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Introduction

It easily follows from the de�nition of almost periodic functions that if values of two such

functions converge at in�nity, then these almost periodic functions coincide. This e�ect also

manifested itself in [7] for the zeros of holomorphic almost periodic functions, and then in [1]

and [2] for Fourier quasicrystals and some classes of transformable measures on LCA-groups.

In this note, we discuss this e�ect in detail, show how can it be strengthened, what form it

takes for other almost periodic objects - almost periodic distributions, almost periodic mea-

sures, almost periodic multisets, a -points of holomorphic and meromorphic almost periodic

functions.

1 Almost periodic functions

We start with the simplest almost periodic object - uniformly almost periodic functions

on a �nite-dimensional space and on tube sets. The de�nitions introduced in this section

will also be used in subsequent sections.

Let BC(z0, R) be the open ball {z ∈ C : |z− z0| < R} in the space Cd, and BR(x0, R) be

the open ball {x ∈ R : |x− x0| < R} in the space Rd. The tube set TK ⊂ Cd means the set

of the form

TK =
{
z = x+ iy ∈ Cd : x ∈ Rd, y ∈ K

}
,

where K is a compact subset of Rd. Clearly, Rd = T{0}. Then TΩ means the domain

TΩ =
{
z = x+ iy : x ∈ Rd, y ∈ Ω

}
,
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where Ω is a domain in Rd, maybe Ω = Rd. The set E is relatively dense in Rd, if there

exists R <∞ such that each ball BR(x,R) intersects with E. By #A denote the number of

elements of a �nite set A.

De�nition 1. A continuous complex-valued function f(z) on a tube set TK is called almost

periodic if for all ε > 0 the set of its ε-almost periods

Eε,K = Eε,K(f) = {τ ∈ Rd : sup
z∈TK
|f(z + τ)− f(z)| < ε}

is relatively dense in Rd.

It easily follows from this de�nition that almost periodic functions on TK are bounded.

Less obvious is the following statement:

Theorem 1. ([9]) A continuous function f(z) on TK is almost periodic i� for any sequence

{xn} ⊂ Rd there is a subsequence {xn′} such that the functions fn′(z) = f(z+ xn′) form the

fundamental sequence with respect to the uniform convergence on TK .

De�nition 2. A function f(z) on a tube domain TΩ is called almost periodic if for every

compact set K ⊂ Ω its restriction to TK is almost periodic.

Theorem 2. ([9]) A continuous function f(z) is almost periodic on a tube domain TΩ i� for

any sequence {xn} ⊂ Rd there is a subsequence {xn′} such that the functions

fn′(z) = f(z + xn′) form the fundamental sequence with respect to the uniform convergence

on TK for every K ⊂ Ω.

Remark 1. All these de�nitions and theorems carry over practically unchanged to the case

of mappings F : TK → CN or F : TΩ → CN . Since component-wise convergence is equivalent

to the convergence of mappings, we get that the vector function F (z) = (f1(z), . . . , fN(z))

is almost periodic if and only if its components are almost periodic. Therefore for any ε > 0

the set Eε,K of common almost periods of functions f1, . . . , fN is also relatively dense. In

particular, this implies that a sum or a product of any �nite number of almost periodic

functions is also an almost periodic function.

In the rest of the article, only the cases of functions and sets on Rd or on TΩ ⊂ Cd will

be considered.

Next we give the basic de�nition of our article.

De�nition 3. We shall say that functions f, g on Rd converge weakly at in�nity, if

lim
x→∞,x∈G

|f(x)− g(x)| = 0,

where G ⊂ Rd is a set with the property

G ⊃
∞⋃
k=1

BR(xk, Rk) for some sequence of balls BR(xk, Rk), Rk →∞. (1)
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De�nition 4. Functions f, g on TΩ converge weakly at in�nity if for each �xed y0 ∈ Ω the

functions f(x+ iy0), g(x+ iy0) of the variable x ∈ Rd weakly converge at in�nity.

Theorem 3. If almost periodic functions f, g on Rd or TΩ converge weakly at in�nity, then

they coincide identically.

Proof. Let f, g be almost periodic functions on Rd. Fix x0 ∈ Rd and ε > 0. Let Eε be the

set of ε-almost periods of the almost periodic function h = f − g. Taking into account (1)

and relative density of Eε, we get that for large n there is a point τn ∈ Eε∩BR(xn−x0, Rn).

Hence x0 + τn ∈ BR(xn, Rn) and |h(x0 + τn)| < ε. Also, |h(x0 + τn)− h(x0)| < ε, therefore,

|h(x0)| < 2ε. The choice of ε and x0 was arbitrary, therefore h(x) ≡ 0. In the case of

functions on TΩ we take z0 = x0 + iy0 ∈ TΩ and a compact set K ⊂ Ω such that y0 ∈ K,

then replace Eε by Eε,K and x0 by z0. Theorem is proved.

2 Almost periodic distributions, measures, multisets

LetD(Rd) be the space of test functions on Rd, i.e., C∞-functions with compact supports,

equipped with the topology of uniform convergence of derivatives of all orders of functions

from D(Rd), provided that all their supports are subsets of some �xed compact from Rd, let

D′(Rd) be the space of distributions on Rd, that is, the set of continuous linear functionals

on D(Rd). The distribution space D′(TΩ) is similarly de�ned as continuous linear functionals

on the space D(TΩ), consisting of C∞-functions with compact support in TΩ.

De�nition 5. A distribution f ∈ D′(Rd) (or f ∈ D′(TΩ)) is called almost periodic, if for

any test-function ϕ the function (f, ϕ(· − t)) is almost periodic in the variable t ∈ Rd.

De�nition 6. A distribution f ∈ D′(TΩ) is called almost periodic, if for any test-function

ϕ ∈ D(TΩ) the function (f, ϕ(· − z)) is almost periodic in the variable z ∈ Tω. Here ω is the

open subset of Ω such that for all z ∈ Tω the condition ζ − z ∈ suppϕ implies ζ ∈ TΩ.

A particular case of distributions are complex-valued measures. Such measures will be

denoted by µ, and the measure, which is the variation of µ, by |µ|. A measure µ on Rd is

called translation bounded if

sup
x∈Rd

|µ|(BR(x, 1)) <∞.

Similarly, a measure on TΩ is called translation bounded if for any compact K ⊂ Ω

sup
x∈Rd

|µ|(BR(x, 1)×K) ≤ C,

where C is a constant depending onK. Note that every nonnegative almost periodic measure

is translation bounded. To prove this we should take a nonnegative test function ϕ(z) ∈
D(TΩ) such that ϕ(z) = 1 on BR(0, 1)×K, where K is a compact subset of Ω (for the case

TRd we should take nonnegative ϕ ∈ D(Rd), ϕ(x) = 1 on BR(0, 1)). The function∫
ϕ(z − t)µ(dz) (2)



42 Favorov S.Yu., Udodova O.I.

is almost periodic, hence it is bounded in t ∈ Rd. On the other hand, for all t ∈ Rd

µ(BR(t, 1)×K) ≤
∫
ϕ(z − t)µ(dz).

If a measure µ ∈ D′(TΩ) is translation bounded, then we can use any continuous function

with compact support as test functions in De�nition 5. This follows from the fact that

any such a function can be uniformly approximated by C∞-functions supported on a �xed

compact set. On the other hand, there are signed almost periodic measures for which (2) are

not almost periodic for an appropriate continuous compactly supported ϕ ([4]). Note that

if (2) is bounded for all continuous ϕ with compact support, then the complex measure µ is

translation bounded ([9]).

Let D = {a, p}, p ∈ N, be a discrete multiset in TΩ or in Rd. It can be identi�ed with a

sequence {an} without condensation points in TΩ (or in Rd) such that each point from TΩ

or in Rd can occur in this sequence at most a �nite number of times. In the case of TΩ ⊂ C
a discrete multiset is also called a divisor (see [6]).

De�nition 7. ([6]) A discrete multiset D ⊂ Rd is called almost periodic if for all ε > 0 there

is a relatively dense set Eε ⊂ Rd such that a bijection σ : N→ N corresponds to any τ ∈ Eε
with the property

sup
n∈N
|an − τ − aσ(n)| < ε.

A discrete multiset D ⊂ TΩ is called almost periodic if for all ε > 0 and compact set K ⊂ Ω

there is a relatively dense set Eε,K ⊂ Rd such that a bijection σ : N→ N corresponds to any

τ ∈ Eε,K with the property

sup |an − τ − aσ(n)| < ε,

where supremum is taken over all n ∈ N such that either an, or aσ(n) belongs to TK .

We also need a notion of bounded density. For a discrete multiset D ⊂ Rd, D = {an},
this means that

sup
x∈Rd

#{n : an ∈ BR(x, 1)} <∞.

Also, D ⊂ TΩ is of bounded density if for every compact K ⊂ Ω

N(K) := sup
x∈Rd

#{n : an ∈ BR(x, 1)×K} <∞. (3)

It is easy to check that each almost periodic multiset is of bounded density. For TΩ ⊂ Cd

the proof can be found in [6]. For convenience, we present it here. The proof for D ⊂ Rd

di�ers only in the corresponding simpli�cations.

Set η = 1
2

dist(K, ∂Ω) (in the case Ω = Rd set η = 1
2
). Take R <∞ such that every ball

BR(x,R) intersects with Eη,K . Fix τ ∈ BR(x,R) ∩ Eη,K and take the bijection σ : N → N
such that for each an ∈ TK

|an − τ − aσ(n)| < η.

For an ∈ BR(x, 1)×K we get

|Re aσ(n)| ≤ |Re aσ(n) − Re an + τ |+ |Re an − x|+ |x− τ | < η + 1 +R,
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Im aσ(n) = Im an + (Im aσ(n) − Im an).

Since Im an ∈ K and |Im aσ(n) − Im an| < η, we get Im aσ(n) ∈ K1, where

K1 = {y : dist(y,K) ≤ η}. Thus,

#{n : an ∈ BR(x, 1)×K} ≤ #{n : aσ(n) ∈ BR(0, 1 + η +R)×K1},

and we obtain (3).

Note that the measure

µD =
∑
n

δan ,

corresponds to each discrete multiset D = {an}, where δan is the unit mass at the point an.

Theorem 4. A discrete multiset D is almost periodic i� the measure µD is almost periodic.

For D ⊂ C this theorem was proved in [6], and for D ⊂ Rd in [3]. Here we give a new,

much simpler proof for D ⊂ TΩ. The proof for D ⊂ Rd di�ers only in the corresponding

simpli�cations.

Proof. Let a discrete multiset D be almost periodic and K ⊂ Ω be a compact set. Take

a function ϕ ∈ C∞(TΩ) such that suppϕ ⊂ BR(0, 1/2) × K. Let ε > 0 be arbitrary and

δ < (1/2) dist(K, ∂Ω) such that for |z − z′| < δ

|ϕ(z)− ϕ(z′)| < ε

N(K)
,

where N(K) is de�ned in (3). Pick τ ∈ Eδ,K(D) and the corresponding bijection σ. We have∫
ϕ(z − τ)µD(dz)−

∫
ϕ(z)µD(dz) =

∑
n

ϕ(an − τ)−
∑
n

ϕ(an) =

=
∑
n

[ϕ(an − τ)− ϕ(aσ(n))].

The number of terms in the letter sum does not exceed 2N(K), moreover, |an−τ−aσ(n)| < δ,

hence the di�erence between integrals does not exceed ε. Therefore the points of the set

Eδ,K(D) are ε-almost periods of the function (µD(ϕ(· − t)). This reasoning is valid for every

ϕ with compact support, therefore the measure µD is almost periodic.

On the other hand, let µD be the almost periodic measure on TΩ, which corresponds to

a discrete multiset D = {an}. Fix a compact set K ⊂ Ω and ε < 1
4

min{1, dist(K,Ω)}. Put

K̃ = {y ∈ Ω : dist(y,K) ≤ ε}.

Choosing a su�ciently large K, we can assume that either D ⊂ K, or D \ TK̃ 6= ∅. Since

µD is almost periodic we get that it is translation bounded, hence for some N <∞

µD(BR(x, 1)× K̃) ≤ N, ∀x ∈ Rd,
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therefore,

#{n : an ∈ BR(x, 1)× K̃} ≤ N, ∀x ∈ Rd. (4)

Set δ = ε/(4N + 1). Let A be any connected component of the set
⋃
n

BC(an, 2δ) such that

A ∩ TK 6= ∅. There exists an′ ∈ A such that BC(an′ , 2δ) ∩ TK 6= ∅. If A ∩ ∂BC(an′ , ε) 6= ∅,

then the connected set A ∩ BC(an′ , ε) contains at least ε/(4δ) > N points of D, which

contradicts (4). Hence,

A ⊂ BC(an′ , ε) ⊂ BR(Re an′ , 1)× K̃

and, by (4), #{n : an ∈ A} ≤ N .

By ϕ(z) denote any C∞-function on Cd such that

0 ≤ ϕ(z) ≤ 1, ϕ(0) = 1, suppϕ ⊂ BC(0, 1), (5)

Let α =
∫
ϕ(z)ω(dz), where ω is the Lebesgue measure on Cd. Put

Ψ(z) :=

∫
ϕ

(
z − w
δ

)
µD(dw) =

∑
n

ϕ

(
z − an
δ

)
.

Since

dist(K̃, ∂Ω) ≥ dist(K, ∂Ω)− ε ≥ ε,

we see that Ψ(z) is de�ned and almost periodic on TK̃ . Let τ be ρ-almost period of Ψ(z)

with ρ < min{1; 2−2dα/(Nω2d)}, where ω2d = ω(BC(0, 1)). We have

|Ψ(z + τ)−Ψ(z)| < ρ, ∀z ∈ TK̃ . (6)

On the other hand,

Ψ(z) = 0 for z /∈ ∪nBC(an, δ) and Ψ(z + τ) = Ψ(an) ≥ 1 for z = an − τ.

Therefore the set A \ ∪nBC(an, δ) does not contain any point an − τ . If A′ is another

connected component of the set ∪nBC(an, 2δ), then for the same reason A′ \ ∪nBC(an, δ)

does not contain any point an − τ as well. Thus the set A contains all balls BC(an, δ), for

which an ∈ A and all balls BC(an − τ, δ), for which an − τ ∈ A, and do not intersect balls

BC(an, δ) with an /∈ A and balls BC(an − τ, δ) with an − τ /∈ A. We get

αδ2d#{n : an ∈ A} =
∑

n:an∈A

∫
ϕ

(
z − an
δ

)
ω(dz) =

∫
A

Ψ(z)ω(dz),

αδ2d#{n : an − τ ∈ A} =
∑

n:an−τ∈A

∫
ϕ

(
z + τ − an

δ

)
ω(dz) =

∫
A

Ψ(z + τ)ω(dz),

Note that ∫
A

ω(dz) ≤
∑
an∈A

∫
BC(an,2δ)

ω(dz) = Nω2d(2δ)
2d.

By (6),

|#{n : an ∈ A} −#{n : an − τ ∈ A}| ≤
∫
A
|Ψ(z)−Ψ(z + τ)|ω(dz)

δ2dα
<
ρNω2d2

2d

α
< 1.
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Therefore,

#{n : an ∈ A} = #{n : an − τ ∈ A},

which allows to construct a bijection σ between the sets {n : an−τ ∈ A} and {n : an ∈ A}.
This construction works for every connected component of the set ∪nBC(an, 2δ), hence

there exists a bijection σ of a part S1 of N to the part S2 of N. It follows from the inequality

diamA ≤ 2ε that

|an − τ − aσ(n)| < 2ε. (7)

If D ⊂ TK , we have S1 = S2 = N, and theorem is proved. If D \ TK̃ 6= ∅, we have only

{n : an ∈ TK} ⊂ S1 ∪ S2 ⊂ {n : an ∈ TK̃}.

For a ∈ D \ TK̃ put

η <
1

2
min{dist(Im a, K̃), dist{Im a, ∂Ω}}

and consider the function

Ψ(z) =

∫
ϕ

(
w − z
η

)
µD(dw) =

∑
n:an∈D

ϕ

(
an − z
η

)
.

In view of the choice of η, this function is well-de�ned and almost periodic on Tω with

ω = {y ∈ Ω : dist(y, ∂Ω) > η}. Furthermore, Ψ(a) ≥ ϕ(0) = 1, hence Ψ(a + t) is strictly

positive for some large enough t ∈ Rd. Therefore the set {n : an ∈ D\K̃} is unbounded and

countable, as well as the sets N \ S1 and N \ S2. For points an with n /∈ S1 condition (7)

need not be required, therefore the bijection σ : S1 → S2 can can be extended to a bijection

N→ N. The theorem is proved.

3 Uniqueness theorems for almost periodic distributions, measures,

multisets

De�nition 8. We shall say that distributions f, g ∈ D′(Rd) converge weakly at in�nity, if

for any ϕ ∈ D(Rd) the functions (f, ϕ (· − t)) and (g, ϕ( · − t)) of the variable t ∈ Rd

converge weakly at in�nity.

Also, we shall say that distributions f, g ∈ D′(TΩ) converge weakly at in�nity, if for any

ϕ ∈ D(TΩ) the functions (f, ϕ(·−z)) and (g, ϕ(·−z)) of the variable z ∈ Tω converge weakly

at in�nity (ω ⊂ Ω is de�ned in De�nition 6).

It follows from Theorem 3

Theorem 5. If two almost periodic distributions or measures f, g ∈ D′(Rd) converge weakly

at in�nity, then f ≡ g. The similar assertion is valid for f, g ∈ D′(TΩ).

De�nition 9. We shall say that two discrete multisets F = {an}, H = {bn} ⊂ Rd converge

weakly at in�nity, if there is a set G ⊂ Rd satisfying (1) such that under an appropriate

numbering

lim
n→∞,n∈N(G)

an − bn = 0,

where N(G) = {n ∈ N : an or bn ∈ G}.
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De�nition 10. We shall say that two discrete multisets F = {an}, H = {bn} ⊂ TΩ converge

weakly at in�nity, if for every K ⊂ Ω there is a set G = G(K) ⊂ Rd satisfying (1) such that

under an appropriate numbering

lim
n→∞,n∈N(G,K)

an − bn = 0,

ãäå N(G,K) = {n ∈ N : an ∈ G×K or bn ∈ G×K}.

Theorem 6. If two discrete multisets F,H converge weakly at in�nity, then they are iden-

tical.

Proof. It follows from theorems 4 and 5 that we have to check the weak convergence of

measures µF and µH at in�nity. The latter means that for any ϕ ∈ D(Rd) (or ϕ ∈ D(TΩ))

the almost periodic functions of the variable t ∈ Rd

ΨF (t) = (µF , ϕ(· − t)) =
∑
n

ϕ(an − t)

and

ΨH(t) = (µH , ϕ(· − t)) =
∑
n

ϕ(bn − t)

converge weakly at in�nity. To be speci�c consider the case F = {an}, H = {bn} ⊂ TΩ. The

is similar for F,H ⊂ Rd.

Suppose that suppϕ ⊂ BR(0, 1)×K for compact K ⊂ Ω. Take ε > 0 and then δ > 0 such

that |ϕ(z)− ϕ(z′)| < ε/(N(K)) for |z − z′| < δ, where N(K) is the constant from (3). Let

a set G ⊂ Rd satisfy (1) with balls BR(xk, Rk), k ∈ N. It is easy to see that having reduced

by 3 times the radii of these balls and changing the location of their centers, we can assume

that dist(B(xk, Rk), 0) → ∞. For su�ciently large k and for an, bn ∈ BR(xk, Rk) × K we

have |an − bn| < δ. Also assume that Rk > 2.

Let t ∈ BR(xk, Rk/2) and an − t ∈ suppϕ. Then an ∈ BR(xk, Rk)×K, and the same is

valid for bn − t. Therefore if an − t ∈ suppϕ or bn − t ∈ suppϕ, we get |an − bn| < δ and

|ΨF (t)−ΨH(t)| ≤
∑
n

|ϕ(an − t)− ϕ(bn − t)| <
ε

N(K)
·N(K) = ε.

Hence the almost periodic functions ΨF (t) è ΨH(t) converge weakly at in�nity.

4 Uniqueness theorems for delta-subharmonic and meromorphic

functions

It follows immediately from the de�nition that any partial derivative of an almost peri-

odic distribution from D′(Rd) or D′(TΩ) is also an almost periodic distribution. Since any

subharmonic function on any region from Rd is locally integrable, it can be considered as

a distribution. Thus, if u is a subharmonic almost periodic function on D′(Rd) or D′(TΩ),

then its Riesz measure ∆u is also an almost periodic distribution, and the same is true for

the di�erence of subharmonic functions, the so-called delta-subharmonic functions.

It follows from Theorem 5
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Theorem 7. If two delta-subharmonic functions u, v on Rd or TΩ have weakly converging

at in�nity Riesz measures ∆u and ∆v, then u = v + h with a harmonic function h.

The last part of the proof uses the fact that the condition ∆h = 0 in the sense of

distributions implies that h is an ordinary harmonic function.

De�nition 11. (see [10], [5]) A meromorphic function f(z) on the strip Sa,b = {z ∈ C :

Re z ∈ R, a < Im z < b}, −∞ ≤ a < b ≤ +∞, is called almost periodic, if in any smaller

strip Sα,β, a < α < β < b, the function ρS(f(z+ t), f(z)), where ρS is the spherical distance,

is almost periodic in the variable t ∈ R.

In [5] the following properties of meromorphic almost periodic functions are proved:

� The distance between any pole and any zero of meromorphic almost periodic functions

is bounded from below by a strictly positive constant depending on the strip in which

this pole and zero lie,

� Every meromorphic almost periodic function on Sa,b is a ratio of two holomorphic al-

most periodic functions in Sa,b; the converse assertion is only valid if distances between

poles and zeros of this ratio are uniformly bounded from below by a strictly positive

constant in any smaller strip. In particular, every holomorphic almost periodic function

in a strip is simultaneously a meromorphic almost periodic function.

It was proved in [9] that for any holomorphic function f on Sa,b the function log |f | is an
almost periodic distribution, hence the measure µZ corresponding to the multiset of zeros Zf
is almost periodic. Also, if f is an almost periodic meromorphic function, then the measures

µZ and µP corresponding to the multiset of zeros Zf and the multiset of poles Pf of f are

also almost periodic. Therefore, Theorem 7 implies

Theorem 8. If multisets of poles Pf and Pg of meromorphic almost periodic functions f, g

in a strip Sa,b converge weakly at in�nity and the same is true for multisets of zeros Zf and

Zg, then Pf = Pg, Zf = Zg, hence, f/g is a holomorphic almost periodic function on Sa,b
without zeros.

If f, g are holomorphic almost periodic functions on Sa,b and multisets of zeros Zf , Zg
converge weakly at in�nity, then Zf = Zg, and we obtain Theorem 6 from [7].

Note that the linear-fractional mapping of a meromorphic almost periodic function f is

a meromorphic almost periodic function as well. Then instead of zeros and poles one can

consider A1 -points and A2 -points, A1 6= A2, that is zeros of functions f − A1 and f − A2.

Also, for TΩ = C we obtain the following theorem:

Theorem 9. Let f, g be meromorphic almost periodic functions on C and let Aj-points of

f converge weakly at in�nity to Aj-points of g for three pairwise distinct values A1, A2, A3.

Then either f = g, or f and g have the forms

f = T

(
1− h1

h2 − h1

)
, g = T

(
h2 − h1h2

h2 − h1

)
, (8)

where h1, h2 are distinct entire functions without zeros, and T is a linear-fractional mapping

that moves the triple point 0, 1,∞ to the triple point A1, A2, A3.
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At the �nal stage of the proof we use the following theorem from [8]: If two meromorphic

functions on C have the same multisets of A -points for three distinct values of A1, A2, A3,

then these functions either coincide, or have form (8).
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