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CENTERS IN CUBIC DIFFERENTIAL SYSTEMS
WITH HOMOGENEOUS INVARIANT STRAIGHT LINES

We solve the problem of the center with at least three invariant straight lines for a cubic
differential system with a singular point O(0, 0) of a center or focus type having homogeneous
invariant straight lines.

1. Introduction
Consider the cubic differential system

ẋ = y + ax2 + cxy + fy2 + kx3+
+ mx2y + pxy2 + ry3 ≡ P (x, y),

ẏ = −(x + gx2 + dxy + by2 + sx3+
+ qx2y + nxy2 + ly3) ≡ Q(x, y),

(1)

where P (x, y) and Q(x, y) are real and copri-
me polynomials in the variables x and y. The
origin O(0, 0) is a singular point of a center or
a focus type for (1). It arises the problem of di-
stinguishing between a center and a focus, i.e.
of finding the coefficient conditions under whi-
ch O(0, 0) is a center. In this paper we study
the problem of the center assuming that (1)
has invariant straight lines.

The derivation of necessary conditions for
a singular point O(0, 0) to be a center for
(1) often involves extensive use of computer
algebra and we obtain them by calculating the
Lyapunov quantities, which are polynomials in
the coefficients of (1). The necessary conditi-
ons are shown to be sufficient by a variety of
methods. A number of techniques, of progressi-
vely wider application, have been developed.

A theorem of Poincaré in [9] says that a
singular point O(0, 0) is a center for (1) if and
only if the system has a nonconstant analytic
first integral F (x, y) = C in a neighborhood
of O(0, 0). It is known [1] that the origin is a
center for system (1) if and only if the system
has an analytic integrating factor of the form

µ(x, y) = 1 +
∑∞

k=1 µk(x, y)
in a neighborhood of O(0, 0), where µk are
homogeneous polynomials of degree k.

There exists a formal power series F (x, y) =∑
Fj(x, y) such that the rate of change of

F (x, y) along trajectories of (1) is a linear
combination of polynomials {(x2 + y2)j}∞j=2 :

dF/dt =
∑∞

j=2 Lj−1(x
2 + y2)j.

Quantities Lj, j = 1,∞ are polynomials with
respect to the coefficients of system (1) called
to be the Lyapunov quantities [8]. The origin
O(0, 0) is a center for (1) if and only if

Lj = 0, j = 1,∞.
An algebraic curve f(x, y) = 0 is said to

be an invariant algebraic curve of system (1) if
there exists a polynomial K(x, y) such that

P · ∂f/∂x + Q · ∂f/∂y = K · f.
The polynomial K is called the cofactor of
the invariant algebraic curve f = 0. If the
cubic system (1) has sufficiently many invari-
ant algebraic curves fj(x, y) = 0, j = 1, q,
then in most cases the first integral (integrati-
ng factor) can be constructed in the Darboux
form

fα1
1 fα2

2 · · · fαq
q (2)

with αj ∈ C not all zero. In this case we say
that system (1) is Darboux integrable.

System (1) has the Darboux first integral
(Darboux integrating factor) of form (2) if and
only if there exist constants αj ∈ C, not all
identically zero such that

α1K1(x, y) + · · ·+ αqKq(x, y) ≡ 0

( q∑
j=1

αjKj(x, y) +
∂P

∂x
+

∂Q

∂y
≡ 0

)
,

where Kj is the cofactor of Φj for j = 1, q.
The problem of the center was solved for

quadratic systems and for cubic symmetric
systems. If cubic system (1) contains both
quadratic and cubic nonlinearities, then the
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problem of finding a finite number of necessary
and sufficient conditions for the center is still
open. It was possible to find a finite number
of conditions for the center only in some parti-
cular cases (see, for example, [2-7, 10-14]).

The problem of the center was solved for
some cubic systems with at least three invari-
ant straight lines ([2, 3, 7, 14]) and for some
classes of cubic systems (1) with two invariant
straight lines and one invariant conic ([4, 5]).

The goal of this paper is to obtain the center
conditions for cubic differential system (1) with
homogeneous invariant straight lines.

The paper is organized as follows. In Secti-
on 2 we find conditions for cubic system (1) to
have two homogeneous invariant straight lines.
In Sections 3 and 4 we solve the problem of
the center for (1) with four invariant straight
lines and with three invariant straight lines of
which two are homogeneous. In Section 5 for
cubic system (1) with two homogeneous invari-
ant straight lines we find sufficient conditions
for O(0, 0) to be a center.

2. Two homogeneous invariant
straight lines
In this section we find conditions under

which cubic system (1) has two homogeneous
invariant straight lines.
Definition 1. A straight line

1 + Ax + By = 0, A, B ∈ C (3)

is said to be invariant for (1), if there exists
a polynomial with complex coefficients K(x, y)
such that the following identity holds

AP (x, y) + BQ(x, y) ≡
(1 + Ax + By)K(x, y).

(4)

If cubic system (1) has complex invariant strai-
ght lines then obviously they occur in complex
conjugated pairs 1+Ax+By = 0 and 1+Ax+
By = 0. As homogeneous invariant straight li-
nes Ax+By = 0 the cubic system (1) can have
only the lines [3]

x− iy = 0, x + iy = 0, i2 = −1. (5)

Identifying the coefficients of the monomials
xνyj in (4), we reduce this identity to a system

of nine equations for the unknowns A, B, cνj,
ν + j = 1, 2. We find that K(x, y) = −Bx +
Ay + (aA − gB + AB)x2 + (cA − dB + B2 −
A2)xy + (fA− bB − AB)y2 and A, B are the
solutions of the system

F1≡(A + b)B2 − (l + fA)B + rA = 0,
F2≡(B + a)A2 − (k + gB)A + sB = 0,
F3≡B3 − 2A2B + fA2 − dB2+

+ (c− b)AB − pA + nB = 0,
F4≡A3 − 2AB2 − cA2 + gB2+

+ (d− a)AB + mA− qB = 0.

(6)

Theorem 1. Cubic system (1) has two
homogeneous invariant straight lines x±iy = 0
if and only if the following set of conditions
holds

g = b + c, f = a + d,
q = p + l − k, s = m + n− r.

(7)

Proof. Let cubic system (1) have
homogeneous invariant straight lines. Then by
Definition 1 the straight lines l1,2 ≡ x∓ iy = 0
are invariant straight lines for (1) if and only
if

P (x, y)∓ iQ(x, y) ≡ (x∓ iy)K(x, y), (8)

where K(x, y) = c00 + c10x + c01y + c20x
2 +

c11xy + c02y
2.

Identifying in (8) the coefficients of the
monomials in x and y, we find that

c10 = a± ig, c20 = k ± is,
c02 = p− k − q ± i(m + n− s),
c00 = ±i, c01 = c− g ± i(a + d),
c11 = m− s± i(k + q)

and

f − a− d± i(b + c− g) = 0,
r + s−m− n± i(l − k + p− q) = 0.

Direct calculations show that f − a − d =
0, b + c − g = 0, r + s − m − n = 0, l −
k + p − q = 0 and cubic system (1) has two
homogeneous invariant straight lines of form
(5) if and only if set of conditions (7) holds.
The cofactors of the invariant straight lines are
K2(x, y) = K1(x, y), K1(x, y) = i + (a + i(b +
c))x + (−b + i(a + d))y + (k + is)x2 + (m− s +
i(k + q))xy + (p− k − q + i(m + n− s))y2.
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3. Four invariant straight lines
and centers
In this section we find conditions for cubic

system (1) to have four distinct invariant strai-
ght lines, two of which are homogeneous, i.e. of
the form l1,2 ≡ x ∓ iy = 0, i2 = −1. Then we
obtain necessary and sufficient conditions for
O(0, 0) to be a center.

For this purpose, we assume that set of
conditions (7) holds. In what follows we wi-
ll consider the problem of finding conditions
for the existence of two more invariant strai-
ght lines of form (3) and divide the study
into two subcases: invariant straight lines (3)
are parallel and invariant straight lines (3) are
nonparallel.

3.1. Let cubic system (1) have two parallel
invariant straight lines l3 and l4 of form (3)
(real or complex conjugated l4 = l3), then by
a rotation of axes we can make them to be
parallel to the axis of ordinates Oy. Note that
by a rotation of axes the linear part of (1) and
the invariant straight lines x∓iy = 0 stay their
forms respectively.

For f = a + d, g = b + c, l = k − p +
q, r = m + n − s and B = 0, A 6= 0, system
(6) becomes

m + n− s = 0, aA− k = 0,
(a + d)A− p = 0, A2 − cA + m = 0.

(9)

Then (9) has two distinct solutions if and only
if s = m + n, a = k = d = p = 0,
m(c2 − 4m) 6= 0. In this case we obtain the
following set of conditions for the existence of
four distinct invariant straight lines:

(e1) a = d = f = k = p = r = 0, g = b + c,
l = q, s = m + n,

m(c2 − 4m) 6= 0. The invariant straight lines
are x± iy = 0, 2 + (c±√c2 − 4m)x = 0.

3.2. Let now cubic system (1) have two
nonparallel invariant straight lines l3 and l4
of form (3) (real or complex conjugated)
intersecting at a point (x0, y0). The intersecti-
on point (x0, y0) is a singular point for (1) wi-
th real coordinates. By rotating the system of
coordinates and rescaling the axes of coordi-
nates, we obtain that x0 = 0, y0 = 1. As a

point (0, 1) is a singular point for (1), then
P (0, 1) = Q(0, 1) = 0. These equalities yield

s = a + d + m + n + 1, q = −b− k + p.
In this case the equation of each invariant

straight line can be written into the form 1 +
Ax − y = 0. For f = a + d, g = b + c, l =
k − p + q, r = m + n− s and B = −1, system
(6) becomes

F2 ≡ (a− 1)A2 + (b + c− k)A−
− a− d−m− n− 1 = 0,

F3 ≡ (a + d + 2)A2 + (b− c− p)A−
− d− n− 1 = 0,

F4 ≡ A3 − cA2 + (a− d + m− 2)A+
+ c− k + p = 0.

(10)

Reduce the equation F3 = 0 of (10) by n from
F2 = 0 and by p from F4 = 0, then F3 ≡ f1f2 =
0, where f1 = A2 − cA + a + m, f2 = A2 + 1.

Suppose f1 = 0. We reduce the equations
F2(A) = 0, F4(A) = 0 by A2 from f1 = 0, then
system (10) becomes

F2 ≡ (ac + b− k)A− a2−
− am− d− n− 1 = 0,

F4 ≡ (d + 2)A + k − c− p = 0,
f1 ≡ A2 − cA + a + m = 0.

(11)

System (11) has two distinct solutions if F2 ≡
0, F4 ≡ 0 and c2 − 4(a + m) 6= 0. Under
the above assumptions we get the following set
of conditions for the existence of four distinct
invariant straight lines

(e2) d = −2, f = a − 2, g = b + c, k =
ac + b, l = −b, q = −(b + c), n = 1 −
a2 − am, p = ac + b − c, r = 1 − a, s =
(a + m)(1− a),

c2− 4(a + m) 6= 0. The invariant straight lines
are x ∓ iy = 0, 1 + A1x − y = 0, 1 + A2x −
y = 0, where A1, A2 are distinct roots of the
equation A2 − cA + a + m = 0.

Assume f1 6= 0 and let f2 = 0. In this case
f2 = 0 yields A = ±i. Substituting this into
(11) we obtain

(b + c− k)i− (d + 2a + m + n) = 0,
(a− d + m− 3)i + (2c− k + p) = 0.

(12)

The equations of (12) imply k = b + c, m =
3 − a + d, n = −a − 2d − 3, p = b − c. From
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this we get the following set of conditions for
the existence of four distinct invariant straight
lines

(e3) f = a + d, k = g = b + c, l = −b, m =
3−a+d, s = 1−a, n = −a−2d−3, p =
b− c, q = −b− 2c, r = −a− d− 1,

((a−1)2 + b2)((a−2)2 + b2) 6= 0. The invariant
straight lines are x ± iy = 0, 1 ± ix − y =
0, 1 + (−b± i(1− a))x + (1− a± bi)y = 0.

Lemma 1. The following six sets of condi-
tions are sufficient conditions for the origin to
be a center for system (1):

(i) a = d = f = k = l = p = q = r = 0, g =
b + c, l = q, s = m + n;

(ii) d = −2, f = a − 2, g = b + c, k =
ac+ b, l = −b, q = −(b+ c), n = 1−a2−
am, p = ac + b − c, s = (a + m)(1 − a),
r = 1− a;

(iii) b = c = g = k = l = p = q = 0, f = a +
d, s = 1−a, m = d−a+3, n = −a−2d−3,
r = −a− d− 1;

(iv) a = 1, b = l = s = 0, f = d + 1, k = g =
c, p = −c, m = d + 2, r = −d − 2, n =
2(−d− 2), q = −2c;

(v) d = −2, f = a − 2, k = g = b, l =
−b, m = 1 − a, c = 0, n = 1 − a, p =
b, q = −b, r = s = 1− a;

(vi) c = −2b, d = −2a, f = −a, g = k = l =
−b, m = −3(a − 1), n = 3(a − 1), p =
q = 3b, r = a− 1, s = −(a− 1).

Proof. If one of conditions (i)–(v) holds the
cubic system (1) has four invariant straight li-
nes two of which are homogeneous invariant
straight lines. In cases (i), (ii), (iv) and (v) we
find the first integral of the Darboux form

lα1
1 lα2

2 lα3
3 lα4

4 = C,

which consists of invariant straight lines:
In case (i): l1,2 = x ± iy, l3,4 =

2 + (c ± √
c2 − 4m )x and α1 = α2 =

m
√

c2 − 4m, α3 = n
√

c2 − 4m + 2bm −
cn, α4 = n

√
c2 − 4m− 2bm + cn.

In case (ii): l1,2 = x ± iy, l3,4 = 2 +

(c ± √
c2 − 4a− 4m )x − 2y and α1 = α2 =

−√c2 − 4a− 4m, α3 = a
√

c2 − 4a− 4m−ac−
2b, α4 = a

√
c2 − 4a− 4m + ac + 2b.

In case (iv): l1,2 = x ± iy, l3,4 = 1 ± ix − y
and α1 = α2 = −1, α3 = α4 = 1.

In case (v): l1,2 = x ± iy, l3,4 = 1 ± ix − y
and α1 = α2 = 1, α3 = −a− ib, α4 = −a + ib.

In case (iii) we find an integrating factor of
the Darboux form

µ = lα1
1 lα2

2 lα3
3 lα4

4 ,

where l1,2 = x ± iy, l3,4 = 1 ± ix − y and
α1 = α2 = (d − 2a + 6)/(2a − 2), α3 = α4 =
(4a + d)/(2− 2a).

If condition (vi) holds then cubic system (1)
has six invariant straight lines two of which are
homogeneous invariant straight lines. We find
the first Darboux integral of the form

lα1
1 lα2

2 lα3
3 lα4

4 lα5
5 lα6

6 = C,

where l1,2 = x ± iy, l3,4 = 1 ± ix − y, l5 =
1 + (i− ia− b)x+(1− a+ ib)y, l6 = 1 + (−i+
ia−b)x+(1−a−ib)y and α1 = α2 = (a−2)2−
b2, α3,4 = 1−2∓ib, α5,6 = 3a−a2−2−b2∓ib.

Theorem 2. Suppose cubic system (1) has
at least four invariant straight lines two of whi-
ch are homogeneous. Then the origin O(0, 0) is
a center for (1) if and only if L1 = L2 = 0.

Proof. We compute the first two Lyapunov
quantities L1 and L2 for (1) by algorithm
proposed in [13] assuming that one set of condi-
tions (e1)–(e3) holds. In the expressions of Lj,
we will neglect the denominators and non-zero
factors.

In case (e1) the vanishing of L1 gives q = 0,
then use Lemma 1, (i).

In case (e2) we find L1 = 0, then use Lemma
1, (ii).

In case (e3) the first Lyapunov quantity is
L1 = c(a − 1) − b(d + 2). Assume b = 0. If
c = 0, then L1 = 0 and use Lemma 1, (iii). If
c 6= 0, a = 1, then L1 = 0 and use Lemma 1,
(iv).

Assume b 6= 0, then L1 = 0 yields d = (ac−
2b − c)/b. The second Lyapunov quantity is
L2 = c(2b + c). If c = 0, then L2 = 0 and
use Lemma 1, (v). If c 6= 0 and c = −2b, then
L2 = 0 and use Lemma 1, (vi).
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4. Three invariant straight lines
and centers
In this section we find conditions for the exi-

stence of three invariant straight lines two of
which are homogeneous and solve the problem
of the center.

Theorem 3. Cubic system (1) has three
invariant straight lines of the form

l1,2 ≡ x± iy = 0, l3 ≡ 1− x = 0 (13)

if and only if the following set of conditions is
satisfied

f = a + d, g = b + c, k = −a,
m = −c− 1, l = d + q, r = 0,
p = −a− d, n = c + s + 1.

(14)

Proof. Assume condition (7) holds and let
cubic system (1) have one nonhomogeneous
invariant line of the form 1 + Ax + By = 0.
This line is real, otherwise, we must have also
the invariant straight line 1+Āx+B̄y = 0. The
problem of the center for cubic system (1) wi-
th four invariant straight lines two of which are
homogeneous was considered in Section 3. Via
a rotation of axes about the origin and under
the transformation x → γx, y → γy, γ ∈
R \ 0, the invariant line 1 + Ax + By = 0
becomes 1 − x = 0. For 1 − x = 0 identi-
ty (4) gives k = −a, m = −c − 1, p =
−f, n = s − m and we obtain set of condi-
tions (14). The cofactor of l3 ≡ 1 − x = 0 is
K3(x, y) = −y − ax2 − (c + 1)xy − (a + d)y2.

Lemma 2. The following three sets of
conditions are sufficient conditions for the ori-
gin to be a center for system (1):

(i) d = l = m = q = r = 0, c = −1, f =
a, k = p = −a, g = b− 1, n = s;

(ii) c = −2, d = r = 0, q = f = l = a, g =
b− 2, m = 1, n = s− 1, k = p = −a;

(iii) b = m = 1/2, c = (−3)/2, f = a+d, g =
−1, k = −a, r = 0, l = (a + d)/2, p =
−(a + d), q = (a− d)/2, s = (2n + 1)/2.

Proof. If either condition (i) or (ii) holds,
then cubic system (1) has three invariant strai-
ght lines of form (13). We find a Darboux

integrating factor of the form

µ = lα1
1 lα2

2 lα3
3

with α1 = α2 = α3 = −1 in case (i) and α1 =
α2 = −1, α3 = −2 in case (ii).

If (iii) holds then cubic system (1) wi-
th invariant straight lines (13) is rationally
reversible. Indeed, in this case there exists a
transformation [6] X = 2x/(2 − x), Y =
2y/(2−x) that brings system (1) to the system

Ẋ = (4−X2)(Y + aX2 + (a + d)Y 2),

Ẏ = −X(4 + 4dY + (4n + 1)X2+
+ (4n + 2)Y 2 + aX2Y + (a + d)Y 3)

for which X = 0 is an axes of symmetry. The
obtained system has a center at X = Y = 0
and hence the origin is a center for (1).

Lemma 3. The following two sets of condi-
tions are sufficient conditions for the origin to
be a center for system (1):

(i) a = d = f = k = l = p = q = r = 0, g =
b + c, m = −c− 1, n = c + s + 1;

(ii) f = a + d, g = b + c, k = −a, m = −c−
1, l = bd−a(c+1), n = [(c+1)(bd−a(c+
2))]/d, q = d(b−1)−a(c+1), p = −a−d,
s = [(c+1)(d(b− 1)−a(c+2))]/d, r = 0.

Proof. In these two cases the system (1) has
four invariant straight lines and the Darboux
first integral

(x2 + y2)lα3
3 lα4

4 = C.

In case (i): l3 = 1 − x, l4 = 1 + (c + 1)x
and α3 = −2(b + c + s + 1)/(c + 2), α4 =
2(b + bc − c − s − 1)/((c + 1)(c + 2)), where
(c + 1)(c + 2) 6= 0.

In (ii): l3 = 1 − x, l4 = 1 + (c + 1)x + dy
and α3 = 2(a + ac − bd)/d, α4 = 2a/d, where
d 6= 0.

Theorem 4. Suppose cubic system (1)
has three invariant straight lines of form (13).
Then the origin O(0, 0) is a center for (1) if
and only if Lj = 0, j = 1, 7.

Proof. We compute the first seven
Lyapunov quantities for (1) by algorithm
proposed in [13] assuming that set of condi-
tions (13) holds. In the expressions of Lj, j =
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1, 7, we will neglect the denominators and non-
zero factors.

The vanishing of the first Lyapunov quanti-
ty gives q = bd − ac − a − d. The second
Lyapunov quantity looks like L2 = f1f2, where

f1 = a(c + 1)(c + 2)− d(c + 1)(b− 1) + ds,
f2 = 4b + 2c + 1.
If f1 = 0 and d = 0, we find a(c+1)(c+2) =

0. If a = 0, then use Lemma 3, (i); if a 6= 0, c =
−1, then use Lemma 2, (i); if a 6= 0, c = −2,
then use Lemma 2, (ii).

If f1 = 0 and d 6= 0, we have s = [(c +
1)(d(b−1)−a(c+2))]/d. In this case the origin
is a center by Lemma 3, (ii).

Assume f1 6= 0 and let f2 = 0, then
b = −(1+2c)/4. The third Lyapunov quantity
looks like L3 = g1g2, where g1 = 2c + 3 and

g2 = 48a2 + 40ad + 2c + 8d2 + 8s + 3.
If g1 = 0, then use Lemma 2, (iii) and if

g1 6= 0, g2 = 0, then s = −(48a2 + 40ad + 2c +
8d2 + 3)/8. In this case L4 = h1h2, where

h1 = 4(2a + d)2 + 1,
h2 = 80a2 + 88ad− 2c2 − 6c + 22d2 − 5.
It is evident that h1 = 0 has no real soluti-

ons. In the next three Lyapunov quantities the
factor h1 will be omitted. Next we reduce the
Lyapunov quantities L5, L6 by h2, and L7 by
h2 and L5. We have

L5 = 1280a4 + 1536a3d + 384a2d2 − 416a2 −
128ad3 − 480ad− 48d4 − 136d2 + 1,

L6 = L5(1488a2 +1480ad−66c+368d2−79),

L7 = 20971520a8−45132ad+31457280a7d+
15728640a6d2 − 12684d2 − 11390976a6 +
2621440a5d3 + 69264ad3− 15857664a5d−
6986752a4d2 + 1641728a4 − 952832a3d3 +
2085312a3d + 773312a2d2− 42320a2 + 93.

The system h2 = L5 = L6 = L7 = 0 has
no real solutions. Note that h2 = L5 = 0 (i.e.
h2 = L5 = L6 = 0) has real solutions.

Indeed, if we assume a = 0, then it is evi-
dent that the system h2 = 22d2−2c2−6c−5 =
0, L5 = 1−136d2−48d4 = 0 has real solutions.
Hence, the vanishing of the Lyapunov quanti-
ties Lj, j = 1, 6 does not imply the origin to
be a center for (1). Theorem is proved.

We summarize necessary and sufficient
conditions for the origin to be a center in the
following theorem.

Theorem 5. The origin is a center for (1),
with at least three invariant straight lines two
of which are homogeneous, if and only if one
of the conditions of Lemmas 1–3 holds.

5. Two homogeneous invariant
straight lines and centers
In this section assuming that cubic system

(1) has two homogeneous invariant straight li-
nes we find sufficient conditions for the origin
to be a center for (1).

Lemma 4. The following three sets of
conditions are sufficient conditions for the ori-
gin to be a center for system (1):

(i) c = −2b, d = −2a, f = −a, n = 2r −m,
g = −b, p = −l, q = −k, s = r;

(ii) a = d = f = 0, g = b + c, k =
l, m = (2br + cn − cr)/(2b), p = q =
[l(b + c)]/b, s = (2bn + cn− cr)/(2b);

(iii) c = (bd)/a, f = a + d, g = [b(a +
d)]/a, p = q = [l(a + d)]/a, k = l,
m = (2ar + dn − dr)/(2a), s = (2an +
dn− dr)/(2a).

Proof. Assume condition (7) is satisfied,
then cubic system (1) has two homogeneous
invariant straight lines of the form x± iy = 0.
We find the integrating factor of the form

µ = (x + iy)α1(x− iy)α2 .
In case (i): α2 = α1 = −2; in case (ii): α2 =

α1 = (c − 2b)/(2b); in case (iii): α2 = α1 =
(d− 2a)/(2a).

Lemma 5. The following four sets of
conditions are sufficient conditions for the ori-
gin to be a center for system (1):

(i) b = c = g = k = l = p = q = 0, f = a+d,
r = m + n− s;

(ii) b = [a(1−u2)]/(2u), c = [d(1− u2)]/(2u),
g = [(a + d)(1 − u2)]/(2u), n = [(q −
3k)(u4−6u2+1)+4m(u3−u)]/[4u(u2−1)],
l = k, f = a + d, r = [(q − k)(u4 − 6u2 +
1) + 4m(u3− u)]/[4u(u2− 1)], p = q, s =
[k(6u2−u4−1)+2mu(u2−1)]/[2u(u2−1)];
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(iii) c = −3b, f = a + d, g = −2b, k = −2ab,
l = b(a + d), m = 2b2, p = −2b(a + d),
q = b(a− d), r = 0, s = 2b2 + n;

(iv) c = [(3a + d)(1 − u2) − 6bu]/(2u), g =
[(3a + d)(1− u2)− 4bu]/(2u), l = [a(3a +
d)(u2 − 1) + 2(3ab + bd + k)u]/(2u), m =
[r(u2+1)4+2(au2−a+2bu)((5a+2d)(u6−
1)+(11a−2d)(u2−u4)+ b(10u5−12u3 +
10u))]/(u2+1)4, s = [n(u2+1)4+2(au2−
a+2bu)((5a+2d)(u6−1)+(11a−2d)(u2−
u4) + b(10u5 − 12u3 + 10u))]/(u2 + 1)4,
f = a + d, q = [2pu + (3a + d)(au2 − a +
2bu)]/(2u), r = [2(5ab+bd+k)(u11−u)+
2(4b2−9a2−3ad)(u10+u2)+a(3a+d)(u12+
1)+2(3k−5bd−33ab)(u9−u3)+ (61a2−
ad−64b2)(u8+u4)+4(45ab−3bd+k)(u7−
u5) + 4(28b2 − 23a2 + 3ad)u6]/[4u2(u2 +
1)4], n = [2(k − 10ab − 2bd)(u9 + u) +
8(10ab + k)(u7 + u3) + 2(14a2 + ad −
12b2)(u8 − u2) + 4(10b2 + ad − 8a2)(u6 −
u4)+4(3k−14ab+2bd)u5+2a(2a+d)(1−
u10)]/[(u2+1)4(u2−1)], p = [(12ab+2bd+
k)(u9 +u)+(12b2−5ad−19a2)(u8−u2)+
4(k−16ab−2bd)(u7+u3)+2(21a2−3ad−
26b2)(u6−u4)+a(3a+d)(u10−1)+2(52ab−
10bd + 3k)u5]/[u(u2 + 1)4].

Proof. If one of conditions (i)–(iv) holds,
the cubic system is rationally reversible. We
find a transformation of the form [6]

x =
a1X + b1Y

a3X + b3Y − 1
, y =

a2X + b2Y

a3X + b3Y − 1

with a1b2− b1a2 6= 0 and aj, bj ∈ R, j = 1, 2, 3
which brings system (1) to one equivalent with
a polynomial system

Ẋ = Y + M(X2, Y ),

Ẏ = −X(1 + N(X2, Y )).

The obtained system has an axis of symmetry
X = 0 and therefore O(0, 0) is a center for (1).

In case (i): x = X/(Y + 1), y = Y/(Y + 1);
in case (ii): x = (2uX−u2Y +Y )/[(u2+1)(Y −
1)], y = (2uY +u2X−X)/[(u2 +1)(Y −1)]; in
case (iii): x = X/(1+ bX), y = Y/(1+ bX); in
case (iv): x = (2uX − u2Y + Y )/[(au2 + 2bu−
a)X − u2 − 1], y = (2uY + u2X −X)/[(au2 +
2bu− a)X − u2 − 1].
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