21(611 + ba — 3f -5+ 2(@1 + CLQ) X
X(a1 4+ ag —c) — (f +4)araz) + 2a3px

X (cog —3b+3c—3(f +2)(a1 + a2)) =0,
= 2@03(620 + 3&1@2(@1 + as — C) — 3b—
—30) — 9aipa91 + 6(f + 1)CL30 + 2a19 X

X (c11+4a—3f —4+ (a1 + as) X

X (a1 + as —¢) — (2f + 5)ajaz) + 9ags x

X (2@12 — 0,30) + 2a9; (C02 — 2(f + 2) X
x(a1 + CLQ) —3b+ 2(3) = 0,

Fys

F14 = a03(9a03 — 9@21 + 2(011 —+ 3(@ — f — 1)—
—3(f + 2)a1a2)) + 2@12(002 —3b +c—
—(f+2)(a1 + az)) +4(f + L)az =0,

F05 = aog(CQQ — ?)b) + (f + 1)@12 = 0,

(7)

F40 = 3@12(@21 — 2) — CL30(CL21 —2a — 6)—

—2(b+ c)ag +2(2b + 2¢ + 2(ay + ag) X
X(CL — 1) — 620) = 0,

= 2&30(2b + 3c — 4(112) + (121(2& — 2f—|—
+6 — ag1) + aia(6as — 4b — 4c) + 3ags X
X (a9 — 2) + 4a(araz — 2) + 4(a1 + a2) ¥
X (c—ay —ag) —2c11 +4f+8=0,

= a03(15a12 — 9@30 — 6b — 60) + 2(112><
x(a — 2f -3 - 3@21) + 2&21(() + 20)"‘
+ 2(4b — Co2 — C0 T 2<f + 2)(&1 + (lg)"’
+3<f + 1)@30 — 2a1a2(a1 + ag — C)) = 0,

= a03(2a — 6f —6— 7&21 + 9&03)+
+2a12(c — alg) —+ 2(2f -+ 3)&21—
—2(2a +c11— (2f + 4)&1&2) = O,

F04 = a12(a03 - f) + b(aog — 2) + co2 = 0. ( )

8
The conditions for the existence of an invari-

ant cubic for system (4) will be found studying
the consistency of the system of equations {(7),
(8)} and assuming that agz3 = 0. In this case
the invariant cubic curve (5) looks as

Fy

F13

®(z,y) = 2°+y° +azr’ +anr’y+apry® = 0.

(9)

Then from the equation Fys = 0 of (7), we
can see that either a;1o =0 or f = —1.
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3.1. Assume that a;s = 0 and let agy =
0. Then Fys = 0,F4 = 0 and f = —1. We
express Cgg, €11, Coo from the equations of (7)
and aq, agy from Fy, = 0, Fyy = 0. Then reduce
the equation F3; = 0 by a3 from Fi3 = 0.

If ¥ = 3 and @ = 0, then we have the
following set of conditions

1)a=0,d=-1, f=-1, g = (3c—
b)/3, b* =3, a1 = (3¢ — b— 3az)/3, 3a3 +
(b—3c)ag —3bc —6=0

for the existence of an invariant cubic curve
9(z? + y*) — 8ba® = 0.

If ¥» = 3 and a # 0, then we obtain the
following set of conditions

2) a=4/3,¢c=(=70)/9,d = (=7)/3, [ =
—1,9=—2c, b* =3, 9a; +9as + 10b = 0,
9a3 + 10bay + 51 =0

for the existence of an invariant cubic curve
9(x? + y?) + 8ba3 = 0.

Let b% # 3 and express ¢ from Fjo = 0. Then
F31 = fife = 0, where f; = b*(2a—3)+9(a—1)?
and fo = (3b® + 7a® + 6a — 9)% + 32a*(a —
3)2 # 0. When f; = 0 we get the following set
of conditions for the existence of an invariant
cubic

3) c=02a—-5)/3,d=—-a-1, f = —1,
g = [2b(5a® — 14a + 9)]/(6a — 9), b*(2a —
3)+9(a—1)*=0, a; = (2ab—6b—3ay)/3,
3a3 + (b —3c)ag + 12a + b* — 3bc — 9 = 0.

The invariant cubic is 3(2a — 3)(z? + y?) +
4b(a® — 3a + 2)z3 = 0.

3.2. Assume that a;5 = 0 and let ag; #
0. Then Fiy = 0 yields f = —1. We express
Co2, C11, C20 from the equations F23 = O, F32 =
0, Fy1 = 0 and obtain that F5g = g19293 = 0,
where g1 = ajas + aso, g2 = azaz + asz, g3 =
(CL — 1)&21 + (a1 + o — C)(Igg.

If gg = 0, then agy = —ayas; and Fyy =
(CL21 + 1)((2@ -2 agl)al + 2b + 20) =0.

Suppose that as; = —1 and express a; from
F04 = 0, then F31 = il’ig = 0, where

11 = 2a9 + b — 2¢ and i3 = 4aay — 6ay + 3b + Gc¢.

When ¢; = 0, then b = 0 and the right-hand
sides of (1) have a common factor 1+ cx — y.

56

When #; # 0, we reduce the equations Fyy =
0, F13 = 0 by b from i, = 0. Then we calculate
the resultant of the polynomials Fy, and Fi3
with respect to a and establish that the system
of equations {Fy = 0, Fi3 = 0} is consistent
if and only if 4a2 + 18a + 9 = 0. We obtain the
following set of conditions for the existence of
an invariant cubic

4) a = (=0*—-1)/2, c =b(—=b*—5)/2, d =
(b* —4)/2, g = 5b(—=b* —3)/4, f = —1,
a; = b(—b*—3)/2, ay = (—3b)/2.

The invariant cubic is 2(x? + y?) — 2?(b%z +
3bx 4 2y) = 0.

Let as; + 1 # 0. Then the equation Fjy =
0 yields ¢ = (aja21 — 2aa; + 2a; — 2b)/2.
We express a from Fi3 = 0 and b from
Foys = 0. Calculating the resultant of Fj;
and Fh with respect to as, we obtain that
R€S(F31, FQQ, CLQ) = (CL% + ].)hlhghg, where hl =
a? + ag + 1, hy = 3a] — 4a%aq; + 14a? + 27,
hs = 27a%a3, — a3, + 15a3, — 48aq; — 64.

If hy = 0, then as; = —a? — 1 and we get
the following set of conditions

5) b= (—2aa; — a3 —a; —2a3)/3, c = (4as +
5a; —a} —2aay) /6, d = (—2a—3a?—5)/2,
f= 1 g=a@—a+al), oz (1} +
9+21a? +ay(a? +1)(3ay +2as))/(2(3a? +
2a1a2+9)), F31 = a3(23a? +5ayas + 4a3 +
54) — 18alay + 27ay — 4a3 — 27ay = 0.

The invariant cubic is 2%+ y* + (a3 +1)(a1z —
y)z? = 0.

If hy # 0 and hy = 0, then ay = (3a] +
14a? + 27)/(4a?) and we find the following set
of conditions for the existence of an invariant
cubic

6) a = (3af + 14a? + 27)/(8a?), b = (—a? —
3)/a1,c:a1—b,f: _17d:2a_17g:
(—9af — 34a? — 81)/(8a1), ay = (—3b)/2,
5a8 + 3lat 4 63af — 27 = 0.

The invariant cubic is 4a?(z? + y*) — (3a] +
14a? + 27)(ayz — y)x® = 0.
Suppose that hihy # 0 and let hy = 0.
Denote as; = 3h% — 1, then
hs = (3a1h?® — a; + h® — 3h) x
X(3a1h2 — a1 — h3 + 3h> =0.
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In this case we obtain the following two sets
of conditions:

7)Y a= (3h*—1)/2, b= —2h, c=h
4)/(3a), g = h(13a — 4 — 3a?)/(3a)
—1,d = 2a—1, a; = h(h? — 3)/(3h* —
1), a9 = 3h.

The invariant cubic is 22 + y* + (3hx — h3z +
3h%y —y)z? = 0.

Q

(7

[\

8) a= (3h? —1)/2, b = 2h, ¢ = —h(Ta —
4)/(3a), g = —h(13a —4—3a*)/(3a), f =
—1,d=2a—1,a; = —h(h* —3)/(3h* —
].), a9 = —3h.

The invariant cubic is 22 + y? + (h3x — 3hx +
3h%y — y)x? = 0.

The case go = 0 is symmetric to g; = 0 and
we get the conditions 4) — 8).

Assume that g1go # 0 and let g3 = 0. Then
a = (a9 +casy—azazg—ajazy)/as. We express
a; from Fp, = 0 and reduce the equations of
(8) by a3 from Fj3 = 0. Consider the equation
Fy — Fy = 0 and suppose that bazy — 3a3, +
b%ay; = 0. In this case we get the following set
of conditions for the existence of an invariant
cubic

9)a=?+4)/4, c=(-3b)/2,d= (1’ —
/2, f = =1, g = b(3b* —4)/8, a1 =
—ay — 2b, 4a3 + 8bay + 5b* + 4 = 0.

The invariant cubic is 4(z? 4+ y?) + b*z?(bx +
2y) = 0.

Suppose that bazg — 3a3; + b*az # 0 and
express ¢ from the equation Fyy — Fyy = 0.
If azo = 0, then we have the following set of
conditions

10)a=1,b=2c,d =10, f = -1, g = 3¢,
a1:3\/§, a2:—3\/§.

The invariant cubic is 22 + y? + 82y = 0.

Let asg # 0 and express agy from F3; = 0. In
this case we get the following set of conditions
for the existence of an invariant cubic

]_]_) a = (2@21 + bago)/(2a21), CcC = [—b(a%l +
921 (b2 — 32) —1—4192)]/[2(3@%1 — 6261,21 — 4[)2)],
d = (3&21 — 2a — 2)/2, f = —1, g =

(3@30 + 2b—|— 20)/2, agzp = [(3@21 — b2) (CL21 —
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8)a3,]/[b(3a3; — b*ag — 4b%)], a1 = (2¢ —
b — 2@2)/2, CL21<26L% + (b - 2C)CL2 + b2 —
20c+2) — Tas, + 4bazy = 0, Fyy = 8laj, —
30b%a3, + b (b? +24) a2, +8b*ay +16b* = 0.

The invariant cubic is x2+y2+x2(a30x+a21y) =
0.

3.3. Assume that a;o # 0 and let f =
—1. We express cgo, 11, C20 from the equati-
ons F14 = O, F23 = 0, F32 = 0 of (7)
and calculate the resultant of the polynomi-
als Fy; and Fj5g with respect to a. We obtain
that RGS(F41,F50,G) = j1j2j3j4, where jl =

daizazg — aél, Jo = a1+ ax —c jz = a%am +
a1a1 + a3g, Ja = G%Gw + asag; + asgp.
3.3.1. Suppose that j; = 0. Then azy =

a%l/(4a12> and F41 = hlhghg = 0, where hl =
2@1&12 + aoy, h2 = 2&2(112 + asy, hg = 2((1 —
1)&12 + (CLl + ag — C)(lgl.

Let a; = (—a21)/(2a12), then hy = 0 and
F50 = 0. We express b from Fy, = 0 and reduce
the equations F3; = 0 and Fhy = 0 by a3 from
Fi3 = 0. Suppose that as;+1 # 0 and express ¢
from Fyy = 0. Then Fyy— F31 = (a1 —2a)(aly—
2@21 — 4) =0.

If a1 = 2a and a = 4, then we have the
following two sets of conditions for the exi-
stence of an invariant cubic:

12) a =4, b=7—-g,c=29—-7,d =T,
f= -1, 9> —14g +46 = 0, a; = —1,
as = 39 — 17.

The invariant cubic is 22 +y* +4z(z +y)? = 0.

13) a=4,b=—-T—g,c=29+7,d=1T,
f=-1,¢414g4+46=0,a; =1, ay =
39+ 17.

The invariant cubic is 2?4+ y* —4z(z —y)? = 0.

If ag; = 2a and a # 4, then we find the
following set of conditions

14) b = [3(a® — afy)]/az(a — 4)], ¢ =
(4a” —2aa3y —4a+5aly)/[a12(4—a)], d =
2a — 1, g = (a?y, — 3a® + 17a® — aal,
8a)/[2a12(4 — a)], a1 = (—a)/ay2, as
(02, — 9a° + 2aay)[[2anla — D), Fig
27at, —2a,(4a® — 3a* +48a+32) +27a*
0.

(@31
|



The invariant cubic is ays(2? + y?) + x(az +
algy)Q = 0

Suppose that as; # 2a and let ag; = (a2, —
4)/2. If 5a%, — 108 = 0, then Fy = (150 —
64)(bajsas —234) = 0 and we get the following
two sets of conditions:

15) a = 64/15, b = (504 — 25&12@2)/(75&12),
¢ = 2(25a1zas + 897)/(T5aw), f = —1,
d= 119/15, g = (25@12612—1—2046)/(75@12),
5@%2 —108 = O, a; = (-22)/(5@12), 750/% —
145&12@2 —819=0.

The invariant cubic is 16a19(z*+y?)+x(ai,z—

4 + 4aray)* = 0.

16) b = 6(15a — 101)/(25a12), ¢ = 2(45a +
497)/(25a12), d = (61 — ba)/5, f = —1,
g = 4(45a + 76)/(25a12), 5a3, — 108 = 0,
a; = (—22)/(50,12), a9 = 234/(5(112)

The invariant cubic is 16a12(2? +y?) +z(ayz —

4 + 4arpy)* = 0.

If 5a3,—108 # 0, then we obtain the followi-
ng set of conditions

17) b = (dcary—4azais—3aj, —4)/(4ars), d =
(3aiy, — 4a —16)/4, g = (3ai, — 9643, —
32a12a9 + 64cais + 16)/(32@12), n =
(daays+a2yas —das —3a3, +12a19) /(4ays),
¢ = [a3,(16a® + 104a — aj, — 10a3, —
64) + 96a — 160]/[16a12(6a — 4 — a3,)],
ay = [4aaiy(5ai, — 4) — (5ai, — 12)(a3,y +
4)(a2y — 6)]/[32a12(6a — 4 — a3,)], Fiz =
3af, —4afy(8a+1)+4at,(28a° +8a—13) +
32a2,(1 — 4a® — 2a* + 4a) — 64 = 0.

The invariant cubic is 16a;5 (2% +y?) +x(ayz —
4 + daypy)? = 0.

Let az; = —1. In this case Fy = (a —
1)(4a1a2 — 1) = 0. If a = 1, then the system
(8) is not consistent. Assume that a # 1 and let
as = 1/(4ays). The case a = (—1)/2 is contai-
ned in 14). If a # (—1)/2 and a2, = 2, then we
get the following set of conditions

18) a = (-3)/4, = 1/(2a12), ¢ =
13/(4a12>7 d = <_7)/47 f = _17 g
9/(8(112), CL%Q = 2, a; = 1/(2@12), Ay =
1/(4&12).

The invariant cubic is 4a1o(2? + y?) + z(2? —
4@12$y + 8y2) =0.
The case hy = 0 is symmetric to hy = 0 if

we replace ao with a; and we obtain the sets
of conditions 12) — 18).

Assume that hihy # 0 and let hy = 0.
We express a; from Fyy = 0 and reduce the
equations of (8) by a2 from Fj3 = 0. Then
hs = 0 yields a = (a12a91 + 2a12 + bas ]/ (2a12).
Denote Al = 120921 — 2@12 - 3()@21 and AQ =
4a2y(ag + 16) — 3a3;.

Let Ay # 0 and express ¢ from Fyy = 0. If
asi(as; +4) = 0, then the system (8) is not
consistent. If ay; = 8, then a5 = +4 and we
get the following two sets of conditions:

19) a =b+5,c=b+12,d =6 —b, f =
_179:2(5—1-6),(11:8—@27 a%—8a2:
11.

The invariant cubic is 2% +y* +4z(z +y)? = 0.

20)a =5—bc=0b—12,d =6+b, f =
—1,9=2(b—6), a1 = —as—8, a2+8az =
11.

The invariant cubic is 2?4+ y* —4z(z —y)? = 0.

Suppose that ag(ag + 4)(az — 8)A; # 0
and let Ay = 0. Then the system (8) is not
consistent.

Suppose that ag (a9 +4) (a2 —8)A1Ag #0
and reduce the equations {Fy = 0, F3; = 0}
by b2 from H = CL21F40 + (112F31 = 0. Then
I3 = ejeq =0, where

e1 = 44aiyag — 64at,+
+16ba12a§1 - 128()&12(121 - 9&%1,
ey = 432aty, — 16a2,a3, + 24a3,a3, —
—T768a%,a91 — 102402, + 27a3,.

If e = 0, then express b and obtain that
F3=Fp=0and H=A;A2#0.

If e # 0 and e = 0, then we have the
following set of conditions

21) a = (a12a21 + 2a12 + bag1)/(2a12), ¢ =
[4@%2(26621 — 7) + 126@12(2 — 3&21) + 9&%1 —
12[)2&21]/[4(&126121 — 2@12 — 3ba21)]7 d =
(2a12a91 — 4aia — bag)/(2a12), f = —1,
g = (3@%1 - 12@%2 + 8ba12 + 80(112)/(8&12>,
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a; = C— b— a2 — A9, 2@12@% + 2@12@2(&12 +
b — c) + 4ba3y + a1p(20* — 2bc + 2) +
a21(4b — 3@12) = 0, H = bQ (4(1%2(121 +
64a3, —3a3,) +bayz(4aiyas —32a3,+ a3, —
8a3,) + aly(12a3, — a3, — 16ag1) = 0, €5 =
432at, —16a2,a3, +24a2,a3, — 768a2,a91 —
1024a2, 4 27a3, = 0.

The invariant cubic is 4ays(2? +y?) + x(axx +
2@12?])2 = 0.

Let Al = 0. Then b = [alg(agl - 2)]/(3@21>
and the system of equations {Fyy = 0, F3; = 0}
is consistent if and only if a1o = 44, as; = 8.
In this case we obtain the sets of conditions 19)

(b=1) and 20) (b= —1).

3.3.2. Assume that j; # 0 and let j, = 0.
Then ¢ = a; + ay and Fy; = iy1io = 0, where
il = a — 1, iz = 2(11(12&%2 + (&1 + az)alzagl —
2a12a30 + a3,.

Let ©7 = 0. Then F5y = 0,Fy;; = 0 and
oy = 0 yields a1, = —b. We obtain that

F40 = (2&1 + 2&2 + asg + 5b) (CL21 + 1) =0.

Suppose that as; = —1. Then Fyy = 0
implies azy = —(2a1 + 2a2 + 7b)/3 and F3 =
(2ay + ag + 3b)(ay + 2a2 + 3b) = 0. In this case
the system (8) is not consistent.

Suppose that ag; # —1. Then Fyy = 0 yields
azo = —2a; — 2ay — 5b and Fy = (a1 + as +
2b) (a9 +4) = 0. If agy; = —4, then the system
(8) is not consistent.

If a921 7é —4 and a; = —a2—2b, then F13 =0
implies ag; = [2(ag + b)* + 2]/7. In this case
we get the following set of conditions for the
existence of an invariant cubic

22) a=1,¢c=-2b,d=10, f = -1, g = —b,
a; = —ay — 2b, a3 + 2bay + b* — 27 = 0.

The invariant cubic is 2% + y? — x(bz? — 8zy +
by?) = 0.

Let i1 # 0 and ia = 0. Then a3y =
(2&1&2&%2 + (a1 + ag)a12a21 + agl)/(Q(llg) and
the equations Fyy = 0, Fyy = 0 yield ao; =
bla; + as), a2 = —b. We express a from
Fi3 = 0 and reduce the equations Fjy = 0 and
F31 = 0 by b from Fh, = 0. In this case the
equation G = Fyg + a3 F31 = 0 becomes

= —2(b(ay — az) + a3 + 1)(2a; + 5b)(a3 + 1) = 0.

If a; = (—5b)/2, then as = (—46)/(11b) and
b> = 4/11. We find the following set of condi-
tions for the existence of an invariant cubic

23) a = (—61)/11, ¢ = —14b, d = (—34)/11,
f=—1,9=(—299b)/11, b* = 4/11, ay =
(=5b)/2, az = (—23b)/2.

The invariant cubic is 2(z% + y?) — z(6b*x +
2z + by)(bbzx + 2y) = 0.

If a # (=5b)/2, then G = 0 implies
a; = (bag — a3 — 1)/b and Fyy = 0 yields
as = (—5b)/2. In this case b* = 4/11 and we
obtain the set of conditions 23).

3.3.3. Assume that jijo # 0 and let j3 = 0.
Then aszy = —aj(aja12 + ag) and Fyy = rirg =
0, where 11 = ajs(a; + az) + a9, 12 = (a —
1)&12 + (CLl + as — C) (a1a12 + CL21).

Suppose that r; = 0. Then ay; = —(a; +
as)ayz. We express a; from Fyy = 0 and reduce
the equations {F40 = O,Fgl = 0, F22 = 0} by
a3 from Fy3 = 0.

Denote Az = ayo — 3b+ ¢ and let Az # 0.
If A3 = 0 the system (8) is not consistent.
We express a from Fyy = 0 and calculate the
resultant of the polynomials Fjy and F3; with
respect to c. We obtain that Res(Fy, F31,¢) =
10485766@125152 + -+ So, where S1 = Q19 — 2b,
So = Q19 — b, S3 = 3&%2 - 8ba12 - 4, S4 =
a%2 + (3(112 - 4b)2 + 8, S5 — (a12 - 4b)2 + 4,
s¢ = 9a3y + 4, s; = baly + 4, sg = aly + 4,
Sg = b>+ 1 and 5485 -+ s9 # 0.

Let b = 0. If a;o = ¢, then the invariant
cubic is reducible. If a;3 # ¢ and a3, = 4/3,
then ¢ — 12 = 0. We get the following set of
conditions

24) a = (-7)/3,b=0,d = (—-8)/3, f = —1,
g=1c¢c—=12 =10, a; = (2c — 3ay)/3,
3a3 — 2cas + 3 = 0.
The invariant cubic is 3(z*+y?) +z(cx? —8zy+
2\ _
cy®) = 0.
Let s = 0 and b # 0. Then a1, = 2b and

c = (3b> +1)/(2b). In this case the right hand
side of (1) have a common linear factor.

Let s = 0 and bs; # 0. Then a;3 = b and
c¢ = 0. We find the following set of conditions
25) a=0"+1,¢c=0,d=200*-1), f=—1,

g = b(3b2 + 1), 12 = —b+ i\/ b2 +1
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for the existence of an invariant cubic z2 +y2 +
(20% + b)z® + 2b%2%y + bry? = 0.

Let s3 = 0 and bsysy # 0. Then b = (3a2, —
4)/(8ay2) and ¢ = (15af,+ 32a}, +16)/(16a3,).
In this case we get the following set of conditi-
ons

26) a = (7ai, — 4842, — 48)/(32da%,), b
(3aiy, — 4)/(8a12), ¢ = (15ai, + 32ai,
16)/(16a3,), d = (7ai, — 52)/16, f
—1, g = (94% — 132a], + 432a3,
320)/(128a3,), a1 = (4—af,)/(4a12), az
(16 — 3ai, + 24a2,)/(16a3,).

=+ 1+

The invariant cubic curve is
64a3,(2? + y?) + x(3alyr — 24ai,x—

—16z + 16a3,y)(a2yx — 4o + 4ar9y) = 0.

Assume that r; # 0 and let r = 0. Then
a = [(112—((11 +a2—c)(a1a12+a21)]/a12. Denote
A4 = a12(a1 — a2 + CL12) + 3@21, A5 = alg(a% —
aja1z—1)+2ajas9 and suppose that AyAs # 0.
We express b from Fyy, = 0, ¢ from Fi3 = 0 and
reduce the equations {Fy = 0, F3; = 0} by a3
from F55 = 0. Then express as from Fyy = 0
and obtain that F3; = ujusuzusAsAs5, where
uy = 3&1&12 + 2+ 2@21, Uy = 4@1@12 — G%Q -+
4 + 4@21, us — CL% -+ 2(11@12 + 1+ ag1, Uy =
(CL16L12 + CL21>2 + CL%Q 7A 0.

If u; = 0, then the system (8) is not consi-
stent. If u; # 0 and uy = 0, then ay =
(a2, — dajary — 4)/4 and Fyy = 0 yields a; =
(afy, — T2a3, — 432)/(16a3,). In this case we
obtain the following set of conditions

27) a = (3a}, — 1643, + 144)/(32d3,), b =
(—5a, — 36)/(8aw), ¢ = (35a}, —
432)/(16a3,), d = (3a}, + T76a%, +
576)/(16a3,), f = —1, g = (236aj, —
3aS, — 144a2, — 8640)/(128a3,), a; =
(aiy — T2a3, — 432)/(16ai,), as = (Taf, +
36)/(4a12)

for the existence of an invariant cubic
64a3,(2? + y*) — x(alyx — T2a3,0—

—432x — 16a3,y)(a3yx — 4z + dajy) = 0.

If wyup # 0 and uz = 0, then ay =
—a? — 2a1a12 — 1 and Fypy = 0 yields ajp =
(—7a} — 18a? — 27)/(8a}). In this case we get
the following set of conditions

28) a = (3a$—3lai+81a?+243)/[8a?(ai+9)],
b = (Taj + 18a? + 27)/[2a1(a? + 9)], ¢ =
(a1 — 18at — 27)(5a; + 9)]/[4ai(ai + 9)],
d = [2a(a?+9) +26a? +18]/(a?+9), f =
—1, g = (3a} + 94a$ — 288a] — 1134a? —
243)/[16a3(a? +9)], ay = —(19a] + 54a? +
27),/(8a3)

for the existence of an invariant cubic
8a3(x? + y?) + x(aSx — 10a3x — 27a 2+
+Taty + 18a3y + 27y)(arx — y) = 0.

Let A4 = (. Then 91 = 0,12((1,2 —aq —alg)/?)
and the equations Fi3 = 0 yields ay = (a2, +
3ajajs + 6)/(aiz + 6ay). In this case the right-
hand sides of (1) have a common factor.

Assume that Ay # 0 and let A5 = 0. Then
91 = CL12(1 + aja12 — CL%)/(QCLl) If 19 = —2CL1,
then the right-hand sides of (1) have a common
factor. If a;5 # —2a;, then express ¢ from
Fy = 0 and the system of equations (8) is not
consistent.

3.3.4. Assume that jijo73 # 0 and let j4 =
0. The case j; = 0 is equivalent with j3 =
0 if we take into consideration the symmetry
Fij(a1,a2) = Fjj(az, a1) in the algebraic system
of equations {(7), (8)}.

3. Center conditions for cubic system
(1) with two invariant straight lines and
one invariant cubic

In this section we derive four sets of condi-
tions for the origin to be a center for cubic
system (1) by constructing integrating factors
or first integrals from invariant functions.

Theorem 3. The following four sets of condi-
tions are sufficient conditions for the origin to
be a center for system (1):

i)a=k=r=0,d=f=-1, g=(3c—
b)/3, | = =b, m = [2(=bc —2)]/3, n =
bc+2,p=(20)/3, g =0, s = —bc—

2, b? = 3;
(ii)a = (0* +4)/4, ¢ = (=3b)/2, d =
2a — 4, f=—1, g=[b(30* —4)]/8, k =

(—ab)/2, | = —=b, m = b*/2, n
(=70*)/4, p=b/2, g = -1, r=0, s =
[—b?(5b% + 4)]/16;

2, d=10, f = —1, g =

(i) a =1, ¢ =
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—b, k=—b l=—b m=b—16,n =
—m, p=q=0br=s5=0

(iv)a=b0+1,c=r=0,d=2(*-1), f=
-1, g =B +1), k=0b0*+1),1 =
—b, m = —b*, n=—4*, p= —b, q
b(—Tb* —3), s = b*(—2b* —1).

Hosenennss. In Case (i), system (1) has
a Darboux integrating factor of the form
po= 1{52®° where L1, = (3¢ — b
V9c2 + 30bc + T5)x — 6y + 6, & = 9(x? +
y?) — 8bx3, a = —as — 1, ay = (5b + 3¢ —
V9¢c2 + 30bc + 75)/(2v/9¢2 + 30bc + 75), B =
(—4)/3.

In Cases (ii), system (1) has a Darboux first
integral of the form §'15?®° = C, where [; =
2+ (=20 + Vb2 +4)x — 2y, Iy =24 (—2b—
Vb2 +4)r — 2y, & = 4(2* + y?) + 22 (bx +
2y), oy =g =—1, f=1.

In Case (iii), system (1) has a Darboux first
integral of the form

In Case 9) the first Lyapunov quantity vani-
shes, then Theorem 3, (ii).

In Case 10) the first Lyapunov quantity is
Ly = c. If ¢ =0, then Theorem 3, (iii) (¢ = 0).

In Case 11) the first Lyapunov quantity
looks L; = 8laj;, — 6a3;(50* + 108) + b*(b* +
300)aZ, +4b*(24 —Tb*)ag; — 128b*. We calculate
the resultant of Fjy and L; with respect to
b taking into account that ag(ag + 4) # 0.
We find that Res(Fy, Ly,b) = 0 if and only if
91 = (-8)/5 Let 91 = (-8)/5 Then L1 7é 0.
In this case the origin is a focus.

In Case 16) the first Lyapunov quantity
looks Ly = 225a% — 1630a + 1616. If L; = 0,
then the second Lyapunov quantity is Ly # 0.
In this case the origin is a focus.

In Case 19) the first Lyapunov quantity is
Ly = b(b+4). If b = 0, then the second
Lyapunov quantity is Ly # 0. If b = —4, then
Ly = 0 and Theorem 3, (iii) (b = —4).

In Case 20) the first Lyapunov quantity is
Ly = b(b—4). If b = 0, then the second

(2% +y* — 2 (ba® — 8xy + by?)) (b — 2y — 1)_3:C-Lyapunov quantity is Ly # 0. If b = 4, then

In Case (iv), system (1) has a Darboux first
integral of the form
(22 4+ y* + (20° + b)x3 + 2%y + bry?) x
X(br 42y —1)"t=C.

Theorem 4. Let the cubic system (1) have two
invariant straight lines (3) and one invariant
cubic (9). Then a singular point O(0,0) is a
center if and only if the first two Lyapunov
quantities vanish.

Proof. To prove the theorem, we compute the
first two Lyapunov quantities L, Ly in each
series of conditions 1)-28) obtained in Secti-
on 2 by using the algorithm described in [9].
In the expressions for L; we will neglect the
denominators and non-zero factors.

In Case 1) the first Lyapunov quantity vani-
shes, then Theorem 3, (i).

In Cases 2), 3), 4), 6), 7), 8), 12), 13), 14),
15), 17), 18), 23), 24), 26), 27), 28) we have
Ly # 0. Therefore the origin is a focus.

In Case 5) we calculate the resultant of
F3; and L; with respect to as. We find that
R€S(F31, Ll, CLQ) = 8192(7@%"‘18@%4—27)4(7(1%4‘
4)(a? + 1)%ay # 0. The origin is a focus.

Ly = 0 and Theorem 3, (iii) (b = 4).

In Case 21) we reduce the first
Lyapunov quantity by b* from H = 0
and express b from L; = 0. Then

H = 18662445, — 6912a%a01(2a3, — bas +
56) + 32ai,a2, (8az, —40a3, +831a2, —400ay; +
15488) — 48a%ya3,(10a3, — 33a3, + 456a3, +
2176a9; + 12288) + 81a$; (a1 + 16) = 0.

We calculate the resultant of H and e,
with respect to ajs taking into account that
asi(ag; + 4)(ay — 8) # 0. We find that
Res(H, eq,a12) = 0 if and only if a3, — 8a3; —
16ay; — 16 = 0. Let a3, — 8a3, — 16ay —
16 = 0 and calculate the resultant of Lo
and H with respect to a;o. We obtain that
Res(H, L, a12) # 0. Therefore the origin is a
focus.

In Cases 22) and 25) we have L; = 0, then
Theorem 3, (iii) and (iv), respectively.
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